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Abstract Sleep apnea, a prevalent sleep disorder characterized by repeated breathing interruptions during sleep, 

poses significant health risks if left undiagnosed. Traditional diagnostic methods like polysomnography are 

costly and inconvenient, limiting widespread screening. This review examines the evolution of snoring sound 

analysis as a promising, non-invasive alternative for detecting sleep apnea. We explore the progression from 

traditional signal processing methods to advanced machine learning approaches, with a focus on mel 

spectrograms and the recent application of Vision Transformers. By synthesizing insights from signal 

processing, deep learning, and sleep medicine, we highlight the potential of these advanced techniques to 

enhance sleep apnea detection accuracy. This paper aims to contribute to the development of accessible 

diagnostic tools, facilitating early detection and improving patient outcomes. 
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1. Introduction  

Sleep apnea is a common sleep disorder affecting millions of individuals worldwide, characterized by repeated 

episodes of partial or complete obstruction of the upper airway during sleep [1]. These interruptions, known as 

hypopneas and apneas respectively, can lead to fragmented sleep, daytime fatigue, and are associated with 

serious health conditions such as hypertension, cardiovascular diseases, and metabolic disorders [2][3]. Despite 

its prevalence and health implications, sleep apnea remains underdiagnosed due to limitations in current 

diagnostic methods. 

Polysomnography (PSG) is the gold standard for diagnosing sleep apnea, involving overnight monitoring of 

multiple physiological signals, including brain activity, eye movement, muscle activity, heart rhythm, and 

respiratory effort [4]. However, PSG is expensive, time-consuming, and requires specialized facilities and 

personnel, making it inaccessible for large-scale screening [5]. Consequently, there is a pressing need for 

alternative diagnostic methods that are cost-effective, non-invasive, and suitable for widespread use. 

The analysis of snoring sounds has emerged as a promising approach for detecting sleep apnea [6]. Snoring is a 

primary symptom of obstructive sleep apnea (OSA) and results from the vibration of soft tissues in the upper 

airway due to turbulent airflow [7]. The acoustic properties of snoring sounds can reflect the anatomical and 

physiological changes associated with OSA, providing valuable diagnostic information [8]. Advancements in 

digital signal processing and machine learning have facilitated the extraction of meaningful features from 

snoring sounds and the development of automated classification systems [9]. 

This review aims to provide a comprehensive examination of the techniques used to extract diagnostic 

information from snoring sounds for sleep apnea detection. We discuss the pathophysiology of sleep apnea, the 
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limitations of traditional diagnostic methods, and the evolution of snoring sound analysis from classical signal 

processing techniques to modern deep learning approaches. Emphasis is placed on the use of mel spectrograms 

as a representation of snoring sounds and the potential of Vision Transformers in this context. We also review 

existing studies, including the work by Alonso-Álvarez et al. [10], which investigated the use of snore signals to 

predict OSA severity in children. Finally, we highlight challenges, future research directions, and the 

implications for clinical practice.  

 

2. Sleep Apnea: Pathophysiology and Diagnosis 

A. Pathophysiology of Sleep Apnea 

Sleep apnea is characterized by repeated episodes of airflow reduction (hypopnea) or cessation (apnea) due to 

upper airway collapse during sleep [11]. Obstructive sleep apnea (OSA), the most common form, involves a 

physical blockage of the airway despite respiratory effort [12]. Factors contributing to airway collapse include 

anatomical abnormalities, neuromuscular control deficits, and reduced muscle tone during sleep [13]. The 

intermittent hypoxia and sleep fragmentation resulting from these episodes can lead to sympathetic nervous 

system activation, inflammation, and metabolic dysregulation [14]. Long-term consequences include increased 

risk of hypertension, stroke, diabetes, and cardiovascular mortality [15]. 

 
Fig. 1. Pathophysiological mechanism of obstructive sleep apnea. 

 

B. Limitations of Traditional Diagnostic Methods 

Polysomnography provides comprehensive data on sleep stages, respiratory events, oxygen saturation, and 

cardiac activity [4]. However, it has several limitations: 

• Cost and Accessibility: PSG is expensive and requires specialized equipment and trained personnel, limiting 

its availability, especially in low-resource settings [5]. 

• Patient Comfort: The need to sleep in a laboratory with sensors attached to the body can be uncomfortable 

and may alter natural sleep patterns [16]. 

• Capacity Constraints: Sleep laboratories have limited capacity, leading to long waiting times for diagnosis 

[17]. 

These limitations highlight the need for alternative diagnostic methods that are more accessible and less 

intrusive. 

 

3. Snoring Sound Analysis for Sleep Apnea Detection 

A. Rationale for using Snoring Sounds 

Snoring is a common symptom of OSA and results from the vibration of soft tissues in the upper airway due to 

turbulent airflow [7]. The acoustic characteristics of snoring sounds can reflect the degree and location of airway 

obstruction [18]. Analyzing snoring sounds offers a non-invasive means to detect sleep-disordered breathing 

events and has the potential for at-home monitoring. 
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Table I.  Early Features Used in Snoring Sound Analysis 

Feature Type Examples Reference 

Time-Domain Zero-crossing rate, RMS energy [19] 

Frequency-Domain Formant frequencies, Spectral centroid [20] 

Statistical Methods Autocorrelation, Cepstral coefficients [21] 

Time Series Data Sequence Modeling Recurrent Neural Networks, 

Temporal Convolutional Networks 

 

B. Early Approaches in Snoring Sound Analysis 

Initial studies focused on extracting features from snoring sounds using traditional signal processing techniques. 

Time-domain features, such as zero-crossing rate, energy, and amplitude variations, were used to characterize 

snoring episodes [19]. Frequency-domain features involved spectral analysis to obtain information about the 

frequency content of snoring sounds, including formant frequencies and spectral moments [20]. Statistical and 

empirical methods, such as autocorrelation and cepstral analysis, were also employed to extract patterns 

associated with OSA [21]. These methods provided valuable insights but often required manual feature selection 

and were limited in capturing the complex patterns inherent in snoring sounds. 

 

4. Advances in Signal Processing and Machine Learning 

A. Time frequency Analysis 

The use of time-frequency representations allowed for a more comprehensive analysis of snoring sounds. 

Spectrograms, obtained by applying the Short-Time Fourier Transform (STFT), display how the frequency 

content of a signal evolves over time [22]. Wavelet transforms provided multi-resolution representations, 

capturing both time and frequency information at various scales [23]. These representations facilitated the 

extraction of features sensitive to both temporal and spectral variations in snoring sounds. 

B. Mel Spectrograms 

Mel spectrograms are a type of spectrogram where the frequency axis is transformed to the mel scale, which 

approximates human auditory perception [24]. The advantages of using mel spectrograms include: 

• Perceptual Relevance: Emphasizes frequencies more relevant to human hearing. 

• Dimensionality Reduction: Reduces computational complexity by aggregating frequency bins. 

• Compatibility with Image-Based Models: Facilitates the application of computer vision techniques. 

By emphasizing perceptually significant features and reducing data dimensionality, mel spectrograms have 

become a standard representation for acoustic signals in machine learning applications. 

C. Machine Learning Classifiers 

The application of machine learning algorithms enhanced the ability to classify snoring sounds. Support Vector 

Machines (SVM) were used for binary classification of apneic and non-apneic events based on extracted 

features [25]. Gaussian Mixture Models (GMM) modeled the distribution of features to classify different types 

of snoring sounds [26]. Hidden Markov Models (HMM) captured temporal dynamics in snoring patterns [27]. 

While these models improved classification performance, they relied heavily on handcrafted features and did not 

fully exploit the data's underlying structure. 

 

5. Vision Transformers: A New Paradigm 

A. Introduction to Vision Transformers 

Transformers were introduced by Vaswani et al. [31] for sequence modeling tasks in natural language 

processing (NLP). The key innovation is the self-attention mechanism, which allows the model to weigh the 

importance of different elements in the input sequence. Transformers enable parallel processing and capture 

long-range dependencies more effectively than recurrent neural networks. 

B. Adapting Transformers for Vision Tasks 

Dosovitskiy et al. [32] proposed the Vision Transformer (ViT), adapting the transformer architecture for image 

recognition. In ViTs: 

• Image Patchification: The image is divided into fixed-size patches. 

• Linear Projection: Each patch is flattened and projected into an embedding vector. 

• Positional Encoding: Positional information is added to retain spatial relationships. 
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• Transformer Encoder: The sequence of patch embeddings is processed using self-attention layers. 

• Classification Head: The output is used for classification tasks. 

 

 
Fig. 2. Vision Transformer architecture for image recognition tasks. 

 

C. Advantages of ViTs in Snoring Sound Analysis 

Applying ViTs to mel spectrograms of snoring sounds leverages their ability to model global context and long-

range dependencies. ViTs can: 

• Capture Complex Patterns: Identify subtle differences associated with sleep apnea. 

• Benefit from Transfer Learning: Utilize pre-trained models on large image datasets, addressing data 

scarcity. 

• Enhance Interpretability: Attention mechanisms can highlight important regions in the spectrogram. 

 

6. Methodology For Applying ViTs to Snoring Sound Analysis 

A. Data Collection and Preprocessing 

A comprehensive dataset of snoring recordings from individuals with and without OSA is essential. Ethical 

considerations include obtaining informed consent and ensuring compliance with data protection regulations. 

a) Preprocessing Steps: 

• Segmentation: Divide recordings into fixed-length snoring events. 

• Noise Reduction: Apply filters to remove background noise. 

• Normalization: Adjust amplitude levels for consistency. 

B. Mel Spectrogram Generation 

Mel spectrograms are generated by: 

• Applying STFT: Convert time-domain signals to the frequency domain. 

• Mapping Frequencies: Use the mel scale to approximate human hearing. 

• Logarithmic Transformation: Apply log scaling to represent perceptual loudness. 

• Normalization: Standardize spectrograms for uniform input. 

C. Model Training and Evaluation 

a) Training Process: 

• Pre-training: Use ViTs pre-trained on large datasets like ImageNet. 

• Fine-tuning: Adapt the model using the mel spectrogram dataset. 

• Hyperparameter Optimization: Adjust learning rates, batch sizes, and optimizer settings. 
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• Regularization: Employ dropout and data augmentation to prevent overfitting. 

b) Evaluation Metrics: 

• Accuracy, Precision, Recall, F1-Score: Assess classification performance. 

• AUC-ROC: Evaluate the model's ability to distinguish between classes. 

• Cross-Validation: Use k-fold cross-validation for robustness. 

D. Expected Outcomes 

By capturing global patterns in the spectrograms, ViTs are expected to improve classification accuracy over 

CNNs. Attention maps from the ViT can provide insights into which regions of the spectrogram are most 

informative, enhancing interpretability. The model's scalability allows adaptation to larger datasets and different 

sleep disorders. 

 

7. Existing Studies and Findings 

A. Application of Vision Transformers in Related Domains 

Although the direct application of Vision Transformers (ViTs) to snoring sound analysis is limited, studies in 

related domains have demonstrated their potential effectiveness. Gong et al. (2021) applied ViTs to 

environmental sound classification using spectrograms, achieving improved performance over traditional 

Convolutional Neural Networks (CNNs) [33]. This study showcased the capability of ViTs to handle complex 

audio patterns by leveraging their attention mechanisms. Similarly, Chen et al. (2020) utilized ViTs for music 

analysis, indicating the versatility of ViTs in processing audio spectrograms for tasks such as genre 

classification and instrument recognition [34]. These studies suggest that ViTs can effectively manage 

spectrogram data, supporting their potential application in snoring sound analysis for sleep apnea detection. 

B. Case Study: Predicting OSA Severity from Snore Signals 

Alonso-Álvarez et al. [10] investigated the use of snore signals to predict obstructive sleep apnea (OSA) severity 

in children, highlighting the feasibility of acoustic analysis in a pediatric population. They extracted acoustic 

features from snore recordings of children undergoing sleep studies. The classification model developed in their 

study achieved a sensitivity of 89% and a specificity of 85% in detecting moderate to severe OSA. These 

impressive results demonstrate the potential of snore analysis as a non-invasive screening tool, particularly 

valuable in pediatric populations where traditional diagnostic methods like polysomnography can be 

challenging. This study underscores the importance of developing advanced techniques for snoring sound 

analysis to facilitate early detection and intervention in sleep apnea. 

 

8. Challenges and Considerations 

A. Data Limitations 

One of the significant challenges in applying advanced machine learning techniques to snoring sound analysis is 

the limitation of data. Medical datasets are often small due to privacy concerns and the complexities involved in 

data collection, which can hinder the training of complex models like ViTs. Additionally, there is often a class 

imbalance, with uneven representation of OSA severity levels in the dataset, affecting the model's ability to 

learn effectively across all classes. Variability introduced by differences in recording equipment, environmental 

conditions, and patient characteristics further complicates model development and generalization, as the model 

must account for a wide range of possible variations in the input data. 

B. Ethical and Privacy Concerns 

Ethical and privacy considerations are paramount when dealing with medical data. It is essential to obtain 

informed consent from all participants, ensuring they are fully aware of how their data will be used and the 

measures taken to protect their privacy. Personal identifiers must be meticulously removed or encrypted to 

safeguard patient confidentiality. Compliance with regulations such as the Health Insurance Portability and 

Accountability Act (HIPAA) in the United States or the General Data Protection Regulation (GDPR) in Europe 

is mandatory to maintain ethical standards and legal compliance. These regulations impose strict guidelines on 

data handling, storage, and sharing, which must be diligently followed in research and application. 

C. Computational Resources 

The computational demands of training ViTs present another challenge. ViTs require significant computational 

power and memory due to their complex architectures and large parameter sizes. Access to high-performance 



Chaturvedi A                                            Journal of Scientific and Engineering Research, 2022, 9(7):176-184 

Journal of Scientific and Engineering Research 

181 

computing facilities or cloud-based platforms is often necessary, which may not be readily available to all 

research institutions or practitioners. Efficient training techniques, such as model pruning, quantization, or using 

smaller model variants, can help mitigate some of these computational demands. Additionally, leveraging 

transfer learning from pre-trained models can reduce training time and resource requirements. 

D. Model Interpretability 

Deep learning models, including ViTs, are often considered "black boxes" due to their lack of transparency in 

how they arrive at specific decisions. This lack of interpretability poses a significant barrier to clinical 

acceptance, as clinicians may be hesitant to trust diagnostic tools that do not provide clear explanations for their 

outputs. Enhancing interpretability is crucial for building trust and facilitating adoption in clinical settings. 

Techniques from explainable AI, such as attention visualization, can help by highlighting which parts of the 

input data the model focuses on when making a decision. Developing models that balance complexity with 

interpretability, or creating interfaces that present results in an understandable manner, are essential steps toward 

clinical integration. 

 

9. Future Research Directions 

A. Data Augmentation and Synthetic Data Generation 

Addressing data limitations is a critical area for future research. Data augmentation techniques, such as time-

stretching, pitch-shifting, and adding noise, can artificially expand the dataset by creating modified versions of 

existing recordings. This approach increases the diversity of the training data, helping the model generalize 

better to new, unseen data. Generative models, particularly Generative Adversarial Networks (GANs), offer 

another avenue by creating synthetic snoring sounds or spectrograms that mimic real data [35]. These synthetic 

datasets can supplement real data, providing additional training examples. Transfer learning is also a valuable 

strategy, where models pre-trained on large, related datasets can be fine-tuned on smaller, domain-specific 

datasets, leveraging learned features that are applicable across domains. 

 

10. Multimodal Integration 

Integrating multiple physiological signals can enhance the accuracy and robustness of sleep apnea detection. 

Combining snoring sound analysis with other signals such as oxygen saturation levels, heart rate, or airflow 

measurements provides a more comprehensive view of the patient's physiological state. Fusion strategies can be 

explored at various levels: 

• Data-Level Fusion: Combining raw data from different modalities before feature extraction. 

• Feature-Level Fusion: Extracting features from each modality separately and then combining them. 

• Decision-Level Fusion: Combining the outputs of separate models trained on each modality. 

By fusing information from multiple sources, the model can make more informed decisions, potentially 

improving detection rates and reducing false positives and negatives. 

 

 
Fig. 3. Multimodal integration of various physiological signals for sleep apnea detection. 
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A. Explainable AI 

Advancements in explainable AI are crucial for the practical adoption of machine learning models in healthcare. 

Techniques such as attention visualization allow for the identification of critical regions in the input data that the 

model focuses on when making decisions. For instance, attention maps can highlight specific areas of the mel 

spectrogram that are most indicative of sleep apnea events. Developing simplified models that maintain high 

performance while being more interpretable can also aid in clinician acceptance. Creating user interfaces that 

present results in a clear, understandable manner, possibly with visual aids and explanations, will help integrate 

these tools into clinical workflows and support decision-making processes. 

B. Clinical Trials and Validation 

Conducting rigorous clinical trials and validation studies is essential to demonstrate the efficacy and reliability 

of these diagnostic tools. Prospective studies using new patient data can validate model performance and ensure 

that the models generalize well beyond the training data. Real-world deployment in clinical settings allows for 

the assessment of usability, integration into existing workflows, and impact on patient outcomes. Feedback from 

these deployments can guide further refinements. Working towards obtaining regulatory approvals from health 

authorities, such as the FDA in the United States, is necessary for the widespread clinical adoption of these 

technologies. 

C. Implications for Clinical Practice 

The development of reliable, non-invasive diagnostic tools for sleep apnea has significant implications for 

clinical practice. Early detection facilitated by accessible and easy-to-use tools allows for timely intervention, 

potentially reducing the risk of complications associated with untreated sleep apnea. Increased accessibility 

enables screening in primary care settings or even at home, reaching underserved populations who may not have 

easy access to specialized sleep laboratories. This democratization of diagnostic capabilities can lead to broader 

public health benefits. Additionally, these tools can reduce healthcare costs by decreasing reliance on expensive 

and resource-intensive polysomnography studies. 

Personalized medicine is another important implication. By allowing for continuous monitoring and analysis of 

individual patterns, treatments can be tailored to the specific needs of each patient. Integrating advanced snoring 

sound analysis into clinical workflows requires collaboration among engineers, clinicians, and policymakers. 

Developing training programs for healthcare professionals on the use of these tools is essential for successful 

implementation. Addressing concerns about data privacy, ethical considerations, and ensuring user-friendly 

interfaces will also contribute to the effective adoption of these technologies in routine clinical practice. 

 

11. Conclusion 

The analysis of snoring sounds presents a viable and promising avenue for the non-invasive detection of sleep 

apnea. Advancements from traditional signal processing techniques to deep learning models have progressively 

improved diagnostic accuracy and reliability. The application of Vision Transformers represents a cutting-edge 

approach that leverages global context modeling to capture complex patterns in snoring sound spectrograms. 

While challenges related to data, ethics, and computational resources exist, ongoing research and technological 

advancements are addressing these barriers. Future efforts should focus on data augmentation, model 

interpretability, and clinical validation to ensure effectiveness and trust in real-world settings. 

Ultimately, integrating advanced snoring sound analysis into clinical practice has the potential to revolutionize 

sleep apnea screening and diagnosis, leading to better patient outcomes and more efficient healthcare delivery. 
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