ISSN: 2394-2630
Research Article

## Discussion on Solutions of a Class of Cubic Diophantine Equations

## Liu Zhiwei

College of Science, Hezhou University, Hezhou 542899, Guangxi, China


#### Abstract

This paper uses the basic theory of Pell equation to discuss the following contents: hypothesizing $p=$ $3 r^{2}-2$ or $3 p=r^{2}+2$, and $p$ is odd prime in the $p \equiv 1(\bmod 6), r$ is positive integer, the cubic Diophantine equation $x^{3}-3 p y^{2}=1$ has no positive integer solution $(x, y)$; when $p<100$, the equation has positive integer solution $(x, y)$ if $p=37$.


Keywords Cubic Diophantine equation; Pell equation; Petrr group

## Cubic Diophantine Equation

$x^{3}-3 p y^{2}=1 x, y \in \mathbb{N}, p$ is an odd prime greater than 3
The solution of this equation has attracted public attention in number theory, since the literature [1] had proven: when $p \equiv 5(\bmod 6)$, equation $(1)$ has no solution $(x, y)$, hence it comes to the discussion about $p \equiv 1(\bmod 6)$, which only some conclusions have been reached.
In this paper, the following results are discussed according to the basic properties of Pell equation:
Theorem If $p=3 r^{2}-2, r \in \mathbb{N}$ or $3 p=r^{2}+2$
then equation (1) has no solution $(x, y)$.
In order to prove the theorem, this paper first proves the following conclusions.
Lemma 1 If $(x, y)$ is a set of solutions to equation (1), thus,
$x-1=9 q^{2}, x^{2}+x+1=3 p b^{2}, y=3 a b, a, b \in \mathbb{N}$
Demonstration Hypothesizing $(x, y)$ is a set of solutions to equation (1), because $x^{3} \equiv 1(\bmod 3)$ according to (1), then $x \equiv 1(\bmod 3), x^{2}+x+1=0(\bmod 3)$ and $\operatorname{gcd}\left(x^{2}-1, x^{2}+x+1\right)=3$. Since $p$ is an odd prime greater than 3 , thus $x-1=9 p a^{2}, x^{2}+x+1=3 b^{2}$ according to (1),
$y=3 a b, a, b \in \mathbb{N}$
Or (2). According to the literature [1], (4) is not valid.
Lemma 2 [2] Hypothesizing $D$ is a given positive integer with no square factor, there exists a unique set of positive integer $\left(D_{1}, D_{2}, \lambda\right)$ that satisfy
$D_{1} D_{2}=D, \lambda \in\{1,2\}, \operatorname{gcd}(D, \lambda)=1,\left(D_{1}, D_{2}, \lambda\right) \neq(1, D, 1)$
thus equation
$D_{1} u^{2}-D_{2} v^{2}=\lambda, u, v \in \mathbb{N}$
has a solution $(u, v)$.
For a given $D$, the group of positive integers defined by Lemma 2 is called the Petrr group of $D$, marked as $p(D)$.
Lemma 3 Hypothesizing $D_{1}, D_{2}$ are positive integer satisfy $D_{1}>1$, if equation
$D_{1} u^{2}-D_{2} v^{2}=1, u, v \in \mathbb{N}$
has a solution $(u, v)$, then it must have a unique solution $\left(u_{1}, v_{1}\right)$ that satisfy $u_{1} \sqrt{D_{1}}+v_{1} \sqrt{D_{2}} \leq u \sqrt{D_{1}}+v \sqrt{D_{2}}$, $(u, v)$ is all the solutions to this equation.
$\left(u_{1}, v_{1}\right)$ is called the smallest solution to the equation (7). Hence any set of solutions $(u, v)$ to the equation can be expressed as
$u \sqrt{D_{1}}+v \sqrt{D_{2}}=\left(u_{1} \sqrt{D_{1}}+v_{1} \sqrt{D_{2}}\right)^{k}, k \in \mathbb{N}$

Demonstration Refer to literature [3]
Lemma 4 If the solution ( $u, v$ ) of equation (7) satisfies
$u \sqrt{D_{1}}+v \sqrt{D_{2}}<\left(\sqrt{D_{1}}+\sqrt{D_{2}}\right)^{3}$
Then $(u, v)$ must be the smallest solution to the equation.
Demonstration According to the lemma 3: there exists positive odd number $k$ which makes ( $u, v$ ) satisfies (8). Hypothesizing $(u, v)$ is not the smallest solution of equation (7), then $k \geq 3$, according to (8),
$u \sqrt{D_{1}}+v \sqrt{D_{2}} \geq\left(u_{1} \sqrt{D_{1}}+v_{1} \sqrt{D_{2}}\right)^{3} \geq\left(\sqrt{D_{1}}+\sqrt{D_{2}}\right)^{3}$
is in contradiction with (9). Therefore, if ( $u, v$ ) satisfies (9), then it must be the smallest solution of equation (7).
Lemma 5 Any set of solutions $(u, v)$ to the equation (7) can satisfy $u_{1} / u$ and $v_{1} / v$, and ( $u_{1}, v_{1}$ ) is the smallest solution of the equation.
Demonstration According to the lemma 3: there exists positive odd number $K$ which makes the equation (8) true, then,
$u=u_{1} \sum_{i=0}^{(k-1) / 2}\left(\frac{k}{2 i}\right)\left(D_{1} u_{1}^{2}\right)^{\left(\frac{k-1}{2}-i\right)}\left(D_{2} v_{1}^{2}\right)^{i}$
$v=v_{1} \sum_{i=0}^{(k-1) / 2}\left(\frac{k}{2 i+1}\right)\left(D_{1} u_{1}^{2}\right)^{\left(\frac{k-1}{2}-i\right)}\left(D_{2} v_{1}^{2}\right)^{i}$
$u_{1} / u$ and $v_{1} / v$ can be proven from (11).

## Demonstration of lemma

Hypothesizing $(x, y)$ is a set solution of equation (1), according to the lemma 1, there exists positive integer $a$ and $b$ which make $x$ and $y$ satisfy (3), then
$p(2 b)^{2}-3\left(a^{2}+1\right)^{2}=1$
when $x$ is eliminated in (3).
From (12), equation
$p u^{2}-3 v^{2}=1, u, v \in \mathbb{N}$
has solutions
$(u, v)=\left(2 b, 6 a^{2}+1\right)$
Hypothesizing $D=3 p$, since $p$ is an odd prime greater than 3 , therefore, $D$ is a positive integer with no square factor. Since equation (12) has solutions, according to lemma $2, p(D)=(p, 3,1)$, thus,
$3 u^{2}-p v^{2}=2, u, v \in \mathbb{N}$
and
$3 p u^{2}-v^{2}=2, u, v \in \mathbb{N}$
have no solutions $(x, y)$.
If p satisfies (2), then equation (15) has solutions $(u, v)=(r, 1)$ Nevertheless, it can be told that from above: it is inapprehensible when equation (1) has solutions. Therefore, there must be no solution to equation (1) if $p$ satisfies (2).
Similarly, if $p$ satisfies $3 p=r^{2}+2, r \in \mathbb{N}$, since equation (16) has solutions $(u, v)=(1, r)$, therefore, equation (1) has no solution.

## Reference

[1]. Ke Zhao, Sun Qi. Diophantine equation $x^{2} \pm 1=3 D y^{2}$ [J]. Journal of Sichuan University, 1981(2): 15.
[2]. Petrk. Surl. Equation de Pell [J]. Pest. Mat Fys, 1927 (1): 57-66.
[3]. Walker. D. T. On the Diophantine equation $m x^{2}-n y^{2}= \pm 1$ [J]. Amer Monthly, 1967(6): 504-513.

