
Available online www.jsaer.com

Journal of Scientific and Engineering Research

146

Journal of Scientific and Engineering Research, 2022, 9(7):146-150

Research Article

ISSN: 2394-2630

CODEN(USA): JSERBR

An Adaptive Spark-based Framework for Querying Large-Scale

NOSQL and Relational Databases

Naveen Muppa

10494 Red Stone Dr Collierville, Tennessee

Abstract The growing popularity of big data analysis and cloud computing has created new big data

management standards. Sometimes, programmers may interact with a number of heterogeneous data stores

depending on the information they are responsible for: SQL and NoSQL data stores. Interacting with

heterogeneous data models via numerous APIs and query languages imposes challenging tasks on multi-data

processing developers. Indeed, complex queries concerning homogenous data structures cannot currently be

performed in a declarative manner when found in single data storage applications and therefore require

additional development efforts. Many models were presented in order to address complex queries Via multistore

applications. Some of these models implemented a complex unified and fast model, while others’ efficiency is

not good enough to solve this type of complex database queries. This paper provides an automated, fast and easy

unified architecture to solve simple and complex SQL and NoSQL queries over heterogeneous data stores

(CQNS). This proposed framework can be used in cloud environments or for any big data application to

automatically help developers to manage basic and complicated database queries. CQNS consists of three

layers: matching selector layer, processing layer, and query execution layer. The matching selector layer is the

heart of this architecture in which five of the user queries are examined if they are matched with another five

queries stored in a single engine stored in the architecture library. This is achieved through a proposed algorithm

that directs the query to the right SQL or NoSQL database engine. Furthermore, CQNS deal with many NoSQL

Databases like MongoDB, Cassandra, Riak, CouchDB, and NOE4J databases. This paper presents a spark

framework that can handle both SQL and NoSQL Databases. Four scenarios’ benchmarks datasets are used to

evaluate the proposed CQNS for querying different NoSQL Databases in terms of optimization process

performance and query execution time. The results show that, the CQNS achieves best latency and throughput

in less time among the compared systems.

Keywords This proposed framework can be used in cloud environments or for any big data application to

automatically help developers to manage basic and complicated database queries. CQNS consists of three

layers: matching selector layer, processing layer, and query execution layer. The matching selector layer is the

heart of this architecture in which five of the user queries are examined if they are matched with another five

queries stored in a single engine stored in the architecture library. This is achieved through a proposed algorithm

that directs the query to the right SQL or NoSQL database engine. Furthermore, CQNS deal with many NoSQL

Databases like MongoDB, Cassandra, Riak, CouchDB, and NOE4J databases. This paper presents a spark

framework that can handle both SQL and NoSQL Databases. Four scenarios’ benchmarks datasets are used to

evaluate the proposed CQNS for querying different NoSQL Databases in terms of optimization process

performance and query execution time.

1. Introduction

The popularity of NoSQL systems is caused by their efficiency in handling unstructured data and backing up

effective design schemes that give the system users supreme flexibility and scalability. This paper identifies a

Muppa N Journal of Scientific and Engineering Research, 2022, 9(7):146-150

Journal of Scientific and Engineering Research

147

relational database and several categories of NoSQL Databases with structural features: key-value, graph,

column, and document databases. Likewise, every NoSQL database has a special query language and does not

support the criteria of other systems. The main problem that much research focused on, is that there is no

standard method to execute complex queries across NoSQL Databases. Currently, data stores have several

diversified APIs. The programmers of applications based on multiple data stores must be familiar with these

APIs during the process of coding these applications. As a result of the variety and changes in the data models

of various databases, there is no standard way to solve the problem of implementing queries for various NoSQL

data stores. The reason is due to a lack of a combined access model for diversified data stores. The programmers

must challenge themselves with the execution of these queries, which are hard to optimize. On the other hand,

optimization puts certain criteria into consideration, such as data transformation and movement costs, which

might be expensive for big data. Fig 1 shows a diagram of integrating heterogenous relational and NoSQL

datasets to an example of scientific social network.

2. Proposed CQNS Framework

This section introduces the proposed CQNS approach, which is capable of executing complex queries across

heterogeneous data stores. This framework consists of three stages. Matching Selector stage, processing stage,

and query execution stage. In the following sections, this paper discusses the different stages of the proposed

CQNS.

Figure 1: The proposed framework (CQNS).

3. Matching Selector Stage

This stage receives any SQL or NoSQL database query to match the sentences of the query given by the user

with the stored libraries that hold a number of statements for each database type either SQL or NoSQL from the

database engine and then compares the sentence with the stored libraries to define the required database engine.

This paper prepared a set of libraries for each of the databases that are studied, such as SQL as an example of

relational database and MongoDB, Cassandra, Couch, Riak and NOE4J as an example of NoSQL Databases.

Indeed, this approach symbolizes the combined parts among every deployed data storage and delivers a unified

model to the following stage of the framework. This model contains the particular operations of every database.

It is noteworthy that the user has to add a particular implementation of the data store if he/she needs to integrate

an extra database. In the following figures, an explanation is given for testing the query statements for the

databases used. This paper used SQL Server (as an example of a relational database), MongoDB and Cassandra

(as examples of NoSQL Databases). The stored SQL libraries statements for SQL database while explain the

CRUD statements for MongoDB and Cassandra DB respectively, as examples of the NoSQL Database libraries

used in this paper.

Muppa N Journal of Scientific and Engineering Research, 2022, 9(7):146-150

Journal of Scientific and Engineering Research

148

Figure 2: SQL Libraries.

4. CQNS Processing Stage

Within this section you will shortly find details about technology and the setup process for this study. CQNS

deployed and used Hadoop/HDFS to store the incoming data. Hadoop is an open-source distributed computing

platform that mainly consists of the distributed computing framework MapReduce and the distributed document

system HDFS. The formula (1) uses to calculate HDFS node storage (H) required:

H: denoted the HDFS node storage required

C: is the compression ratio and completely depends on the type of compression used and size of the data.

R: It is the replication factor which is 3 by default in production cluster.

S: S denotes the initial amount of data you need to move to Hadoop.

I: I represent the intermediate data factor which is usually 1/3 or ¼. It is Hadoop’s intermediate working space

used to store the intermediate results of different tools like Hive.

1.2: 1.2 or 120% more than the total size.

H=C*R*S(1−I)*1.2

(1)

MapReduce is a software platform for parallel processing programming of large-scale data pieces. The

MapReduce strategy is applied to the k-means clustering algorithm and clustered for the data factors. The k-

means algorithm can be successfully parallelized and clustered on hardware resources. MapReduce can be

utilized for k-means clustering. The results also show that the clusters shaped using MapReduce are similar to

the clusters produced using a sequential algorithm. Once HDFS takes data, this process breaks information

down into separate blocks and distributes those blocks to different nodes in the cluster, thus enabling high-

efficiency parallel processing. The data from HDFS is accessed by a Spark streaming program for handling

before being stored in MongoDB in the server of the database. Resilient distributed datasets (RDDs) are an

abstraction presented by Spark. RDDs symbolize a read-only multiset of data objects divided into a group of

machines that continue operating as designed despite internal or external changes (fault-tolerant way). Spark is

considered the first system of programming languages in general and is used as an interactive way to handle big

data sets for clustering. A Complex Querying over NoSQL Databases Algorithm (CQNSA) using MongoDB

and the MongoDB Connector for Spark is proposed using an open-source NoSQL database that is designed for

high scalability, effectiveness, and availability. This CQNSA is shown in Algorithm 2.

5. Query Execution Stage

Instead of storing the data as tables with columns and rows, the data are stored as documents. Every document

can be one of the relational matrices of the numerical values or the overlapping interrelated arrays or matrices.

These documents are serialized as JSON objects and stored internally using JSON binary encryption known as

BSON in MongoDB; the data is partitioned and stored on several servers called shard servers for simultaneous

access and effective read/write operations. MongoDB and Apache Spark are integrated seamlessly by this

connector. MongoDB aggregation pipelines and a problem of how to assign a group of objects into groups,

called blocks, so that the objects within the same group, partitioning is by using a cluster assignment function C:

X → {1, 2, …., k} when X is a set of objects, the Number of clusters K∈Z+ and Distance function d∈R0^+

Muppa N Journal of Scientific and Engineering Research, 2022, 9(7):146-150

Journal of Scientific and Engineering Research

149

between all pairs of objects in X, partition X into K disjoint sets x1, x2, .…., xk such that ∑k∑x,x'∈Xkd(x,x')

With N = |X|, the number of distinct cluster assignments possible as follows

S(N,K)=1K!∑Kk=1−1K−k(Kk)kN

MongoDB engine Sharding is a way to distribute data across multiple devices. This work provides MongoDB

which utilizes Sharding to benefit implementations using very huge databases and structures that are highly

efficient. Data stores which contain large datasets or high-productivity applications may challenge a single

server ’s ability. High query rates for example can exceed the server’s CPU capability. A number of sizes

greater than the RAM of the device will help validate driver I / O capability. A database may have a mix of

sharded collections and unshared collections. Sharded sets are divided into a cluster and spread throughout the

shards. Unshared collections on a main shard are stored. As shown in Fig 9 each database has its own main

shard.

Figure 3: Sharding Mongo DB Stage.

6. CQNS Evaluation

CQNS is used to store, manage, and execute bigdata queries and makes the development job very much easier.

In this paper, the proposed model rewrites each query into the particular query language of the integration data

store. The processing stage in CQNS turns results into a suitable format such as JSON before responding to the

system users. Therefore, the overhead is considered reasonable to some extent. Because of memory management

trouble in the driver, there is a probability that the performance of CQNS will degrade after 50000 entities. The

results of experiments testing MongoDB and Cassandra DB are shown in the following sections.

7. Cost Model

The cost of implementation is the sum of the costs of each process that composes the implementation plan. This

is worth noting that costs do not reflect time directly. More cost means more time, of course. It is used to

compare two question execution plans, but not for estimating the responding time directly. The multiplication of

the matrix between the α, β and α coefficients row was determined to test the expense formulation according to

each data store. A column vector includes the values of the catalog parameters and a fixed variable known as

const, which is a scale and may be a cardinality, a number, etc. Furthermore, the value of the column vectors

will be empty if the parameter is not based on a particular calculation (CPU cost, I / O cost or the costs of

connections). This is determined as follows: Matrix multiplication:

const(αβγ)⎛⎝⎜tcputi/otconn⎞⎠⎟=const(α×tcpu+β×ti/o+γ×tconn)

Where tcpu symbolized the CPU time, ti/o symbolized the Input /Output time and tconn symbolized the

connection time to engine.

The α, β and α are represents the coefficients that were considered to evaluate the cost model. These of

parameters are separately defined to each data store, and a constant variable called const which is a scalar and

can be a cardinality, selectivity, etc.

The projection cost and selection processes that are referenced by costProjcton and CostRestrction are started

with forms respectively (see formula 7 and formula 8). The operating cost is the linear mix of variables

for initProjcton (resp. InitSelection) and scanning and dropping (resp. selection). As the input variable N,

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8376024/#pone.0255562.e009
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8376024/#pone.0255562.e010

Muppa N Journal of Scientific and Engineering Research, 2022, 9(7):146-150

Journal of Scientific and Engineering Research

150

the cost Projcton indicates the integrated data store in which the connection is executed, variable H indicates the

sum of the entity size specified in the entry, and the estimate function named estm. This function allows to

measure how much the primary projection (resp. selection) is carried out. The range and cardinality variables

are referred to:n: a node, h: length of an entity set, projatt: Projection

attributescstproj(n,h,estm(projatt,h))=initproj(n)+scan(n)*h+proj(n)*estm(projatt,h)

References

[1]. https://figshare.com/articles/dataset/The_advantages_and_disadvantages_of_the_proposed_framework

_and_the_most_recent_frameworks_/15442181/

https://figshare.com/articles/dataset/The_advantages_and_disadvantages_of_the_proposed_framework_and_the_most_recent_frameworks_/15442181/
https://figshare.com/articles/dataset/The_advantages_and_disadvantages_of_the_proposed_framework_and_the_most_recent_frameworks_/15442181/

