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Abstract In this paper, using multidimensional ˆIto  integrals and techniques of inequalities, a class of 

stochastic differential systems with Lévy noise is analyzed. Some sufficient conditions of exponential stability 

are obtained by reduction to absurdity. 
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1. Introduction  

Differential equation is an important tool to describe the change process of objective things. It can not only use 

known data to predict the possible development trend of the future, but also use the expected goal of the future 

to deduce the current conditions. It can be said that the mathematical model established by using differential 

equations as a tool is almost used in all fields of applied science. In real life, however, random interference is 

common. For example, environmental noise, accidental emergencies and so on. And sometimes such random 

factors may change the motion state of the original dynamic system. At this time, the deterministic process can 

not accurately describe its variation rules, so it is necessary to introduce stochastic differential equations to 

describe the dynamic system disturbed by such random factors. The neutral stochastic differential system is a 

very important kind of stochastic differential system. Compared with ordinary stochastic differential equation, 

neutral stochastic differential equation can reflect the law of system change more accurately and deeply, and 

most stochastic differential system can be deemed to its special circumstances. 

In the theory of control system, the stability problem is particularly important, because the stability is a 

necessary condition to ensure the normal operation of the actual system. The stability of stochastic differential 

equations has attracted extensive attention of scientists for several decades. Scholars discussed in the literature 

[3] for a class of neutral by fractional Lévy noise disturbance in the stability of the mixed type of stochastic 

functional differential equations, using Lyapunov functionals, the negative half martingale convergence theorem 

and theory of M - matrix in the general equation of the solution for attenuation speed almost certain stability, 

and gives the conditions at any time the upper bound of the coefficients. For more results we can further refer 

the reference [4-9]. 

However, whether in nature or in engineering, many practical systems often suffer from sudden environmental 

disturbances that are not suitable to be described by Gaussian noise, such as earthquakes and hurricanes. 

Fortunately, Lévy noise, as an important non-Gaussian noise, can be used to describe these phenomena perfectly. 

Based on the mean square exponential stability of neutral stochastic differential system [9], Lévy noise was 

added to make it become stochastic differential system with Lévy noise, and its mean square exponential 

stability was studied. In comparison with literature [11], the author uses the method of Lyapunov function to 

obtain the conditions to ensure the asymptotic stability of p-th neutral stochastic differential equations with Lévy 
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noise. In this paper, the mean square exponential stability condition of stochastic differential systems with Lévy 

noise is obtained by using reduction to absurdity, integral and inequality techniques. 

 

2. Preliminaries 

Let : =[0, ) . || ||:  the Euclidean norm on d . ( , , ) :F P  the complete probability space with a filtration 

 
0t t

F


. 1 2( ) ( ( ), ( ), ..., ( )) :T

mt t t t     the m  dimensional Wiener process defined on the probability 

space. :E  the expectation of the random variable  . ([ , 0], ) :dC h   the space of continuous d  valued 

functions   defined on [ ,0]h  with the norm [ ,0]sup || ( ) ||s h s  .
2 ([ , 0]; ) :

t

d

FL h   the family of all tF 

measurable, d -valued random variables { ( ), 0}h       such that 
2

0sup || ( ) ||h E       .

2,1( ; ) :dC     the family of all nonnegative functions ( , )W u t from
0

d

t  to  ,which are 

continuously twice differentiable in du   and once differentiable in t  . 

Consider the following stochastic differential systems with Lévy noise： 

������� � ���� � 	�� 
 ���� , ���� � ���� , �������                              � � ���� , �, �������, ���|�|�� , � � �� � 0,��� 
  , � 
 ��.                                                          (2-1) 

 is a 
2 ([ , 0]; )

t

d

FL h   valued stochastic process. The mappings 

2: ([ , 0]; )
t

d d

FD L h    ,
2: ([ , 0]; ) ,

t

d d d

Ff L h      :
d

g  
2

tFL and
2: ([ , 0]

t

d

FH L h  

; )d d d    are Borel measurable. The constant (0, ]c  is the maximum allowable jump size, with 

the initial data 0 0( ) { ( ),x t t     0}   
0

2 ([ ,0], )
t

d

FL h   . 

Denote by N  the Poisson random measure defined on ( {0})d

    with intensity measure  and 

compensator N% .In this article, we always suppose that N is independent of  ( )w t  and the Lévy measure 
satisfying ( , ) : ( , )N dt dv N dt dv% ( )dv dt  and 

2

{0}
(| | 1) ( )

d
v dv

 
  .Generally, the pair ( , )w N is called a 

Lévy noise. 

According to the integral, it is not difficult to obtain the solution of the system (2-1) as follows 

0 0

0
0

| |

( ) (0) ( , ) ( , ) ( )

                ( , , ) ( , ),  .

t t

t s s
t t

t

s
t v c

x t Dx D f x s ds g x s d s

H x t v N ds dv t t

  



    

 

 

  %

                                   (2-2) 

To ensure existence and uniqueness of solution of the system (2-1), we assumed a constant 0 1l  ,such that 

                                          (2-3) 

and ,f g are locally Lipschitz continuous and satisfy the linear-growth condition. 

If the solution of system (2-1) is denoted by 0( , , )x t t  , it is important to note that 

                                                         (2-4) 

When =0  and (0, ) 0f t   and (0, ) 0g t   for any t  , we set 0D  . Then ( ) 0x t   is the solution of 

system (2-1) with the zero initial data at 0 0t  . 

For the stability purpose of this paper, we need the following definition. 

Definition 2.1 ([9]). If exist positive constants  and M such that  

0( )2 2

0 0
[ ,0]

|| ( , , ) || sup || ( ) || ,  ,
t t

h

E x t t Me E t t



   

 
         

for any 0 0t   and for any 
0

2 ([ ,0], )
t

d

FL h    . Then the zero solution of system (2-1) is stable. 
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3. Main result 

In order to prove the stability of neutral stochastic differential system, we need to define an operator by using 

the ˆIto  formula, let  define an operator lA  from 
d

   to   by 

( , ( )) ( , ( )) ( , ( )) ( ( ))

1
                                + [ ( , ( )) ( , ( )) ( , ( ))]       

2

                                + [ ( , ( ) ( , (

t x

T

xx

t Dx t t Dx t t Dx t f x t

trace d x t t Dx t d x t

t Dx t H x

       

     

  

         

   

  

lA A A

A

A
| |

), ))

                                ( , ( )) ( , ( ), ) ( , ( ))] ,

v c

x

t V

t Dx t H x t V t Dx t vdv



     




      


A A

       (3-1)                                                       

The following lemma will be applied in the continuation. 

Lemma 3.1 ([9]). Let 0 0
( ) : ( ; , ),x t x t t t t h    be the solution of system(2-1). Set that exist (0,1)  

and a Borel  measurable function ( ) :[ ,0]r h     ,
0

( ) 1
h
r s ds


  such that 

0
2 2 2|| || ( ) || ( ) || , .

h
D r s s ds C   


                                               (3-2) 

And for some 
2

(0, ln )
h

   , we have 

0( )2 2

0 0|| ( ) ( ) || || ( || , .
t t

E x t Dx t Me E x t t t
                                  (3-3) 

For some 0M  , then 

0( )2 2

0 0
[ ,0]22

|| ( ) || sup || ( ) || , .

(1 )

t t

h
h

M
E x t e E x t t t h

ke





 

 
   


                             (3-4) 

The inequality in Lemma 3.1 will be used to prove Theorem 3.2, in which Theorem 3.2 is proved by 

contradiction and ˆIto  formula, The mean square exponential stability condition for a class of stochastic 

differential systems with Lévy noise is obtained. 

Theorem 3.2. If there exists a constant 0  ,such that 

2( , ( )) || ( ) || ,t x Dx t Dx t        lA                                               (3-5) 

and satisfy equation (3-2), then the system (2-1) is exponentially stable in mean square. 

Proof：Assume 22 2M   .Then we think the following two functions： 

2

0( ) : || ( ) ( ) || ,  u t E x t Dx t t t                                                    (3-6) 

and 

                    
0( ) 2

0
[ ,0]

( ) : sup || ( ) || ,  ,
t t

h

v t Me E t t



  

 
                                               (3-7) 

where 0,  (0,1)  . 

It follows from system (2-1) and conditions (3-2) that 

0 0 0

2 2 2 2

0 0 0 0( ) || ( ) || (|| ( ) || || ||) (2 || ( ) || 2 || || )t t tu t E x t Dx E x t Dx E x t Dx       

   
2 0 2 2

0 02 || ( ) || 2 ( ) || ( ) || 2 || (0) ||hE x t r s E x t s ds E       
2 0 22 ( ) || ( ) ||h r s E s ds    

  
2 2 0 2

[ ,0] [ ,0]

2 sup || ( ) || 2 ( ) sup || ( ) ||h
h h

E r s E ds
 

    
   

    

2 2 2

0
[ ,0] [ ,0]

(2 2 ) sup || ( ) || sup || ( ) || ( ),
h h

k E M E v t
 

   
   

     

Thus, 0 0( ) ( )u t v t . It is shown that 

0( ) ( ),  ,u t v t t t                                                                          (3-8) 
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Reduction to absurdity.  

Then we have 0t t such that ( ) ( )u t v t .Setting * 0: inf{ : ( ) ( )},t t t u t v t      

such that 
* 0( )2 2

* * 0[ ( ( )] || ( ) || ,
t t

E x t Dx t e E Dx t
                                           (3-9)                              

Assume   , and let the function 
2( , ) : || ( ) ( ) || ,tV x t e x t Dx t    ( , ) ,dx t   for any 

2

0|| ( ) ||m Dx t    ,the stopping time is 0inf{ :|| ( ) || },m t t x t m    Using the ˆIto  formula to 

( , )V x t ,we acquire 

0

0
0

0

( ) 2

2 2

0

|| ( ) ( ) ||

                            || ( ) || || ( ) ||

                             + ( , ( ) ( )) ,

m

m

m

t

m m

t
t s

t s
t

t
s

t

e E x t Dx t

e E x t Dx E e x s Dx ds

E e t x s Dx s ds

 

 

 

  









   

   

 



 lA

                      (3-10) 

Letting m   on both sides of (3-10) yields 

0

0

0

0

2 2

2

2

|| ( ) ( ) || || ||

                                    + || ( ) ||

                                    + || ( ( ) ( )) || ,

tt

t

t
s

s
t

t
s

t

e E x t Dx t e E Dx

e E x s Dx ds

e E x s Dx s ds







 



 

   



  





                           (3-11) 

It follows from (3-9) and (3-11) that 

0*

*
0

0

*
0

0

2 2

* * 0

( )2

0

( )2

0

|| ( ) ( ) || || ( ) ||

                                       + [ || ( ) || ]

                                        [ || ( ) || ]

tt

t
s ts

t

t
s ts

t

e E x t Dx t e E Dx t

e E Dx t e ds

e E Dx t e







  

  

  

 

 

    

 

  




*

0 0

0

* 0 0*

0

( )2 2

0 0

( )
2 2

0 0

|| ( ) || ( ) || ( ) ||

|| ( ) || || ( ) || ( ),

t
t s t

t

t t tt
t

ds

e E Dx t e E Dx t ds

e e e
e E Dx t E Dx t

   

 


     

     
 

 

 

      


      





                        (3-12) 

Considering      , we acquire 

*

* 0 0*

0

0

2

* *

( )
2 2

0 0

2 2

0 0

|| ( ) ( ) ||

                              <e || ( ) || || ( ) || ( )

                              =e [ || ( ) || || ( ) || ]           

t

t t tt
t

t

e E x t Dx t

e e e
E Dx t E Dx t

E Dx t E Dx t



 






     
 

   

 

 


     



    
* 0*

* 0*

( ) 2

0

( ) 2

0

                 (3-13)

                              +e || ( ) ||

                              =e || ( ) || .

t tt

t tt

e E Dx t

e E Dx t





 

 

 

 

 

 
 

Thus, 
* 0( )2 2

* * 0|| ( ) ( ) || || ( ) || .
t t

E x t Dx t e E Dx t
                                            (3-14) 

Which is in conflict with (3-9). 

Therefore, 
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0( )2 2

0|| ( ) ( ) || || ( ) || , .t tE x t Dx t Me E t t                                        (3-15) 

Form Lemma 3.1, we know 

0( )2 2

0
[ ,0]22

|| ( ) || sup || ( ) || , .

(1 )

t t

h
h

M
E x t e E t t

ke





  

 
 


                                   (3-16) 

So system (2-1) is exponentially stable in mean square. 

 

Corollary 3.3. Suppose that (3-5) is satisfied. And condition (3-2) is changed to 
2 2 2

[ ,0]

|| || sup || ( ) || , ([ ,0], ), ,
t

b d

F
h

E D E L h t


     
 

                                  (3-17) 

Then system (2-1) is exponentially stable in mean square. 

Proof：The proof procedure is similar to the Theorem 3.2. 

Corollary 3.4. Suppose that (3-2) is satisfied. And condition (3-5) is changed to 

  
2( , ( )) ( ) || ( ) || ,t x Dx t t Dx t        lA                                        (3-18) 

Where 
0( ) 0,  .t t t   . Then system (2-1) is exponentially stable in mean square. 

Proof：Let 
0

: sup ( )
t t

t 


 , the proof procedure is similar to the Theorem 3.2. 
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