
Available online www.jsaer.com

Journal of Scientific and Engineering Research

171

Journal of Scientific and Engineering Research, 2022, 9(8):171-176

Research Article

ISSN: 2394-2630

CODEN(USA): JSERBR

Streamlining CI/CD in Multi-Cloud Architectures: An Empirical

Analysis of Azure DevOps and GitHub Actions

Dheerendra Yaganti

Software Developer, Astir Services LLC

Dheerendra.ygt@gmail.com

Cleveland, Ohio.

Abstract: The growing adoption of multi-cloud strategies demands robust and flexible Continuous Integration

and Continuous Deployment (CI/CD) pipelines capable of operating seamlessly across diverse cloud platforms.

This paper presents a comparative study of Azure DevOps and GitHub Actions for designing and implementing

CI/CD pipelines in multi-cloud environments, focusing on performance, scalability, integration capabilities, and

cost efficiency. By deploying microservices to both Microsoft Azure and Amazon Web Services (AWS), we

evaluate each tool’s effectiveness in managing cross-cloud workflows, infrastructure as code, security

compliance, and rollback mechanisms. Real-world deployment scenarios are used to highlight automation

efficiency, ease of use, pipeline configuration flexibility, and DevSecOps readiness. The study identifies critical

trade-offs and best practices for organizations seeking to optimize their DevOps pipelines in heterogeneous

cloud infrastructures. Our findings reveal that while Azure DevOps offers more enterprise-grade controls and

deep Azure integration, GitHub Actions provides greater developer agility and native GitHub ecosystem

synergy. This research contributes a practical framework for selecting and implementing CI/CD tools tailored to

multi-cloud strategies.

Keywords: CI/CD Pipelines, Multi-Cloud Deployment, Azure DevOps, GitHub Actions, Docker, Kubernetes,

Terraform, ARM Templates, Infrastructure as Code, Azure Kubernetes Service (AKS), Amazon Elastic

Kubernetes Service (EKS), GitHub Packages, Azure Artifacts, YAML Workflows, DevSecOps, Cloud

Automation, Cross-Cloud Integration.

1. Introduction

The increasing complexity of software development and the widespread adoption of distributed systems have

driven enterprises toward multi-cloud deployment strategies. Multi-cloud environments enable organizations to

combine the unique capabilities of different cloud providers such as Microsoft Azure and Amazon Web Services

(AWS) for cost savings, redundancy, and compliance. However, managing application lifecycles in such a

distributed environment introduces new challenges in orchestration, automation, and monitoring. Continuous

Integration and Continuous Deployment (CI/CD) pipelines offer a structured approach to manage these

challenges by automating the software release process, enabling faster delivery, improved collaboration, and

consistent performance. Azure DevOps and GitHub Actions have emerged as leading tools in this space, each

offering unique capabilities for automation, security integration, and infrastructure deployment. This paper

investigates the practical implementation of CI/CD pipelines using both platforms, analyzing their performance

in deploying containerized applications to Kubernetes clusters across Azure and AWS.

Yaganti D Journal of Scientific and Engineering Research, 2022, 9(8):171-176

Journal of Scientific and Engineering Research

172

Figure 1: Stages of the DevOps lifecycle (Accessed from: https://qentelli.com/thought-

leadership/insights/securing-success-devops-outsourcing)

2. Literature Review

DevOps practices have revolutionized software engineering by introducing automation across the software

development lifecycle. The integration of CI/CD pipelines ensures consistent code quality, minimizes

deployment errors, and accelerates time-to-market. Humble and Farley [1] highlighted the benefits of

automation in reducing manual intervention and enhancing release reliability. Azure DevOps, evolving from

Visual Studio Team Services, offers an enterprise-ready solution with integrated services including Boards,

Repos, Pipelines, Test Plans, and Artifacts [2]. GitHub Actions, launched by GitHub to integrate native CI/CD

into the platform, supports automation triggered by Git events using YAML workflows [3]. Sharma [4]

compares various CI/CD tools and suggests that while GitHub Actions is suitable for open-source and

lightweight use cases, Azure DevOps is more aligned with enterprise deployment strategies. Moreover, the

adoption of Infrastructure as Code (IaC) tools like Terraform [5] and Azure Resource Manager (ARM)

Templates [6] allows developers to version and replicate infrastructure reliably. Kubernetes, as the de facto

orchestration platform for containerized applications, simplifies cluster deployment and management with

managed services like AKS and EKS [7]. Despite individual tool evaluations, comparative studies focusing on

multi-cloud CI/CD implementation remain limited, warranting this research.

3. Technology Stack Overview

The CI/CD pipeline implementations are built upon robust, production-ready technologies with proven adoption

in cloud-native architectures. Azure DevOps Pipelines enable continuous integration and deployment using

classic editors and YAML-based configurations. Key services such as Azure Repos for source control and

Azure Artifacts for package management support enterprise-scale workflows. GitHub Actions allows event-

driven workflow automation with a focus on developer-friendly experiences. It supports reusable action

components, secret management, and matrix builds directly within GitHub repositories.

Docker is used to containerize applications, ensuring consistency across development, testing, and production

environments. Kubernetes serves as the orchestration platform, with Azure Kubernetes Service (AKS) and

Amazon Elastic Kubernetes Service (EKS) providing managed cluster provisioning. Infrastructure is defined

using Terraform for cross-cloud compatibility [5] and ARM Templates for native Azure resource configuration

[6]. Secrets and credentials are securely managed using GitHub Secrets and Azure Key Vault. Monitoring and

Yaganti D Journal of Scientific and Engineering Research, 2022, 9(8):171-176

Journal of Scientific and Engineering Research

173

observability are achieved using Azure Monitor and AWS CloudWatch, enabling proactive diagnostics and

metric collection.

4. Methodology

A comparative experimental design was adopted to assess CI/CD pipeline implementation using Azure DevOps

and GitHub Actions. The experiment involved deploying a containerized Node.js microservice to Kubernetes

clusters hosted on AKS and EKS. The study followed a six-stage pipeline: code integration, build automation,

containerization, infrastructure provisioning, deployment, and monitoring. YAML pipeline configurations were

used to define each stage declaratively.

Tool selection criteria included community adoption, feature maturity, integration capabilities, and cloud

compatibility. Terraform (v0.14–v0.15) was used to define and deploy AWS resources [5], while ARM

Templates managed Azure resources [6]. All source code and configurations were stored in version-controlled

Git repositories. Metrics such as build duration, pipeline execution time, deployment success rate, and error

frequency were recorded. Monitoring tools collected logs and performance metrics for post-deployment

evaluation. Testing was performed on staging clusters before production deployment to ensure consistency and

rollback safety.

Figure 2: Experimental Pipeline Design Flow (Accessed from https://www.researchgate.net/figure/A-model-

based-DevOps-approach_fig20_338672361)

5. Ci/Cd Pipeline Design and Implementation

The Azure DevOps pipeline utilized YAML-based build and release definitions. The build pipeline compiled the

source code, executed unit tests, and generated Docker images, which were pushed to Azure Container Registry

(ACR). Infrastructure provisioning used ARM templates to deploy AKS clusters [6]. The release pipeline then

deployed the containers to AKS using Helm charts and monitored the rollout using Azure Monitor alerts.

GitHub Actions employed event-driven YAML workflows triggered on every code push to the repository [3].

Custom actions and community-contributed actions were used to build the application, test it, and push Docker

images to GitHub Packages. Terraform was executed as a workflow step to provision AWS infrastructure and

EKS clusters [5]. Kubernetes manifests and Helm charts deployed services to the EKS cluster. Monitoring was

set up using AWS CloudWatch and Fluent Bit for log aggregation.

Secrets were securely injected into workflows using GitHub Secrets and Azure Key Vault. Role-based access

controls ensured pipeline security. Failures were automatically notified through integrated Slack and Teams

channels. The pipelines also included rollback mechanisms and staged environments to support blue-green

deployment strategies.

Yaganti D Journal of Scientific and Engineering Research, 2022, 9(8):171-176

Journal of Scientific and Engineering Research

174

Figure 3: Azure DevOps Pipeline (Accessed from: https://build5nines.com/end-end-ci-cd-automation-using-

azure-devops-unified-yaml-defined-pipelines/)

6. Comparative Analysis

The comparison between Azure DevOps and GitHub Actions revealed distinct advantages based on deployment

scale and use case. Azure DevOps provided better organizational control, policy enforcement, and traceability,

making it suitable for enterprise environments [2]. GitHub Actions offered simplicity and rapid setup, with

strong support for open-source projects and GitHub-native workflows [3].

Criteria Azure DevOps GitHub Actions

Pipeline Setup Complex but robust Simple and fast

YAML Support Advanced Native

Cloud Integration Strong with Azure Moderate with AWS and Azure

Secrets Management Azure Key Vault GitHub Secrets

Infrastructure Provisioning ARM, Terraform Terraform

Monitoring Azure Monitor AWS CloudWatch

Cost Included in Azure plans Free for public repos, limited free tier

Azure DevOps excelled in enterprise governance and integrated analytics [2], whereas GitHub Actions reduced

pipeline creation time and provided rapid feedback [3]. Terraform provided unified provisioning across both

platforms [5], while ARM Templates were useful for Azure-specific deployments [6].

Figure 4: Comparative Analysis

Yaganti D Journal of Scientific and Engineering Research, 2022, 9(8):171-176

Journal of Scientific and Engineering Research

175

7. Case Study: Multi-Cloud Microservices Deployment

A practical case study was conducted by deploying a microservice across AKS and EKS clusters using both

tools. The service was first built and containerized using Docker. Azure DevOps built and deployed the service

to AKS after provisioning the cluster with ARM Templates [6]. GitHub Actions provisioned infrastructure using

Terraform and deployed the container to EKS using Kubernetes manifests [5].

Performance logs indicated that GitHub Actions completed end-to-end deployment in less time, due to

streamlined YAML workflows and container caching [3]. Azure DevOps provided better insights through

detailed pipeline metrics, stage-level failure reporting, and policy-based approvals [2]. Both implementations

were evaluated for their CI/CD maturity using the DORA metrics: deployment frequency, lead time for changes,

time to restore service, and change failure rate. Azure DevOps outperformed in reliability metrics, while GitHub

Actions excelled in agility.

8. Best Practices and Recommendations

Effective CI/CD pipelines in multi-cloud environments demand a strategic approach to architecture and

implementation. Declarative configurations using YAML ensure version control, transparency, and repeatability

across builds. This becomes especially critical when managing complex deployments across platforms like

Azure and AWS. Leveraging Terraform as an Infrastructure as Code (IaC) solution promotes consistency and

reduces the risk of cloud-specific dependencies, thereby mitigating vendor lock-in [5]. Monitoring tools such as

Azure Monitor and AWS CloudWatch should be tightly integrated within pipeline stages to ensure real-time

visibility into system behavior and performance metrics [2][3]. Furthermore, securing secrets using managed

services like Azure Key Vault or GitHub Secrets is vital for maintaining confidentiality and compliance during

pipeline execution.

In addition to infrastructure and security considerations, best practices should include deployment safety and

performance optimization. Implementing rollback strategies ensures that failed deployments do not affect

production availability. Staging environments serve as critical testing grounds prior to full-scale rollout,

enhancing system reliability. Pipeline caching mechanisms can significantly reduce build times and improve

developer productivity. Tools like Helm enable consistent and reusable Kubernetes deployments, streamlining

release processes across clusters. Lastly, automating approval gates using policy-driven workflows strengthens

governance and auditability, particularly in enterprise settings that rely heavily on Azure DevOps for controlled

releases [2]. These practices collectively enhance the resilience, security, and efficiency of CI/CD pipelines in

multi-cloud DevOps architectures.

9. Conclusion and Future Work

This study presented a comparative analysis of CI/CD pipeline implementations using Azure DevOps and

GitHub Actions in multi-cloud environments. Azure DevOps demonstrated strengths in enterprise governance,

integrated analytics, and seamless compatibility with Azure-native services [2]. In contrast, GitHub Actions

proved advantageous for rapid prototyping, developer-friendly workflows, and repository-centric automation

[3]. Both platforms enabled reliable and scalable deployments across Azure and AWS when integrated with

tools such as Docker, Kubernetes, Terraform, and ARM Templates. The research validated that infrastructure-

as-code practices [5], container orchestration [7], and secure deployment automation are essential to achieving

consistency and control in cloud-native development.

Looking ahead, future research will explore the incorporation of advanced observability tools like Grafana and

Prometheus into multi-cloud CI/CD pipelines for deeper insight into system health and performance metrics.

Additionally, adopting GitOps methodologies can enhance traceability and security by enabling declarative,

version-controlled infrastructure deployments. The emergence of environment-as-a-service frameworks such as

Azure Deployment Environments and GitHub Codespaces presents promising opportunities to streamline

development workflows, improve onboarding, and reduce configuration drift. These innovations will likely

shape the next generation of DevOps automation, making it more intelligent, integrated, and resilient across

complex multi-cloud ecosystems.

Yaganti D Journal of Scientific and Engineering Research, 2022, 9(8):171-176

Journal of Scientific and Engineering Research

176

References

[1]. J. Humble and D. Farley, Continuous Delivery: Reliable Software Releases through Build, Test, and

Deployment Automation, Addison-Wesley, 2018.

[2]. Microsoft, "What is Azure DevOps?," Microsoft Docs, 2020. [Online]. Available:

https://learn.microsoft.com/en-us/azure/devops/. [Accessed: Mar. 10, 2021].

[3]. GitHub, "About GitHub Actions," GitHub Docs, 2021. [Online]. Available:

https://docs.github.com/en/actions. [Accessed: Apr. 5, 2021].

[4]. S. Sharma, "CI/CD Tools Comparison for Cloud DevOps," IEEE Cloud Computing, vol. 7, no. 3, pp.

40–47, 2020.

[5]. HashiCorp, "Terraform v0.14 Documentation," 2020. [Online]. Available:

https://developer.hashicorp.com/terraform/docs/0.14. [Accessed: Dec. 15, 2020].

[6]. Microsoft, "Azure Resource Manager Templates Overview," Microsoft Docs, 2021. [Online].

Available: https://learn.microsoft.com/en-us/azure/azure-resource-manager/templates/overview.

[Accessed: Jan. 18, 2021].

[7]. Kubernetes, "Amazon EKS and Azure AKS," Kubernetes Documentation, 2020. [Online]. Available:

https://kubernetes.io/docs/home/. [Accessed: Feb. 20, 2021].

