Group Actions on Incidence Matrices of X-Labeled graphs

Wadhah S. Jassim

College of Bilad Alrafidain-Khanagin- Iraq
Abstract The main aim of this work is to define an action of a group on incidence matrix of X-labeled graph and, then constructing the incidence matrix of X-labeled graph of groups and their directed incidence matrix of X-labeled graph of groups.

Keywords Incidence Matrices, X-labeled Graphs,

1. Introduction

In [1] we gave the definition of Incidence of X - labeled graph and in [2] we gave an application of the incidence matrix of X- labeled graph which is the incidence matrix of directed graph of groups and their up-down pregroup. In this work we give new concepts which are called the action of group on the incidence matrix of X labeled graph and the incidence matrix of X-labeled graph of groups which is called the incidence matrix of a directed graph of groups that in [1]. Moreover, we can write a computer program for this algorithm. Therefore, this paper is divided six sections, in section one we give an introduction, in section two we give the basic concepts that we use in the rest of this work, such as the graph, group actin on graphs, incidence matrix of X labeled graph. in section three we give the definition of group action incidence matrix and other concepts. In section four we give the method of construction of the graph of groups by using the action of the group on X labeled graph. In section five we give the conclusion and in section six we give an example to show the construction of the incidence matrix of X-labeled core graph.

2. Preliminaries

A graph Γ is a collection of two disjoint sets $(V(\Gamma)$ and $E(\Gamma)$ (such that $V(\Gamma)$ is a nonempty set) which are called the sets of vertices and edges respectively of the graph Γ, Together with two functions $i: E(\Gamma) \rightarrow V(\Gamma), t: E(\Gamma) \rightarrow V(\Gamma)$ (the functions i and t join the vertices $i(e)$ and $t(e)$ to the edge e of Γ. The vertex $i(e)$ is called the initial vertex of e and $t(e)$ is called the terminal vertex of e. Moreover for each e in $E(\Gamma)$, there is an element \bar{e} in E, is called the inverse of e, such that
$i(\bar{e})=t(e), t(\bar{e})=i(e)$ and $\overline{\bar{e}}=e$.
A directed graph Γ is called a X - labeled graph, if each directed edge e of Γ is labeled by a letter x of the set X. Therefore $\Gamma(F, X)$ Cayley graph, $\Gamma(F, X) / H$ Cayley coset graph $\Gamma(H)$ and $\Gamma^{*}(H)$ Core graph of Cayley coset graph are X - labeled graphs. The product of X - Labeled graphs Γ and Δ is the graph $\Gamma \widetilde{\times} \Delta$ with set of vertices $V(\Gamma) \times V(\Delta)=\{(u, v): u \in V(\Gamma), v \in V(\Delta)\}$ and edges

$$
\{((u, v), y):(u, y) \in E(\Gamma),(v, y) \in E(\Delta), y \in X\}
$$

An X - labeled graph Γ is called folded graph, if for each vertex v of Γ is not incident with two edges e_{1}, e_{2} labeled x, x or x^{-1}, x^{-1} respectively, $x \in X$. Otherwise Γ is called non - folded graph (or unfolded graph). The operation of folded graph is called folding that by identifying the edges which are incident with the vertex v and both of them labeled x or x^{-1} into single edge labeled x or x^{-1} respectively.
Lemma 2.1: If Γ is any connected non- folded X - Labeled graph, then the folded X -
Labeled graph Γ^{\prime} is also connected.
Proof: See [3].

2.2. Group action on graphs

Let G be a group and Γ be a graph, then we say that G acts on Γ, if it acts on the sets of vertices $V(\Gamma)$ and edges $E(\Gamma)$, such that for any vertices u, u^{\prime} in $V(\Gamma)$, edges e, e^{\prime} in $E(\Gamma)$ of the graph Γ and for any g in G, then $g(u)=u^{\prime}, g(e)=e^{\prime}$. Moreover if G acts on a graph Γ, then we say that G acts on a graph Γ without inversions if $g e \neq \bar{e}$ for any g in G and e in $E(\Gamma)$, and we say that G acts on a graph Γ with inversions if $g e=\bar{e}$, for some g in G and some e in $E(\Gamma)$.
Now for any vertex v in $V(\Gamma)$ and any g in G, then we say that g stabilize the vertex v if $g(v)=v$. Therefore the set of the stabilizers of the vertex v is denoted by G_{v}. i.e. $G_{v}=\{g \in G ; g(v)=v\}$. Also for any e in $E(\Gamma)$ and any g in G, then we say that g stabilize the edge e if $g(e)=e$. Therefore the set of the stabilizers of the edge e is denoted by G_{e}. i.e. $G_{e}=\{g \in G ; g(e)=e\}$.
Lemma 2.2.1: G_{v} and G_{e} are subgroups of G.
Now for any vertex v in $V(\Gamma)$ and any g in G, then we say that $g(v)$ is an orbit of the vertex v. Therefore the set of orbits of the vertex v is denoted by $G(v)$. i.e. $G(v)=\{g(v) \in \Gamma ; g \in G\}$. Also for any e in $E(\Gamma)$ and any g in G, then we say that $g(e)$ is an orbit of the edge e. Therefore the set of orbits of the edge e is denoted by $G(e)$. i.e. $G(e)=\{g(e) \in \Gamma ; g \in G\}$. Hence $G(v)$ and $G(e)$ are subsets of Γ.

2.3. Incidence matrices of \boldsymbol{X}-labeled graphs.

In this section we will assume that all X - labeled graphs are without loops.
Let Γ be any X - Labeled graph (where $X=\{a, b\}$), then the incidence matrix of X - Labeled graph $\Gamma[1]$ is an $n \times m$ incidence matrix $\left[x_{i j}\right]$, where $1 \leq i \leq n, 1 \leq j \leq m$) with $x_{i j}$ entries such that

$$
x_{i j}=\left\{\begin{array}{ccccc}
x \text { if } v_{i}= & i\left(e_{j}\right) & \text { and } \quad e_{j} & \text { lables } & x \in X \\
0 \text { if } v_{i} & \text { is } & \text { not incident } & \text { with } & e_{j} \\
x^{-1} \text { if } v_{i}= & \tau\left(e_{j}\right) & \text { and } \quad e_{j} & \text { labeles } & x \in X
\end{array}\right.
$$

N.B. Incidence matrices of X - Labeled graphs Γ will be denoted by $M_{X}(\Gamma)$.

Now let $M_{X}(\Gamma)$ be an $n \times m$ incidence matrix $\left[x_{i j}\right]$ of X - Labeled graph Γ and let r_{i} and c_{j} be a row and a column in $M_{X}(\Gamma)$ respectively. If $x_{i j}$ is a non - zero entry in the row r_{i}, then r_{i} is called an
incidence row with the column c_{j} at the non - zero entry $x_{i j} \in X \cup X^{-1}$ and if $x_{i j} \in X$, then the row r_{i} is called the starting row (denoted by $s\left(c_{j}\right)$) of the column c_{j} and the row r_{i} is called the ending row (denoted by $e\left(c_{j}\right)$) of the column c_{j} if $x_{i j} \in X^{-1}$. If the rows r_{i} and r_{k} are incidence with column c_{j} at the non - zero entries $x_{i j}$ and $x_{k j}$ respectively, then we say that the rows r_{i} and r_{k} are adjacent. If c_{j} and c_{h} are two distinct columns in $M_{X}(\Gamma)$ such that the row r_{i} is incidence with the columns c_{j} and c_{h} at the non - zero entries $x_{i j}$ and $x_{i h}$ respectively (where $x_{i j}, x_{h} \in X \cup X^{-1}$), then we say that c_{j} and c_{h} are adjacent columns. For each column c there is an inverse column denoted by \bar{c} such that $s(\bar{c})=e(c), e(\bar{c})=s(c)$ and $\overline{\bar{c}}=c$. The degree of a row r_{i} of $M_{X}(\Gamma)$ is the number of the columns incidence to r_{i} and is denoted by $\operatorname{deg}\left(r_{i}\right)$. If the row r_{i} is incident with at least three distinct columns c_{j}, c_{h} and c_{k} at the non - zero entries $x_{i j}, x_{i h}$ and $x_{i k}$ respectively, (where $x_{i j}, x_{i h}, x_{i k} \in X \cup X^{-1}$), then the row r_{i} is called a branch row. If the row r_{i} is incident with only one column c_{j} at the non- zero entry $x_{i j}$ $\in X \cup X^{-1}$ and all other entries of r_{i} are zero, then the row r_{i} is called isolated row.

A scale in $M_{X}(\Gamma)$ is a finite sequence of form $S=r_{1}, c_{1}^{\epsilon_{1}}, r_{2}, c_{2}^{\epsilon_{2}}, \ldots, r_{k-1}, c_{k-1}^{\epsilon_{k-1}}, r_{k}$, where $k \geq 1$, $\in=\mp, \quad s\left(c_{j}^{\in_{j}}\right)=r_{j} \quad, \quad$ and $\quad e\left(c_{j}^{\in_{j}}\right)=r_{j+1}=s\left(c_{j+1}\right), 1 \leq j \leq k$. The starting row of a scale $S=r_{1}, c_{1}^{\epsilon_{1}}, r_{2}, c_{2}^{\in_{2}}, \ldots, r_{k-1}, c_{k-1}^{\epsilon_{k-1}}, r_{k}$ is the starting row r_{1} of the column c_{1} and the ending row of the scale S is the ending row r_{k} of the column c_{k-1} and we say that S is a scale from r_{1} to r_{k} and S is a scale of length k for $1 \leq j \leq k-2$. If $s(S)=e(S)$, then the scale is called closed scale. If the scale S is reduced and closed, then S is called a circuit or a cycle. If $M_{X}(\Gamma)$ has no cycle, then $M_{X}(\Gamma)$ is called a forest incidence matrix of X - Labeled graph Γ. Two rows r_{i} and r_{k} in $M_{X}(\Gamma)$ are called connected if there is a scale S in $M_{X}(\Gamma)$ containing r_{i} and r_{k}. Moreover $M_{X}(\Gamma)$ is called connected if any two rows r_{i} and r_{k} in $M_{X}(\Gamma)$ are connected by a scale S. If $M_{X}(\Gamma)$ is a connected and forest, then $M_{X}(\Gamma)$ is called a tree incidence matrix of X - Labeled graph Γ.
A component of $M_{X}(\Gamma)$ is a maximal connected subincidence matrix of $M_{X}(\Gamma)$.
If $M_{X}(\Omega)$ is a subincidence matrix of $M_{X}(\Gamma)$, and every two rows r_{i} and r_{k} in $M_{X}(\Gamma)$ are joined by at least one scale S in $M_{X}(\Omega)$, then $M_{X}(\Omega)$ is called spanning incidence matrix of $M_{X}(\Gamma)$ and $M_{X}(\Omega)$ is called spanning tree of $M_{X}(\Gamma)$ if $M_{X}(\Omega)$ is spanning and tree incidence matrix . The inverse of $M_{X}(\Gamma)$ is incidence matrix of X^{-1} - labeled graph Γ.

Lemma 2.3.1: If Γ is a connected X - Labeled graph, then $M_{X}(\Gamma)$ is a connected incident matrix of X-Labeled graph.

Proof: Since each row and column in $M_{X}(\Gamma)$ represent a vertex and an edge of Γ respectively, and each edge of Γ with labeled $x \in X$ joins two vertices, so each column in $M_{X}(\Gamma)$ joins two rows at the non-zero entries x, x^{-1} respectively. Hence $M_{X}(\Gamma)$ is a connected incident matrix of X-Labeled graph.t
Now Let Γ and Δ be X-labeled graphs, then the incidence matrix of the product of two X-Labeled graphs Γ and Δ is denoted by $M_{X}(\Gamma \widetilde{\times} \Delta)$ with the set of rows $\{(u, v): u \in V(\Gamma), v \in V(\Delta)\}$ and set of columns $\left\{\left(e_{i}, e_{j}\right): e_{i} \in E(\Gamma), e_{j} \in E(\Delta) \& e_{i}, e_{j}\right.$ have the same labeled $\}$ with the non-zero entries $x_{k t}$ as in the definition of incidence matrices of X-labeled graphs.

3. Group Actions on Incidence Matrices of \boldsymbol{X} - labeled graphs

Let G be a group and X be a subset of the group G, Γ be a connected graph and $M_{X}(\Gamma)$ be the incidence matrix of X - labeled connected graph.
Note: Henceforth we assume that the X-labeled graph is connected graph, and then $M_{X}(\Gamma)$ will be connected. We now construct a tree $M_{X}(T)$ incidence matrix of X-labeled graph, to let the group G acts on it, as below, For any closed reduced scale S_{i} of $M_{X}(\Gamma)$, choose a column c_{j} for some j, and then split the ending row $e\left(r_{i}\right)$ of c_{j} into two rows r_{i} and r_{i}^{*}, such that the ending row of c_{j} is r_{i}^{*} with same labeled of c_{j}, and the starting row of column c_{j+1} in S_{i} is r_{i} with the same labeled of c_{j+1}. Therefore we get a tree incidence matrix of X-labeled graph
3.1. Definition. For any group G and any incidence matrices of X - labeled graph $\mathrm{M}_{X}(\Gamma(T))$ we say that a group \boldsymbol{G} acts on the tree incidence matrix $M_{X}(\Gamma(T))$ of \boldsymbol{X} - labeled graph Γ, if it acts on rows and columns of $M_{X}(\Gamma(T))$ compactly, as below:
i) for any $g \in G$ and any row $r \in M_{X}(\Gamma(T))$, there exists a row $r^{\prime} \in M_{X}(\Gamma(T))$, such that $g r=r^{\prime}$.
ii) for any $g \in G$ and any column $c \in M_{X}\left(\Gamma((T))\right.$, there exists a column $c^{\prime} \in M_{X}(\Gamma(T))$, such that $g c=c^{\prime}$. That means $g(s(c))=s\left(c^{\prime}\right)$ and $g(e(c))=e\left(c^{\prime}\right)$, and c, c^{\prime} have the same labeled of non-zero entries $x \in X$.
Note: i) If $\mathrm{g}\left(r_{j}\right)=r^{\prime}$, then we write $r_{j} \sim r^{\prime}$, for any rows r_{j}, r^{\prime} in $M_{X}(\Gamma(T))$.
ii) If $\mathrm{g}\left(c_{i}\right)=c^{\prime}$, then we write $c_{i} \approx c^{\prime}$, for any c_{i}, c^{\prime} in $M_{X}(\Gamma(T))$.

Lemma 3.2: The relations \sim and \approx are equivalence relations.
Proof. i) Since $i_{G}(r)=r$, for any row r in $M_{X}(\Gamma(T))$ and i_{G} is the identity element of the group G, so \sim is reflexive. If $g(r)=r^{\prime}$, for any rows r, r^{\prime} in $M_{X}(\Gamma(T))$ and some $g \in G$, then $r=g^{-1}\left(r^{\prime}\right)$, so \sim is symmetric. Now for any rows $r, r^{\prime}, r^{\prime \prime}$ in $M_{X}(\Gamma(T))$ if $r \sim r^{\prime}, r^{\prime} \sim r^{\prime \prime}$, then there exist $g, g^{\prime} \in G$, such that $g(r)=r^{\prime}, g^{\prime}\left(r^{\prime}\right)=r^{\prime \prime}$, so $g^{\prime}(g(r))=g^{\prime} g(r)=g^{\prime}\left(r^{\prime}\right)=r^{\prime \prime}$. Therefore \sim is transitive relation. Hence \sim is an equivalence relation on rows of $M_{X}(\Gamma(T))$.
ii) Proof: Since $i_{G}(c)=i_{G}(s(c), e(c))=\left(i_{G}(r), i_{G}\left(r^{\prime}\right)\right)=\left(r, r^{\prime}\right)=c$, for any column c in $M_{X}(\Gamma(T))$, so \approx is reflexive. If $g(c)=c^{\prime}$ for any columns $c, c^{\prime} \in M_{X}(\Gamma(T))$, so $g\left(r_{j}, r_{t}\right)=\left(r^{\prime}, r^{\prime \prime}\right)$. Therefore $\left(r_{j}, r_{t}\right)=g^{-1}\left(r^{\prime}, r^{\prime \prime}\right), \quad c=g^{-1}\left(c^{\prime \prime}\right)$ and then \approx is symmetric. Now for any columns $c, c^{\prime}, c^{\prime \prime}$ in $M_{X}(\Gamma(T))$, such that $c \approx c^{\prime}, c^{\prime} \approx c^{\prime \prime}$, then $g(c)=c^{\prime}$,
$g^{\prime}\left(c^{\prime}\right)=c^{\prime \prime}$, for some $g, g^{\prime} \in G$. Therefore $g^{\prime}(g(c))=c^{\prime \prime}, g^{\prime} g(c)=c^{\prime \prime}$ and then \approx is
transitive. Hence \approx is an equivalence relation.
Definition 3.3: The stabilizer of the row r is denoted by G_{r} and define by $G_{r}=\{g ; g \in G, g r=r\}$. Also denote the stabilizer of the column c by G_{c} and define by $G_{c}=\{g ; g \in G, g c=c\}$.
Lemma 3.4: The stabilizers of the rows r and the columns c in $M_{X}(\Gamma(T))$ are subgroups of G.
Proof: Since the identity element i_{G} of G, stabilize any row r or any column c, so $G_{r}\left(M_{X}(\Gamma(T))\right.$ or $G_{c}\left(M_{X}(\Gamma)\right)$ are non-empty sets.
Now For g and g^{\prime} are elements in $G_{r}\left(M_{X}(\Gamma(T))\right.$ and $G_{c}\left(M_{X}(\Gamma(T))\right.$, so $g^{\prime} g$ is an element in $G_{r}\left(M_{X}(\Gamma(T))\right.$ and $G_{c}\left(M_{X}(\Gamma(T))\right.$. Therefore the stabilizers of the rows and the columns are subgroups of G, because $g^{\prime} g(r)=g^{\prime}\left(g(r)=g^{\prime}(r)=r\right.$, for any row r in $M_{X}(\Gamma(T))$. Similarly for any column c in $M_{X}(\Gamma(T))$. Also if g is in stabilizers of rows or columns, so g^{-1} is an element in the stabilizer of row or column of $M_{X}(\Gamma(T))$.

4. Incidence Matrix of Directed Graph of finite groups

In this section we will construct the incidence matrix of X - labeled graph of groups which is equivalent to the incidence matrix of directed graph of groups in [2].
Definition 4.1[2]: An incidence matrix of directed graph of finite groups consists
of an incidence matrix of X - labeled graph with a spanning tree matrix of X-labeled graph $M_{X}(T)$, and a base row $r^{*}=r_{1}$, together with a finite group G_{r} for each row r, and a finite group G_{c} for each column c , such that:

1) The columns of $M_{X}(\Gamma)$ are directed away from $r^{*}=r_{1}$;
2) Each column group G_{c} is a subgroup of $G_{s(c)}$;
3) Each column group G_{c} is embedded in $G_{e(c)}$ by a fixed monomorphism ψ_{c}, defined by $\psi_{c}(g)=l_{c}^{-1} g l_{c}$, $g \in G_{c}$, and $l_{c}=s(c)$ is the non-zero entrance of c in $M_{X}(\Gamma) / M_{X}(T)$.It is denoted by
$\left(G_{r}, G_{c}, l_{c}, M_{X}(T), M_{X}(W), r^{*}, \psi_{c}\right), l_{c}=1$ if $l_{c} \in M_{X}(T)$ and $l_{c} \neq 1$, if $l_{c} \in M_{X}(\Gamma) / M_{X}(T)$.
Definition 4.2: Let G be a group acts on the incidence matrices of X - labeled graph.
A subtree incidence matrix $M_{X}\left(\Gamma\left(T^{\prime}\right)\right)$ of a tree incidence matrix of X- labeled graph $M_{X}(\Gamma([T]))$.
Therefore $M_{X}\left(\Gamma\left(T^{\prime}\right)\right)$ is called a tree of representative for the action of G on $M_{X}(\Gamma(T))$, if $M_{X}\left(\Gamma\left(T^{\prime}\right)\right)$ contains exactly one row from each row.

Lemma 4.3: Let G be a group acting on an incidence matrix of X-labeled graph. If there exists a row $r_{i}, i>1$, not in the row orbit of r_{1}, then there exists r_{2} not in the row orbit of r_{1}.

Proof: Suppose that all rows of orbit r_{2} are in the base orbit r_{1} and there exists a row r_{i} not in the row orbit of r_{1}. Now choose the smallest i , such that the orbit r_{i} is not in the row orbit r_{1}. Therefore, the row orbit r_{i-1} is in the row orbit of r_{1}, i.e. $g\left(r_{i-1}\right)=r_{1}$ say, and then $g^{\prime}\left(r_{i}\right)=r_{2}$, for some $g^{\prime} \in G$. Since by assuming that the row orbit r_{2} is in the row orbit of the row orbit r_{1}, so $g^{\prime \prime}\left(r_{i}\right)=r_{1}$, i.e. the row orbit r_{i} is in the row orbit of r_{1} which is a contradiction. Hence r_{2} and r_{1} are in different orbits.
Lemma 4.4: If h and f are two columns of the same column orbit, then the starting rows $s(h)$ and $s(f)$ are of the same row orbits. Also the ending rows $e(h)$ and $e(f)$ are of the same row orbit.
Proof: Since the columns h and f are of the same column orbit, so there exists some g in G, such that
$g(h)=f$. Since $g(s(h))=s(g h)$ and $g(e(h))=e(g(h))$, so
$g(s(h))=s(f)$ and $g(e(h))=e(f)$.
Lemma 4.5: If $s(h)$ and $r_{i},\left(\right.$ for some column h and row r_{i} in $\left.M_{X}(\Gamma(T))\right)$ are of the same row orbit, then there exists a column f for some column f in $M_{X}(\Gamma(T))$, such that h and f are of the same column orbit and $s(f)=r_{i}$.
Proof: Since $s(h)$ and r_{i} are of the same row orbit, so there exists some g in G, such that $g(s(h))=r_{i}$. Now let $f=g(h)$, then $r_{i}=g(s(h))=s(g(h))=s(f)$, for some column $f \in M_{X}(\Gamma(T))$.t.
Lemma 4.6: Let G be a group acting on a tree incidence matrix of X - labeled graph, then a tree of representatives can always be exist.
Proof: Let us assume, there is more than one row orbit.
Therefore by assuming lemma 4.2 , let r_{1} be the base row and r_{2} be of a different row orbits. Then there exists a column between them.
Now let W be the set of all subtree incidence matrix $M_{X}\left(\Gamma\left(T^{\prime}\right)\right)$ of the tree incidence matrix of X-labeled graph $M_{X}(\Gamma(T))$ containing the base row r_{1}, such that $M_{X}\left(\Gamma\left(T^{\prime}\right)\right)$ satisfies the following conditions;

1) All rows are of different row orbits;
2) i is minimal in the row orbit of r_{i} if case of r_{i} in $M_{X}\left(\Gamma\left(T^{\prime}\right)\right)$;
3) if r_{i} in $M_{X}\left(\Gamma\left(T^{\prime}\right)\right)$ and $j<i$, then every r_{j} is in the row orbit of some row of $M_{X}\left(\Gamma\left(T^{\prime}\right)\right)$. Since W is not empty set, because $M_{X}\left(\Gamma\left(T_{1}^{\prime}\right)\right)$ containing r_{1} only is in W. Since W is a partially ordered by inclusion.
Now let $\left\{M_{X}\left(\Gamma\left(T_{i}^{\prime}\right)\right)\right\}$ be totally ordered subset of W. Therefore we show that there exists $M_{X}\left(\Gamma\left(T^{\prime \prime}\right)\right)$ in $W, M_{X}\left(\Gamma\left(T^{\prime \prime}\right)\right) \supseteq M_{X}\left(\Gamma\left(T_{i}^{\prime}\right)\right.$. Let $M_{X}\left(\Gamma\left(T^{\prime \prime}\right)\right)=\cup M_{X}\left(\Gamma\left(T_{i}^{\prime}\right)\right)$
If $M_{X}\left(\Gamma\left(T^{\prime \prime}\right)\right)$ is not a tree Incidence matrices of X - labeled graph, then there exists a finite reduced closed scale in $M_{X}\left(\Gamma\left(T^{\prime \prime}\right)\right)$. Since $M_{X}\left(\Gamma\left(T^{\prime \prime}\right)\right)=\cup M_{X}\left(\Gamma\left(T_{i}^{\prime}\right)\right)$, so there is a reduced closed scale in
$M_{X}\left(\Gamma\left(T_{i}^{\prime}\right)\right)$, for some i a contradiction. Therefore $M_{X}\left(\Gamma\left(T^{\prime \prime}\right)\right)$ is a tree. Now suppose there exist r_{i} and r_{j} in $M_{X}\left(\Gamma\left(T^{\prime \prime}\right)\right)$, such that $g\left(r_{j}\right)=r_{i}$. Since r_{j} in $M_{X}\left(\Gamma\left(T_{j}^{\prime}\right)\right)$ and r_{i} in $M_{X}\left(\Gamma\left(T_{i}^{\prime}\right)\right), M_{X}\left(\Gamma\left(T_{j}^{\prime}\right)\right)$ is a subtree of $M_{X}\left(\Gamma\left(T_{i}^{\prime}\right)\right)$, so r_{i} and r_{j} in $M_{X}\left(\Gamma\left(T_{i}^{\prime}\right)\right)$ a contradiction. Therefore (1) holds.
Now let r_{j} in $M_{X}\left(\Gamma\left(T^{\prime \prime}\right)\right)$, then r_{j} in $M_{X}\left(\Gamma\left(T_{i}^{\prime}\right)\right)$, for some i. Since (2) and (3) hold for $M_{X}\left(\Gamma\left(T_{i}^{\prime}\right)\right)$, so they also hold for $M_{X}\left(\Gamma\left(T^{\prime \prime}\right)\right)$, i.e. $M_{X}\left(\Gamma\left(T^{\prime \prime}\right)\right)$ is in W.
Hence by Zorn's Lemma, there exists a maximal $M_{X}\left(\Gamma\left(T^{\prime}\right)\right)$ in W. Now suppose that $M_{X}\left(\Gamma\left(T^{\prime}\right)\right)$ has set of rows $\left\{r_{k}\right\}$.
We now show that $M_{X}\left(\Gamma\left(T^{\prime}\right)\right)$ contain exactly one row from each row orbit.
Suppose not, so there exists r_{j} not in the orbit of any row orbit in $M_{X}\left(\Gamma\left(T^{\prime}\right)\right)$
Chosen such that j is as small as possible. Therefore $j \neq 0$ and by (2) $r_{i} \geq r_{j}$ by minimality of j, there exists a g in G, such that $g\left(r_{i-1}\right)=r_{k}$ in $M_{X}\left(\Gamma\left(T^{\prime}\right)\right)$.
Now $k \leq i-1$ by (b) and r_{i-1} is adjacent by a column to r_{i}, let c be the column joining r_{i-1} to r_{i}. Now let $r_{t}=g\left(r_{i}\right)$, then r_{t} is adjacent to r_{k}.
Let $M_{X}\left(\Gamma\left(T^{\prime \prime \prime}\right)\right)$ be the tree incidence matrices of X-labeled graph consisting of $M_{X}\left(\Gamma\left(T^{\prime}\right)\right)$ with $g(c)$ and $g\left(r_{i}\right)$. Therefore (1) holds for r_{i} in $M_{X}\left(\Gamma\left(T^{\prime \prime \prime}\right)\right)$.
However $g\left(r_{i}\right)$ is adjacent to r_{k}, so $\quad g\left(r_{i}\right)=r_{k+1}=r_{t}$.
Therefore $t=k+1$. From above, we have $k+1 \leq i$ and so $t \leq i$. Since i is minimal, so $i \leq t$. Hence $i=t$, and by minimality of $i,(2)$ holds for $M_{X}\left(\Gamma\left(T^{\prime \prime \prime}\right)\right)$.
Now if $j<t$, then by the choice of i, r_{j} is in the row orbit of some row in $M_{X}\left(\Gamma\left(T^{\prime}\right)\right)$. Thus (3) holds. Therefore we have a larger subtree which satisfies (1), (2) and (3) a contradiction. Hence $M_{X}\left(\Gamma\left(T^{\prime}\right)\right)$ satisfies (1), (2) and (3). Therefore a tree incidence matrix of X - labeled graph of representatives always exists.
Definition 4.7: A subtree incidence matrices of X-labeled graph $M_{X}(\Gamma(F))$ of $M_{X}(\Gamma(T))$ containing a tree incidence matrices of X-labeled graph of representatives $M_{X}\left(\Gamma\left(T^{\prime}\right)\right)$ (say) is called a fundamental domain for the action of G on $M_{X}(\Gamma(T))$, if each column in $M_{X}(\Gamma(F))$ has at least one end in $M_{X}\left(\Gamma\left(T^{\prime}\right)\right)$ and $M_{X}(\Gamma(F))$ contains exactly one column from each column orbit under G.
Lemma 4.8: Let G be a group acting on a tree incidence of X-labeled graph $M_{X}(\Gamma(T))$, then there is at most one column of $M_{X}\left(\Gamma\left(T^{\prime}\right)\right)$ in each column orbit.
Proof: Let c be a column in $M_{X}\left(\Gamma\left(T^{\prime}\right)\right)$, such that $s(c)=r_{k}$ and $e(c)=r_{2}$ and let c^{\prime} be a column in $M_{X}\left(\Gamma\left(T^{\prime}\right)\right)$, such that $s\left(c^{\prime}\right)=r_{m}, e\left(c^{\prime}\right)=r_{t}$.

Now if c and c^{\prime} are in same column orbit, then there exists a g in G, such $g(c)=c^{\prime}$. Therefore $g\left(r_{k}\right)=r_{m}$ and $g\left(r_{2}\right)=r_{t}$. Since $M_{X}\left(\Gamma\left(T^{\prime}\right)\right)$ contains at most one row from each row orbit, so $r_{k}=r_{m}$ and hence $c^{\prime}=c$. That mean, we have only one column of $M_{X}\left(\Gamma\left(T^{\prime}\right)\right)$ in each column orbit.
Lemma 4.9: Let G be a group acting on a tree incidence matrix of X-labeled graph $M_{X}(\Gamma(T))$ with $M_{X}\left(\Gamma\left(T^{\prime}\right)\right)$ a tree incidence matrix of X-labeled graph of representatives, then a fundamental domain of incidence matrix of X-labeled graph containing $M_{X}\left(\Gamma\left(T^{\prime}\right)\right)$ always exists.
Proof: Let $\mathbf{V}=\left\{M_{X}\left(\Gamma\left(F_{i}\right)\right)\right\}$ be the set of all subtrees incidence matrix of X-labeled graph $M_{X}(\Gamma(F))$ of $M_{X}(\Gamma(T))$ containing the chosen tree incidence matrix of X-labeled graph of representatives $M_{X}\left(\Gamma\left(T^{\prime}\right)\right)$, such that each c in $M_{X}(\Gamma(F))$ has at least one end in $M_{X}\left(\Gamma\left(T^{\prime}\right)\right)$ and $M_{X}(\Gamma(F))$ contains at most one column orbit c from each column orbit. Since $M_{X}\left(\Gamma\left(T^{\prime}\right)\right)$ contains at most one column orbit, so
$M_{X}\left(\Gamma\left(T^{\prime}\right)\right)$ in V. Now for any $M_{X}\left(\Gamma\left(F_{i}\right)\right)$ and $M_{X}\left(\Gamma\left(F_{i+1}\right)\right)$ in $M_{X}(\Gamma(F))$, and let $M_{X}\left(\Gamma\left(F_{i}\right)\right) \subseteq$ $M_{X}\left(\Gamma\left(F_{i+1}\right)\right)$, so V be partially ordered set by inclusion.
Therefore let $M_{X}\left(\Gamma\left(F_{i}\right)\right)$ be totally ordered subset of $\mathrm{V}=\left\{M_{X}\left(\Gamma\left(F_{i}\right)\right)\right\}$.
Now we show that there exists $M_{X}\left(\Gamma\left(F^{\prime}\right)\right)$ in V , such that $M_{X}\left(\Gamma\left(F^{\prime}\right)\right) \supseteq M_{X}\left(\Gamma\left(F_{i}\right)\right)$.
Therefore let $M_{X}\left(\Gamma\left(F^{\prime}\right)\right)=\cup\left\{M_{X}\left(\Gamma\left(F_{i}\right)\right)\right\}$. If it is not a tree incidence Matrix of X-labeled graph, then there exists a finite reduced closed scale in $M_{X}\left(\Gamma\left(F_{i}\right)\right)$ for some i a contradiction. Hence $M_{X}\left(\Gamma\left(F^{\prime}\right)\right)$ is a tree incidence Matrix of X-labeled graph.
Now let c and c^{\prime} in $M_{X}\left(\Gamma\left(F^{\prime}\right)\right)$, Since c in $M_{X}\left(\Gamma\left(F_{i}\right)\right)$ and c^{\prime} in $M_{X}\left(\Gamma\left(F_{j}\right)\right)$. But $M_{X}\left(\Gamma\left(F_{i}\right)\right) \subseteq$ $M_{X}\left(\Gamma\left(F_{j}\right)\right)$, and $M_{X}\left(\Gamma\left(F_{i}\right)\right), M_{X}\left(\Gamma\left(F_{j}\right)\right)$ are in V , then c and c^{\prime} are in different column orbit. Since each column orbit has at least one end in $M_{X}\left(\Gamma\left(T^{\prime}\right)\right)$, so $M_{X}\left(\Gamma\left(F^{\prime}\right)\right)$ in V. Now by Zorn's lemma, there exists a maximal $M_{X}(\Gamma(F))$ in V . It remains to show that $M_{X}\left(\Gamma\left(F^{\prime}\right)\right)$ contains exactly one column from each column orbit. Suppose not, so there is a column $c^{\prime \prime}$ in $M_{X}\left(\Gamma\left(F^{\prime}\right)\right)$ and there is no g in G, such that $g\left(c^{\prime \prime}\right)=c$ for any c in $M_{X}\left(\Gamma\left(F^{\prime}\right)\right)$. Since $R\left(M_{X}\left(\Gamma\left(T^{\prime}\right)\right)\right) \cap s\left(c^{\prime \prime}\right) \neq \phi$, so the row orbit of $s\left(c^{\prime \prime}\right)$ has one row r_{m} say in $R\left(M_{X}\left(\Gamma\left(T^{\prime}\right)\right)\right.$). By lemma 4.3, there is a column $c^{\prime \prime \prime}$ in $C\left(M_{X}(\Gamma(T))\right)$, such that $g\left(c^{\prime \prime}\right)=c^{\prime \prime \prime}$, for some g in G, with $s\left(c^{\prime \prime \prime}\right)=r_{m}$ in $M_{X}\left(\Gamma\left(T^{\prime}\right)\right)$. Also $g\left(e\left(c^{\prime \prime}\right)\right)=e\left(c^{\prime \prime \prime}\right)$.Therefore We have a larger subtree incidence Matrices of X-labeled graph $M_{X}(\Gamma(\bar{F}))$, with $R\left(M_{X}(\Gamma(\bar{F}))\right)=R\left(M_{X}(\Gamma(F))\right) \cup\left\{e\left(c^{\prime \prime \prime}\right)\right\}$ and $C\left(M_{X}(\Gamma(\bar{F}))\right)=C\left(M_{X}(\Gamma(F))\right) \cup\left\{c^{\prime \prime \prime}, \overline{c^{\prime \prime \prime}}\right\}$, such that each column in $M_{X}(\Gamma(F))$ has
at least one end in $M_{X}\left(\Gamma\left(T^{\prime}\right)\right)$ and $M_{X}(\Gamma(\bar{F}))$ contains at most one column from each column orbit, a contradiction to the maximality of $M_{X}(\Gamma(F))$. Therefore a fundamental domain of a tree incidence matrix of X-labeled graph always exists.■
We now use $M_{X}(\Gamma(F))$ to construct a directed graph of groups of incidence matrix of X-labeled graph, that by changing the direction of all columns in $M_{X}\left(\Gamma\left(T^{\prime}\right)\right)$ to be a way from the base row r_{1}, and then dentified the rows of the same row orbits in $M_{X}(\Gamma(F))$, we have a directed incidence matrix of X - labeled graph $M_{X}(\Gamma(\vec{F}))$, rows corresponding to rows of $M_{X}\left(\Gamma\left(T^{\prime}\right)\right)$ and columns to columns of $M_{X}(\Gamma(F))$. Let the row groups of $M_{X}(\Gamma(\vec{F}))$ be the stabilizers of the row groups G_{r} in $M_{X}\left(\Gamma\left(T^{\prime}\right)\right)$ and the columns groups G_{c} be the stabilizers of the columns c in $M_{X}(\Gamma(F))$.
Now we define a map λ_{c} be $x \mapsto l_{c}^{-1} x l_{c}$, for $x \in G_{c}, l_{c}=1$ if $c \in M_{X}\left(\Gamma\left(T^{\prime}\right)\right)$ and $l_{c}\left(r_{m}\right)=e(c)$ if $c \in M_{X}(\Gamma(F)) \backslash M_{X}\left(\Gamma\left(T^{\prime}\right)\right), r_{m} \in M_{X}\left(\Gamma\left(T^{\prime}\right)\right)$.
Lemma 4.10: $\lambda_{c}(x)$ is in G_{r}, where λ_{c} is defined as above and $x \in G_{r_{t}}$.
Proof: Since G_{c} is a subset of $G_{e(c)}$, so $x\left(r_{t}\right)=r_{t}=x l_{c}\left(r_{m}\right)=l_{c}\left(r_{m}\right)$, and then $l_{c}^{-1} x l_{c} r_{m}=r_{m}$. Hence $\lambda_{c}(x)=l_{c}^{-1} x l_{c}$, and in $G_{r_{m}}$.
Since we identified the rows of same orbit, r_{m} in $M_{X}\left(\Gamma\left(T^{\prime}\right)\right)$ and $e(c)$ in $M_{X}(\Gamma(F)) \backslash M_{X}\left(\Gamma\left(T^{\prime}\right)\right)$ in forming $M_{X}(\Gamma(\vec{F}))$, so $e(c)$ corresponding to a row r_{m} in $M_{X}(\Gamma(\vec{F}))$. Since λ_{c} is a map from G_{c} in to $G_{e(c)}$, where c in $M_{X}(\Gamma(\vec{F}))$. So λ_{c} is a monomorphism. Hence, we have a directed incidence matrix of X labeled graph of groups $\left(G_{r}, G_{c}, l_{c}, M_{X}\left(\Gamma\left(T^{\prime}\right)\right), M_{X}(\Gamma(F))\right)$.

5. Conclusion

In this work, we show that Bass- Serre theory can apply on Incidence Matrix of X - labeled graph and we have the same results with computer Program as in [1], [2], [3], [4] and this work.

6. Example

In this example we will construct the directed incidence matrix of graph of groups of X-labeled graph which the same as in [2]. In the following example we will define an action on incidence matrix of X-labeled graph and construct the directed incidence matrix of graph of finite groups of X-labeled graph.
Let $\Gamma^{*}(H)$ be a core graph of finitely generated subgroup H of free group F generated by $X=\{a, b\}$.

Figure 1
Therefore the incidence Matrix of core graph of the above graph is as follows:

$$
M_{X}\left(\Gamma^{*}(H)\right):
$$

	c_{1}	c_{2}	c_{3}	c_{4}	c_{5}	c_{6}	c_{7}	c_{8}	c_{9}
r_{1}	b	0	0	0	0	a	a^{-1}	0	0
r_{2}	b^{-1}	b	0	0	0	0	o	0	a
r_{3}	0	b^{-1}	b	a^{-1}	0	0	0	0	0
r_{4}	0	0	0	a	b^{-1}	0	0	0	0
r_{5}	0	0	b^{-1}	0	b	a^{-1}	0	0	0
r_{6}	0	0	0	0	0	0	a	b	0
r_{7}	0	0	0	0	0	0	0	b^{-1}	a^{-1}

Figure 2
Since $M_{X}\left(\Gamma^{*}(H)\right)$ is a connected incidence matrix of core graph and columns c_{2} and c_{3} are adjacent by the row r_{3}, so split the row r_{3} into two rows r_{3}, r_{3}^{\prime}, such that $e\left(c_{2}\right)=r_{3}^{\prime}$ and $s\left(c_{3}\right)$, by similarity for rows r_{4} and r_{7}, so we have, $e\left(c_{5}\right)=r_{4}^{\prime}$,
$s\left(c_{4}\right)=r_{4}$, and $e\left(c_{8}\right)=r_{7}^{\prime}, e\left(c_{9}\right)=r_{7}$. Therefore we get a tree incidence matrix of core graph which is $M_{X}(T(H))$ as below:
$M_{X}(T(H)):$

	c_{1}	c_{2}	c_{3}	c_{4}	c_{5}	c_{6}	c_{7}	c_{8}	c_{9}
r_{1}	b	0	0	0	0	a	a^{-1}	0	0
r_{2}	b^{-1}	b	0	0	0	0	0	0	a
r_{3}	0	0	b	a^{-1}	0	0	0	0	0
r_{3}^{\prime}	0	b^{-1}	0	0	0	0	0	0	0
r_{4}	0	0	0	a	0	0	0	0	0
r_{4}^{\prime}	0	0	0	0	b^{-1}	0	0	0	0
r_{5}	0	0	b^{-1}	0	b	a^{-1}	0	0	0
r_{6}	0	0	0	0	0	0	a	b	0
r_{7}	0	0	0	0	0	0	0	0	a^{-1}
r_{7}^{\prime}	0	0	0	0	0	o	0	b^{-1}	0

Figure 3
The tree representative of incidence matrix of X-labeled graph is $M_{X}\left(T^{\prime}(H)\right)$:

	c_{1}	c_{3}	c_{4}	c_{6}	c_{7}	c_{9}
r_{1}	b	0	0	a	a^{-1}	0
r_{2}	b^{-1}	0	0	0	0	a
r_{3}	0	b	a^{-1}	0	0	0
r_{4}	0	0	a	0	0	0
r_{5}	0	b^{-1}	0	a	a^{-1}	0
r_{6}	0	0	0	0	a	0
r_{7}	0	0	0	0	0	a

Figure 4
The fundament domain of incidence matrix of X-labeled graph is $M_{X}(F(H))$:

$$
\begin{array}{cccccccccc}
& c_{1} & c_{2} & c_{3} & c_{4} & c_{5} & c_{6} & c_{7} & c_{8} & c_{9} \\
r_{1} & b & 0 & 0 & 0 & 0 & a & a^{-1} & 0 & 0 \\
r_{2} & b^{-1} & b & 0 & 0 & 0 & 0 & 0 & 0 & a \\
r_{3} & 0 & 0 & b & a^{-1} & 0 & 0 & 0 & 0 & 0 \\
r_{3}^{\prime} & 0 & b^{-1} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
r_{4} & 0 & 0 & 0 & a & 0 & 0 & 0 & 0 & 0 \\
r_{4}^{\prime} & 0 & 0 & 0 & 0 & b^{-1} & 0 & 0 & o & 0 \\
r_{5} & 0 & 0 & b^{-1} & 0 & b & a^{-1} & 0 & 0 & 0 \\
r_{6} & 0 & 0 & 0 & 0 & 0 & 0 & a & b & 0 \\
r_{7} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & a^{-1} \\
r_{7}^{\prime} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & b^{-1} & 0
\end{array}
$$

Figure 5
By the action of H on $M_{X}(F(H))$, we get that $h^{\prime} r_{7}^{\prime}=r_{7}=h_{1} r_{7}, h^{\prime \prime} r_{3}^{\prime}=r_{3}=h_{2} r_{3}$ and $h^{\prime \prime \prime} r_{4}^{\prime}=r_{4}=h_{3} r_{4}$, because $a^{-1} b a^{-1} b^{-1} \in H, b b b a^{-1} \in H$ and $a b a b^{-1} a^{-1} \in H$ are reduced closed scales. Also the stabilizers of the rows and the columns are the trivial subgroups of H.
$M_{X}\left(H_{r}, H_{c}, M_{X}\left(T^{\prime}(H)\right), l_{X}\right):$

		$\{1\}$	$\{1\}$	$\{1\}$	$\{1\}$	$\{1\}$	$\{1\}$	$\{1\}$	$\{1\}$	$\{1\}$
		c_{1}	c_{2}	c_{3}	c_{4}	c_{5}	c_{6}	c_{7}	c_{8}	c_{9}
$\{1\}$	r_{1}	b	0	0	0	0	a	a^{-1}	0	0
$\{1\}$	r_{2}	b^{-1}	b	0	0	0	0	0	0	a
$\{1\}$	r_{3}	0	b^{-1}	b	a^{-1}	0	0	0	0	0
$\{1\}$	r_{4}	0	0	0	a	b^{-1}	0	0	0	0
$\{1\}$	r_{5}	0	0	b^{-1}	0	b	a^{-1}	0	0	0
$\{1\}$	r_{6}	0	0	0	0	0	0	a	b	0
$\{1\}$	r_{7}	0	0	0	0	0	0	0	b^{-1}	a^{-1}

Figure 6

References

[1]. W. S. Jassim; "Incidence matrices of X-labeled graphs and an application", SQU Journal for Science, 14(1):61-69, 2009.
[2]. ------------; "Incidence matrices of directed graph of groups and their up-down pregroups", SQU Journal for Science, 2017,22(1), 40 - 47.
[3]. W.S. Jassim \& M.M. Farman; "On incidence matrix of X - labeled graph", JUSEJ, June 2018,Vol. 05, No. 01, 18-28.
[4]. W.S. Jassim;" New applications of Incidence Matrices of X-labeled graphs and it's absorbs", accepted for publishing in JMCS, Jun 2019.
[5]. -------------;"Directed Graphs of Groups and their Up-Down Pregroups", Faculty of Science Bulletin, 17 (2004)137-154, Sana'a University.
[6]. J.P. Serre; " Tree ", Book, Published by Springer -Verlag, Berlin, Heidelberg, Newyork, 1980
[7]. R.C. Lyndon and P.E. Schupp; "Combinatorial group theory", Engebniss, Vol. 89, Berlin-Heidelberg, New-york, Springer, 1977.

