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Abstract This paper uses the basic theory of Pell equation to discuss the following contents: hypothesizing � =
3�� − 2 or 3� = �� + 2, and � is odd prime in the � ≡ 1(�� 6), � is positive integer, the cubic Diophantine 

equation  �� − 3��� = 1  has no positive integer solution (�, �) ; when � < 100 , the equation has positive 

integer solution (�, �) if � = 37. 
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Cubic Diophantine Equation  

�� − 3��� = 1 �, � ∈ ℕ, � is an odd prime greater than 3     (1) 

The solution of this equation has attracted public attention in number theory, since the literature [1] had proven: 

when � ≡ 5(�� 6), equation (1) has no solution(�, �), hence it comes to the discussion about � ≡ 1(�� 6), 

which only some conclusions have been reached. 

In this paper, the following results are discussed according to the basic properties of Pell equation: 

Theorem If � = 3�� − 2, � ∈ ℕ or 3� = �� + 2      (2) 

then equation (1) has no solution(�, �). 

In order to prove the theorem, this paper first proves the following conclusions. 

Lemma 1 If (�, �) is a set of solutions to equation (1), thus, 

� − 1 = 9��, �� + � + 1 = 3���, � = 3��, �, � ∈ ℕ      (3) 

Demonstration Hypothesizing (�, �) is a set of solutions to equation (1), because �� ≡ 1(�� 3) according to 

(1), then � ≡ 1(�� 3), �� + � + 1 = 0(�� 3) and  !� (�� − 1, �� + � + 1) = 3. Since � is an odd prime 

greater than 3, thus � − 1 = 9���, �� + � + 1 = 3�� according to (1), 

 � = 3��, �, � ∈ ℕ         (4)  

Or (2). According to the literature [1], (4) is not valid. 

Lemma 2 [2] Hypothesizing " is a given positive integer with no square factor, there exists a unique set of 

positive integer ("# , "�, λ) that satisfy 

 "#"� = " ,λ ∈ {1,2},  !�(", ') = 1, ("#, "�,λ) ≠ (1, ", 1)      (5) 

thus equation  

"#)� − "�*� = λ, ), * ∈ ℕ        (6)  

has a solution (), *). 

For a given ", the group of positive integers defined by Lemma 2 is called the Petrr group of ", marked as 

�("). 

Lemma 3 Hypothesizing "# , "� are positive integer satisfy "# > 1, if equation 

"#)� − "�*� = 1, ), * ∈ ℕ               (7) 



Zhiwei L                                                        Journal of Scientific and Engineering Research, 2022, 9(4):88-90 

 

 

Journal of Scientific and Engineering Research 

89 

 

 

has a solution (), *), then it must have a unique solution ()#, *#)that satisfy )#,"# + *#,"� ≤ ),"# + *,"�, 

(), *) is all the solutions to this equation. 

()#, *#) is called the smallest solution to the equation (7). Hence any set of solutions (), *) to the equation can 

be expressed as 

),"# + *,"� = .)#,"# + *#,"�/0, 1 ∈ ℕ       (8) 

 

Demonstration Refer to literature [3] 

Lemma 4 If the solution (), *) of equation (7) satisfies 

 ),"# + *,"� < .,"# + ,"�/�
         (9) 

Then (), *) must be the smallest solution to the equation. 

Demonstration According to the lemma 3: there exists positive odd number 1 which makes (), *) satisfies (8). 

Hypothesizing (), *) is not the smallest solution of equation (7), then 1 ≥ 3, according to (8),  

),"# + *,"� ≥ .)#,"# + *#,"�/� ≥ .,"# + ,"�/�
     (10)  

is in contradiction with (9). Therefore, if (), *) satisfies (9), then it must be the smallest solution of equation (7).  

Lemma 5 Any set of solutions (), *) to the equation (7) can satisfy )#/) and *#/*, and ()#, *#) is the smallest 

solution of the equation. 

Demonstration According to the lemma 3: there exists positive odd number K which makes the equation (8) 

true, then, 

) = )# 4 5 1
267 ("#)#�)89:;

< =>?("�*#�)>
(0=#)/�

>@A
 

* = *# ∑ 8 0
�>C#? ("#)#�)89:;

< =>?("�*#�)>(0=#)/�
>@A        (11) 

)#/) and *#/* can be proven from (11). 

 

Demonstration of lemma 

Hypothesizing (�, �) is a set solution of equation (1), according to the lemma 1, there exists positive integer � 

and � which make � and � satisfy (3), then  

�(2�)� − 3(�� + 1)� = 1         (12)  

when � is eliminated in (3). 

From (12), equation  

�)� − 3*� = 1, ), * ∈ ℕ          (13)  

has solutions  

(), *) = (2�, 6�� + 1)          (14)  

Hypothesizing " = 3�, since � is an odd prime greater than 3, therefore, " is a positive integer with no square 

factor. Since equation (12) has solutions, according to lemma 2, �(") = (�, 3,1), thus, 

3)� − �*� = 2, ), * ∈ ℕ          (15) 

and  

3�)� − *� = 2, ), * ∈ ℕ          (16) 

have no solutions (�, �). 

If p satisfies (2), then equation (15) has solutions (), *) = (�, 1) Nevertheless, it can be told that from above: it 

is inapprehensible when equation (1) has solutions. Therefore, there must be no solution to equation (1) if � 

satisfies (2). 

Similarly, if � satisfies 3� = �� + 2, � ∈ ℕ, since equation (16) has solutions (), *) = (1, �), therefore, equation 

(1) has no solution. 
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