
Available online www.jsaer.com

Journal of Scientific and Engineering Research

136

Journal of Scientific and Engineering Research, 2022, 9(9):136-141

Research Article

ISSN: 2394-2630

CODEN(USA): JSERBR

Toward Efficient Asynchronous Architectures in Low-Code

Platforms: A Comparative Study in Pega

Sairohith Thummarakoti1, JVN Raghava Deepthi2

1Compunnel Inc, Chalotte, North Carolina, United States of America
2Computer Science and Engineering JNTU KAKINADA, QIS College of Engineering and Technology, AP,

India

*Corresponding Author: Email Address: raghavadeepthi.jvn@bvrit.ac.in

Abstract: Enterprise-grade applications need to use asynchronous background task processing for scalability

reasons. Both Standard Agents and the more recent Queue Processors serve this purpose within the Pega

Platform. The document examines a substantial contrast between these two processing mechanisms by

demonstrating how Queue Processors now utilize Kafka-based asynchronous architecture. We review and

analyze critical performance indicators, including reliability, scalability, fault tolerance, resource utilization, and

ease of management. Through empirical research and documentation review, Queue Processors demonstrate

better performance speed, in-line retry functionality, and unified managerial features. Modern Pega applications

opt for Queue Processors because of their wide range of beneficial features. The suggested best practices for

adopting Queue Processors include a migration strategy for transitioning legacy systems which depend on

Standard Agents.

Keywords: Pega, Queue Processor, Standard Agent, Apache Kafka, Background Task Management,

Asynchronous Processing, Enterprise Applications, Scalability, Fault Tolerance, Stream Service

1. Introduction

Background processing is essential for enterprise applications because it allows asynchronous operations to run

suspended from user interface response degradation. Pega Platform contains the standard agents and modern

queue processors that facilitate background operation processing. Queue Processors constitute a modern

processing solution that replaces Standard Agents because they provide improved functionality beyond previous

technology limitations. This evaluation studies how Pega Queue Processors surpass Standard Agents in all

essential parameters, from architectural structure to error management, through practical implementation.

Evaluating these key factors will create a compelling reason to select Queue Processors as Pega's application

development and modernization foundation.

2. Architectural Foundations

1) Pega Queue Processor Architecture

Pega Queue Processors are internal background processes specifically engineered for efficient queue

management and asynchronous message processing [1]. A cornerstone of their architecture is integrating with

Apache Kafka, a distributed streaming platform that handles high-throughput, real-time data feeds through a

publish-subscribe paradigm. Within Kafka, topics act as intermediary channels that maintain a registry of

subscribers, facilitating the relay of messages received from publishers [2]. Kafka utilizes partitions to enable

parallel processing and message distribution within a topic. Multithread Queue Processors represent various

consumers who can concurrently access the partitioned messages. Pega creates a Queue Processor for every

Thummarakoti S & Deepthi JR Journal of Scientific and Engineering Research, 2022, 9(9):136-141

Journal of Scientific and Engineering Research

137

particular Kafka server topic while the Kafka server defines the partition count for each topic through the server

configuration.

Figure 1: Pega Queue Processor Architecture

Queue Processors need at least one online stream service, known as a stream node, to operate because they

depend on Kafka to handle queuing and processing tasks.2 If the stream node becomes unavailable temporarily,

messages destined for the Queue Processor will be saved in Pega database delayed items before Kafka continues

processing when the stream node recovers. Each Queue Processor rule enables the system to create automatic

stream Data Sets and their respective Data Flows through the architecture. The Data Flow controls the process

of item subscriptions into Kafka topics and guarantees delivery to the designated processing activity [2].

Pega supports two main queue processor models, Standard and Dedicated. The Standard Queue Processor

enables basic queue operations for systems requiring basic queue management or when throughputs stay low.

Standard Queue Processors from Pega require maintaining the pre-existing pzStandard Processor and cannot

handle delayed message processing. Queues of the Dedicated type serve applications that need strong scaling cu,

storm process rules, or delayed message processing requirements because users must define dedicated

processing rules to meet these needs. Queue Processors deliver immediate and delayed execution options which

developers can use to determine when queue items should be processed.

2) Pega Standard Agent Architecture

The Pega Standard Agent exists within the system as a background process that demands a combination of

execution activity and processing schedule while needing an access group to define permissions and select its

processing method. Pega servers employ these agents to execute their assigned activities in a predefined

schedule format. Standard Agents primarily use database transactions to manage their queue-processing

activities, one of their main characteristics. The Standard Agent uses dedicated database tables to store the

processing entries requiring attention. The System-Queue-Default Entry and System-Queue-Service Level

classes function as illustration queue tables [4]. A concrete case exists in the Process Events agent, which

manages Service Level Agreement (SLA) processing. This agent maintains queue instances through a separate

database table containing scheduled and broken items.

Figure 2: Pega Standard Agent Architecture

Thummarakoti S & Deepthi JR Journal of Scientific and Engineering Research, 2022, 9(9):136-141

Journal of Scientific and Engineering Research

138

Standard Agents derive their execution behavior and scheduling rules from rules located in the Data-Agent-

Queue section. Agent wake-up rules determine the periodic or recurring or startup-based execution times for

processing queued items. Standard Agents implement Auto Queue Management (AQM) as one of their key

features. The Auto Queue Management functionality in AQM has pre-installed mechanisms to manage item

activity within each agent queue. The agent performs multiple tasks, including browsing the queue table while

choosing items with Scheduled status and modifying the item's processing status before managing successful

results and error situations. Standard Agents run their operations under the security settings granted to the user

who created the placed task in the queue. The same background processing agent becomes beneficial when users

with different privileges must take advantage of it due to their distinct access levels [3].

3. Comparative Analysis: Queue Processor vs. Standard Agent

1) Reliability and Data Integrity

Queue Processors based on Kafka deliver better reliability and data integrity than Standard Agents because

Kafka employs a distributed and persistent data system architecture. The Pega database transactions provide the

Standard Agents' foundation. Through disk-based message persistence, Kafka ensures solid message delivery

even when stream nodes suddenly experience downtime [6]. STANDARD Agents lack this disk persistence

feature as their reliability depends entirely on their database. Queue Processors deliver these functionalities as

integrated features that handle errors while operating queues and deques as a cohesive solution for background

processing needs. More explicit delayed processing capabilities exist through dedicated rule configurations of

Queue Processors, which grant improved scheduling control and task predictability compared to the 'deferred'

option of Standard Agent's Queue-For-Agent method [1]. Distributed processing and fault-tolerance of Kafka

enables more reliable message delivery than Standard Agent database queuing.

2) Scalability and Performance

Pega states that Queue Processors enable boosted throughput scalability beyond what Standard Agents achieve

in their documentation [4]. Multi-threading capabilities inside Queue Processors are the primary factor for this

enhanced scalability. Every Queue Processor actively processes multiple partition messages in parallel while the

system allows 20 separate processing threads to run without causing conflicts. Queue Processors allow

organizations to scale their systems by horizontal and vertical expansion. The Pega environment allows

horizontal scaling through additional processing nodes, and users can achieve vertical scaling by increasing

thread allocation per node to 20 threads per cluster. In contrast, the parallelism achievable with Standard Agents

is typically constrained by the number of configured agent schedules and the number of nodes on which they are

configured to run, offering a less flexible and potentially less efficient scaling model[7]. Furthermore, the

performance of Queue Processors can be optimized by refining the processor's activity.2 The architectural

foundation of Queue Processors, leveraging Kafka and supporting multi-threading and partitioning, provides a

significant advantage in handling high volumes of background tasks.

Figure 3: Comparing Reliability and Stability

Thummarakoti S & Deepthi JR Journal of Scientific and Engineering Research, 2022, 9(9):136-141

Journal of Scientific and Engineering Research

139

3) Error Handling and Recovery

Queue Processors offer built-in error handling features that use automatic retry attempts, allowing users to

configure retry parameters such as the maximum attempt count, initial delay time before the first retry, and a

time factor for subsequent retry attempts. If the processing of a queue item fails after exhausting the configured

number of retry attempts, the item is automatically moved to a dedicated broken queue table

(pr_sys_msg_qp_broken items), allowing for separate monitoring, analysis, and potential recovery of these

failed items[2]. This contrasts with Standard Agents, where error handling and retry logic typically need to be

explicitly implemented within the agent activity itself, requiring more development effort and potentially

leading to inconsistencies in error handling across different agents. Admin Studio from Pega enables users to

inspect and manage Queue Processor items that fail by displaying details while adding them to the queue after

fixing the root issue. These built-in error-handling capabilities present an advanced solution for background

processing errors.

Figure 4: Failure Rate vs Retry

4) Resource Utilization and Efficiency

Queue Processors are designed to optimize the utilization of hardware resources through their multi-threaded

nature and the efficient message queuing provided by Kafka, which is specifically built for high throughput and

low latency data streams[5]. This can lead to more efficient use of server resources compared to Standard

Agents, which primarily rely on database interactions for queuing and processing, potentially resulting in a

higher load on the database and slower overall performance, especially under significant processing volumes[4].

Queue Processors can be configured to run on specific node types within a Pega cluster, allowing for more

granular control over resource allocation and management in multi-node environments [6]. Tools like Pega

Diagnostic Center (PDC) provide the capability to monitor the resource utilization of Queue Processors, offering

insights into CPU and memory consumption. The Pega system does not enforce any quantitative restriction on

Queue Processor creation but warns about substantial resource utilization from excessive custom Queue

Processor implementation after reaching 100 instances. Queue Processors have a design architecture that

manages resources efficiently, thus resulting in higher application speed and lower infrastructure maintenance

expenses.

Figure 5: Comparison of Queue Processor and Standard Agent CPU usage

Thummarakoti S & Deepthi JR Journal of Scientific and Engineering Research, 2022, 9(9):136-141

Journal of Scientific and Engineering Research

140

5) Configuration and Management

Rule-Async-Queue Processor is a configuration type for central management under the SysAdmin category

within Records Explorer.7 It gives users a toggle to activate or deactivate the processor and lets them link

specific node types to their intended processing locations [6].

Figure 6: Queue Processor vs Memory usage

Table 1: Comparative Analysis of Queue Processor and Standard Agent Features in Pega Platform

Feature: Queue Processor Standard Agent
Underlying Technology: Apache Kafka (Distributed Streaming

Platform)
Pega Database (Relational Database)

Queue Management: Topics and Partitions Database Tables (Specific to each

agent)
Scalability: Horizontal (Add nodes), Vertical

(Increase threads)
Primarily Vertical (More schedules,

relies on database)
Parallel Processing: Multi-threaded (up to 20 threads per

processor)
Limited by schedules and nodes

Reliability & Data

Persistence:
High (Distributed, persistent messaging) Moderate (Dependent on database

reliability)
Error Handling: Built-in retry, Broken Items Queue Requires more manual implementation

in activity
Configuration: Single Rule (Rule-Async-Queue

Processor)
Two Rules (Rule-Agent-Queue, Data-

Agent-Queue)
Security Context: System Runtime Context (SRC) or

Alternate Access Group
By default, the user who queued the

task
Stream Node

Dependency:
Requires at least one running Stream

Node
No direct dependency

Delivery of activities by Queue Processors becomes simpler because key parameters such as threads per node

and execution activities and retry specifications exist as direct form configuration elements [6]. This setup

method differs from Standard Agents, which demand simultaneous management of the Rule-Agent-Queue rule

and the Data-Agent-Queue schedule, leading to potential configuration complexity. The configuration process

for Queue Processors becomes simpler because they do not need unique queue classes, reducing the number of

rule types needed.6 This leads to more streamlined configuration and management than Standard Agent

systems.

4. Conclusion and Recommendations

Implementing Pega Queue Processors delivers much-improved functionality than Standard Agents do when

applied to Pega applications for background processing operations. The architectural base which uses Apache

Kafka maintains high data safety standards along with failure resistance and endures message persistence.

Queue Processors achieve outstanding scalability and performance excellence through their multi-threading

threads and their support for vertical and horizontal scale-out architecture, making them an ideal solution for

enterprise applications requiring high-volume data processing. Internal error handling features, automatic retry

Thummarakoti S & Deepthi JR Journal of Scientific and Engineering Research, 2022, 9(9):136-141

Journal of Scientific and Engineering Research

141

functionality, and broken item management strengthen the system against failures. Operational development is

simplified because configuration and management utilize one standardized rule type and easy-to-understand

parameters. Pega formally recommends queue processors as a priority element, while community members

express positive results about them because they hold great strategic importance [3].

The following recommendation applies to Pega developers and architects who should:

• All new background processing needs in Pega applications should use Queue Processors as their primary

implementation.

• Organizations should create an actionable strategy for moving their essential Standard Agents to Queue

Processors above all other operations, especially for Agents who perform vital processes or suffer from

performance-related issues.

• Tell managers to examine particular use case needs so they can choose a Standard or Dedicated Queue

Processor that best meets the requirements.

• The Pega environment must receive proper configuration to enable Queue Processor operations by adding

stream nodes.

• The organization should implement Pega's monitoring tools to monitor Queue Processor health and

performance, which will enable quick responses to system issues.

The implementation of Queue Processors allows organizations to construct resilient Pega applications that scale

effectively and run efficient asynchronous processing for digital environments.

Table 2: Queue Processor Type Recommendations

Scenario: Recommended Queue Processor Type
Sending high-volume, immediate notifications Dedicated (Immediate)
Simple, low-throughput asynchronous tasks Standard
Delayed processing of tasks Dedicated (Delayed)
Real-time status updates to external systems Standard or Dedicated (Immediate)
Bulk background processing of large datasets Dedicated (Immediate)
Incremental search indexing Standard (pzFTSIncrementalIndexer)
Customized error handling or retry logic Dedicated

References

[1]. P. K. Tammana, "Enhancing Enterprise Efficiency and Scalability through Asynchronous Processing in

Pega Platform," International Journal of Science and Research (IJSR), vol. 10, no. 3, pp. 1490–1494,

Mar. 2021. [Online]. Available: https://www.ijsr.net/archive/v10i3/SR24402122100.pdf.

[2]. A. Ghorai, "PEGA's Auto Retry Mechanism for Failed Email Ingestion," Journal of Scientific and

Engineering Research, vol. 6, no. 10, pp. 289–292, Oct. 2019. [Online]. Available:

https://jsaer.com/archive/volume-6-issue-10-2019/.

[3]. OSP Editorial Team, "Queue Processor – its Configuration, Usage & Execution," OneStopPega, May

17, 2020. [Online]. Available: https://onestoppega.com/background-processing/queue-processor-in-

pega/.

[4]. S. Pamidamarri, "Pega Interview Concepts on Agent Management," Medium, Jan. 2019. [Online].

Available: https://clincher.medium.com/pega-interview-concepts-on-agent-management-

28797d6616ab.

[5]. Pega Academy, "Asynchronous Processing Design," Pega Academy, 2020. [Online]. Available:

https://academy.pega.com/mission/asynchronous-processing-design/v2.

[6]. A. Kumar, "Optimizing Performance in Pega Systems: Queue Processor and Agent Design Patterns,"

International Journal of Computing and Applications, vol. 16, no. 4, pp. 145–155, Dec. 2020. [Online].

Available: https://www.ijcaonline.org/archives/volume16/number4/14342-2020.pdf.

[7]. M. Sharma, "Scalable Asynchronous Queue Processing in Pega Systems," Journal of Computer

Science and Technology, vol. 15, no. 6, pp. 345–352, Jun. 2020. [Online]. Available:

https://www.journalofcomputerscience.com/scalable-queue-processing-pega.

