
Available online www.jsaer.com

Journal of Scientific and Engineering Research

215

Journal of Scientific and Engineering Research, 2022, 9(4):215-227

Research Article

ISSN: 2394-2630

CODEN(USA): JSERBR

Load Management in Computer Networks Regarding Multi-

Application-Based Path Selection Using RBL-SSOA For QoS

Amaresan Venkatesan

v.amaresan@gmail.com

Abstract: In a Computer Network (CN), Load Management (LM) is crucial for maintaining consistent

performance. None of the existing works concentrated on the transmission of load based on multiple

applications. Thus, this paper proposes a novel path selection using the Rast-BecLago Squirrel Search

Optimization Algorithm (RBL-SSOA) based LM in CN. Primarily, the network traffic data is taken and pre-

processed. Next, traffic volume and the median are calculated. Then, by using the RadixRipple-Fuzzy

Interference System (2R-FIS), the heavy and light load is detected. Further, the load is scheduled using the

Weighted Share-based Proportional Fair Scheduling (WS-PFS) algorithm for heavy load. Next, by using the

RBL-SSOA, the optimal paths are selected. Next, the correlation of the selected path between applications is

identified. The optimal path is selected for higher correlation, and the low-correlated path gets transmitted. To

check malfunctioning in CN, the Orthogonal Spectral Square Linear Unit Long Short Term Memory (O2SLU-

LSTM) is utilized during transmission. Hence, to maintain Quality of Service (QoS) in CN with 4172ms

Network Latency (NL), the LM is done more efficiently than existing works.

Keywords: Load Management (LM), Path Selection, Pearson Correlation Coefficient (PCC), Quality of Service

(QoS), Computer Network (CN), Cloud Computing, and Load Scheduling.

1. Introduction

The process of distributing the incoming network traffic across multiple servers is termed the LM (Mishra &

Tiwari, 2020). Therefore, it is important to ensure efficient utilization of resources (Yakubu et al., 2020) and

maintain reliability while accessing the network for data transmission (Patel & Bhalodia, 2019). The primary

goal of LM is to uphold QoS in the network (Caminero & Muñoz-Mansilla, 2021) by transferring the traffic to a

backup route when congestion occurs (Verma & Bala, 2021). The CN with minimum packet loss, low latency,

and load prioritization leads to good QoS (Sharma & Maurya, 2019).

The prevailing methods, such as Ant Colony Optimization (ACO) (Milan et al., 2019) and Particle Swarm

Optimization (PSO) (Kaur & Aron, 2021), failed to transfer the data through the network path, which reduced

the QoS of CN. In some of the traditional works, the variation in network traffic (Murtaza et al., 2020) was also

not considered. Similarly, the transfer of load with limited network resources leads to a negative impact on QoS

(Hossain et al., 2019). Therefore, in the CN, RBL-SSOA and WS-PFS-based LM is proposed.

Problem Statement

The limitations of existing works are given as,

• None of the prevailing works concentrated on multiple application-based interactions in LM.

• The heavy and light loads in CN are not identified in (Junaid et al., 2020), which leads to unnecessary

delays in transmission.

• The load scheduling was not done in (Sefati et al., 2021), which caused latency and a reduction in QoS.

Venkatesan A Journal of Scientific and Engineering Research, 2022, 9(4):215-227

Journal of Scientific and Engineering Research

216

• The fixed redundancy path in (Parsa & Moghim, 2021) led to the over-utilization of paths, which

reduced model performance.

• The absence of network malfunction detection caused a loss of access to applications.

The contributions of the proposed frameworks are,

 The similarities between the paths are checked, and the path is re-selected based on similar values.

 The 2R-FIS is utilized to detect the heavy and light loads from the computer network.

 To schedule load among the heavy loads, the WS-PFS method is used.

 The optimal path is selected using RBL-SSOA to reduce network congestion.

 The malfunction in the network is identified by utilizing the O2SLU-LSTM technique.

The remaining part is arranged as: the related works are analysed in Section 2, the proposed architecture is

described in Section 3, the performance assessment is evaluated in Section 4, and Section 5 concludes the paper

with future scope.

2. Literature Survey

(Guo et al., 2021) recognized traffic distribution in CN for QoS. To group the multiple traffic flows, the Flow

Aggregation Technique was used. Next, based on traffic flow, the traffic was prioritized and routed for

transmission. Therefore, the network flow was optimized effectively. However, the transmission time was

increased as the routing was complex.

(Mapetu et al., 2021) advanced path selection model in cloud computing. By using PCC, the similarity between

the workloads was analyzed. Then, based on similarity to the CN, the loads were allocated. Thus, the

performance of the transmission was maintained. But, continuously analyzing the loads led to additional

overhead and poor performance of the model.

(Ebadifard & Babamir, 2021) incorporated load-balancing technique for cloud environment. Here, to schedule

the load, the Round-Robin Scheduling (RRS) was utilized. Next, the load was balanced in a static manner. So,

the utilization of resources was improved. But, due to dynamic load, unexpected spikes were identified, which

reduced QoS.

(Li et al., 2020) developed load scheduling in a distributed cloud environment. Here, by using Directed Acrylic

Graph (DAG), the task was converted into a hypergraph. Next, for load scheduling, the Dijkstra shortest path

algorithm was utilized. Hence, the throughput was attained efficiently. However, the model efficiency was

impacted since the scalability issue was obtained.

(Golchi et al., 2019) calculated PSO for load balancing in CN. Here, by integrating the Firefly Algorithm with

the PSO, the load utilization was improved. It was used to balance the load by scheduling the load efficiently.

This led to even distribution of resources across the network. But, due to data flow via a static path, network

congestion was attained.

3. Proposed LM In CN Methodology

In Figure 1, the RBL-SSOA-based optimal path selection and O2SLU-LSTM-based detection of network

malfunction for LM are illustrated.

Figure 1: Proposed LM Framework

Venkatesan A Journal of Scientific and Engineering Research, 2022, 9(4):215-227

Journal of Scientific and Engineering Research

217

Input Data

By collecting Network Traffic Data (NTD) ()C from Malware Detection in the NTD dataset, the LM in CN is

initiated, and it is expressed as,

 hCCCCC ,...,,, 321= (1)

Here, ()h implies the number of ()C .

Pre-processing

Then, to structure the data, the pre-processing of ()C is carried out. Initially, to avoid biased performance, the

missing values in ()C are filled using the neighbouring data. The imputed data is given as ()C  . Now, to

preserve the relationship among the data, the min-max normalization of ()C  is done as follows,

()
() ()







−

−
=

CC

CC
C

minmax

min (2)

Here, ()C depicts the normalized data, which is the pre-processed data, and () ()max,min implies the

minimum and maximum values of ()C  .

Feature Extraction

Now, from ()C , the features ()E , such as timestamp, source IP address, destination IP address, connection

duration, state of connection, number of packets, packet size, and malfunction class, are extracted as,

dd EEEEEE ,,...,,, 1321 −= (3)

Here, ()d depicts the number of ()E .

Traffic Volume & Median Calculation

Let ()21, EE be the packet size and number of packets collected from ()E . Now, the traffic volume () is

equated as,

21 EE = (4)

Now, the median ()S of () with ()f number of traffic volume is identified as,








 +
=

2

1f
S 

 (5)

To detect the load from ()E , this median is utilized as shown below.

Heavy and Light Load Detection

The heavy load and light load are detected in ()E using the 2R-FIS to avoid the unnecessary delay in CN. Here,

for load detection, the Fuzzy Interference System (FIS), which handles uncertainty in load measurements, is

used. However, the standard membership function could not capture the important data for analysis. Thus, in

FIS, the RadixRipple (2R) membership function is used. The process of 2R-FIS is detailed below.

Primarily, the percentile () is calculated to set the rules ()Q using the if-then condition,

()1
100

2
1 += E

E
 (6)

Now, the rules are set based on () and ()S as given below,

()
()








=

PthenSif

PthenSif
Q







 ˆ
 (7)

Venkatesan A Journal of Scientific and Engineering Research, 2022, 9(4):215-227

Journal of Scientific and Engineering Research

218

The condition states that the load is defined as heavy load ()P̂ when () is less than ()S , and the load is said

to be light load ()P when () is greater than ()S . Then, the 2R membership function () that provides a

smooth transition between input data is equated as,

3

2

11

1
c

c

cE







 −
+

= (8)

Here, ()321 ,, ccc implies the control parameters of () . Now, to find the degree of relationship between the

data, the input ()E is converted to fuzzy data ()F . It is given by,

EF = (9)

To attain the response to the rules that are set, the fuzzified data is inferred with ()Q and is deliberated by,

 FQF =
 (10)

Here, ()F implies the inferred data. Finally, to achieve the load detected output ()P , ()F is de-fuzzified

as,

()
()





=









F

F
P (11)

()PPP ,ˆ→ (12)

Pseudo-code for 2R-FIS

Input: Extracted Feature ()E

Output: Detected load ()P

Begin

 Initialize ()S , ()321 ,, ccc

 While ()S

 Evaluate ()1
100

2
1 += E

E


 Set fuzzy-rule

 For ()

 If () S

 Heavy-load ()P̂

 Else if () S

 Light-load ()P

 End if

End for

 Calculate
3

2

11

1
c

c

cE







 −
+

=

 Fuzzify input EF =

Venkatesan A Journal of Scientific and Engineering Research, 2022, 9(4):215-227

Journal of Scientific and Engineering Research

219

 Infer data  FQF =

 De-fuzzify data

 End while

 Obtain ()P

End

Now, the load is scheduled as shown below for heavy load.

Load Scheduling

Here, by using the WS-PFS method, ()P̂ is scheduled to the network bandwidth. For load scheduling, the

Proportional Fair Scheduling (PFS) technique, which maximizes the overall network utility, is used. However,

PFS depends on a uniform share of bandwidth, leading to inaccurate scheduling. Hence, in fairness calculation,

the Weight Share (WS) formula is utilized. The WS-PFS method is explained as,

Let ()J be the bandwidth (or) data rate of the CN. Now, the utility function () that helps in scheduling the data

into network resources is identified for ()J ,

()





JP 
=

ˆ
 (13)

Here, () implies the weighing factor for ()P̂ and () depicts the capacity of the CN. Now, the WS ()

that determines the priority of the load is equated to incorporate the importance of heavy-load priority into the

scheduling process,

  1−

=  (14)

Lastly, by sing () and () , the load is scheduled regarding the proportional fairness uas follows,

() 1ˆmaxarg −=  PD (15)

Here, ()D implies the scheduled load. So, the network performance is improved by prioritizing the load for

the required bandwidth of the CN. Next, the optimal path is selected for transmitting the data.

Optimal Path Selection

Here, by using RBL-SSOA, the selection of the Optimal Path (OP) for ()D and ()P is performed. For OP

selection, the Squirrel Search Optimization Algorithm (SSOA), which depends on the foraging behaviour of the

squirrels, is used. But, the scaling and switching parameters must be tuned properly, and it is evaluated using the

Rast-BecLago (RBL) function. The RBL-SSOA is described as,

➢ Initialization

In CN, the number of squirrels ()m (potential path) is initialized. The population of squirrels for search space

()s is given as   smH  . Now, the initial position ()sH of the squirrel is equated as,

()ssss lbublbH −+=  (16)

Here, ()ss ublb , implies the lower and upper bound values of the ()ths squirrel, and () depicts the random

number.

➢ Fitness

Then, regarding maximum classification accuracy ()N , the fitness () , which determines the optimal path, is

evaluated as,

 Nmax= (17)

Then, the position of the squirrel is updated.

➢ Position Update

For position updates, the foraging (exploration) and caching (exploitation) behavior of the squirrel are used.

Venkatesan A Journal of Scientific and Engineering Research, 2022, 9(4):215-227

Journal of Scientific and Engineering Research

220

Exploration phase: The squirrels forage towards the hickory nut tree in search of acorn nuts (optimal path).

Here, by the RBL function that quickly analyzes the search space, the scaling () and switching () parameters

are calculated as follows,

 2aH s −= (18)

()  −= ss HH cos (19)

Here, ()a implies the scaling factor of ()sH . The updated position ()sH  is given by,

() sss HHH  −+= (20)

Exploitation Phase: Here, to attain the acorn nut, the squirrel glides over the tree. The new position ()sH is

updated as,

() 







+= sss H

k

i
HH

tan
 (21)

Here, ()ki, implies the gliding distance and angle, respectively. Hence, regarding fitness function, the

optimal path ()W is obtained. Now, the correlation between the paths is evaluated.

Path Correlation

Here, the path correlation between multiple applications is calculated using PCC, which uses a linear

relationship. Let the two applications be signified as ()qp, . The paths chosen by ()qp, are signified as

()21,WW . The mean () of ()qp, are equated as,

()
()

t

bW
p


=

1 (22)

()
()

t

bW
q


=

2
 (23)

Here, ()b depicts the element of the respective path, and ()t signifies the number of observations. Now, the

covariance ()M and standard deviation ()
21

, WW  of ()21,WW are identified as,

() ()  () ()  −−= qbWpbW
t

M  21

1
 (24)

() () 
t

pbW
W

 −
=

2

1

1


 (25)

() () 
t

qbW
W

 −
=

2

2

2


 (26)

Lastly, the PCC ()y is evaluated as shown below,

21 WW

M
y

 
= (27)

The path for those applications is re-selected when the value of ()y is higher. the transmission takes place

through the selected path if ()y is near to zero.

Network Malfunction Detection

Here, the malfunction in the network traffic data ()R is detected using the O2SLU-LSTM technique during

transmission. For malfunction detection, the Long Short Term Memory (LSTM), which analyses the sequential

data efficiently, is used. But, the LSTM has over-fitting issues and a vanishing gradient problem. Therefore, the

Venkatesan A Journal of Scientific and Engineering Research, 2022, 9(4):215-227

Journal of Scientific and Engineering Research

221

Orthogonal Spectral (OS) regularization technique and the Square Linear Unit (SLU) activation function are

utilized. In Figure 2, the O2SLU-LSTM method is depicted.

Figure 2: O2SLU-LSTM Classifier

To process the mechanism, the O2SLU-LSTM has an input gate ()X , forget gate ()G , and output gate ()K .

The input is regularized using the OS method, which generalizes the data and avoids over-fitting. The

regularized input ()R is given by,

 2nRR −=  (28)

Here, () depicts the weight value of the input, and ()n signifies the identity matrix.

Forget gate

Here, the unwanted data from previous memory ()1−gT with time ()g is removed. So, ()G is evaluated as,

()    += − jVRG g 1, (29)

()2exp1 



+

=

R

R
 (30)

Here, ()1−gV implies the previous hidden state output, () depicts the SLU activation function used for

overcoming the vanishing gradient problem, and ()j signifies the bias value of the input.

Input gate

For adding important information into the memory of the classifier, the input gate ()X is used. It is equated by,

()   GjVRX g += − 1, (31)

()
()



−

−

+

−
=

RR

RR

expexp

expexp
 (32)

Here, () implies the tanh activation function, and ()exp depicts the exponential factor.

✓ Memory

Here, the important data is stored in the current memory ()gT as,

GXT g = (33)

✓ Output gate

Here, by using ()X and ()gT , the final output ()K is determined as,

() ()= gTXK  (34)

Venkatesan A Journal of Scientific and Engineering Research, 2022, 9(4):215-227

Journal of Scientific and Engineering Research

222

()21, KKK → (35)

Hence, the attacked ()1K or not attacked ()2K class is obtained.

Pseudo-code for O2SLU-LSTM

Input: Resultant factor ()R

Output: Malfunction Detection ()K

Begin

 Initialize ()j,

 While ()R

 Regularize  2nRR −= 

 Evaluate activation

()2exp1 



+

=

R

R


 For ()R

Calculate forget gate

 ()    += − jVRG g 1,

 Evaluate input-gate

 ()   GjVRX g += − 1,

Update memory

 GXT g =

 Find output

() ()= gTXK 

 End for

 End while

 Return ()K

End

Therefore, the load management is effectively done in CN and the QoS is maintained. In section 4, the

performance analysis is given.

4. Results And Discussion

Here, the proposed framework’s performance is analyzed and then compared with the existing works. Here, for

implementation, the PYTHON tool is used.

Dataset Description

By using the ‘Malware Detection in Network Traffic Data’ dataset, the evaluation of the proposed work is done

and the link is given in the reference section. A total of 3516429 data is available, and from that, 80% of the data

is used for training and 20% for testing, respectively.

Performance Analysis

Here, the proposed techniques’ performance is validated by comparing it with traditional models.

Venkatesan A Journal of Scientific and Engineering Research, 2022, 9(4):215-227

Journal of Scientific and Engineering Research

223

Figure 3: Comparative Analysis of RBL-SSOA

Figure 4: Graphical Comparison of RBL-SSOA

The comparison of the proposed RBL-SSOA and the existing SSOA, Seagull Optimization Algorithm (SOA),

Coyote Optimization Algorithm (COA), and Grey Wolf Optimization Algorithm (GWOA) regarding OP

selection in CN is illustrated in Figures 3 and 4. The proposed model selected the OP with an Optimal Path

Selection Time (OPST) of 6215ms, Average Fitness (AF) of 98.84%, NL of 4172ms, and Resource Utilization

(RU) of 97.89% as the scaling and switching parameters were chosen by the RBL technique. But, the existing

techniques attained an average OPST of 16240ms, AF of 93.47%, NL of 15113ms, and RU of 92.47%. Thus,

the proposed model selected OP better than existing techniques.

Figure 5: Comparison of 2R-FIS

Venkatesan A Journal of Scientific and Engineering Research, 2022, 9(4):215-227

Journal of Scientific and Engineering Research

224

In Figure 5, the Fuzzification Time (FT), De-Fuzzification Time (DFT), and Rule Generation Time (RGT) of

the proposed 2R-FIS and the existing FIS, Triangular Fuzzy Rule (TFR), Decision Rule (DR), and Rough Set

Theory (RST) are compared. The proposed technique detected the heavy and light load with an FT of 5132ms,

DFT of 5017ms, and RGT of 2183ms; while, the traditional models attained higher FT, DFT, and RGT. When

weighed against the prevailing methods, the usage of the 2R membership function in the proposed model

detected the load more effectively.

Table 1: Comparison of WS-PFS

Methods Average Throughput (kbps)

Proposed WS-PFS 2560

PFS 2274

RRS 1983

MTS 1785

OS 1397

Figure 6: Graphical Comparison of WS-PFS

Figure 7: Comparison of Response Time

In Table 1 and Figures 6 and 7, the proposed WS-PFS is compared with the existing PFS, Round-Robin

Scheduling (RRS), Maximal Throughput Scheduling (MTS), and Opportunistic Scheduling (OS). An Average

Throughput (AT) of 2560kbps, Jain’s Fairness Index (JFI) of 0.94, and Response Time (RT) of 4821ms was

attained as the WS priority for scheduling is included in the proposed model. Yet, the existing models achieved

an average of 1860kbps AF, 0.79 JFI, and 10500ms RT. Thus, the proposed model outperformed the existing

techniques.

Venkatesan A Journal of Scientific and Engineering Research, 2022, 9(4):215-227

Journal of Scientific and Engineering Research

225

Table 2: Comparison of O2SLU-LSTM

Techniques Accuracy (%) Recall (%)

Proposed O2SLU-LSTM 98.92 98.62

LSTM 96.23 95.32

RNN 94.07 93.67

DBN 91.53 90.82

DNN 89.23 88.72

Figure 8: Graphical Comparison of O2SLU-LSTM

For accuracy, recall, precision, F-Measure, Sensitivity, and Specificity, the proposed technique classified the CN

malfunctioning with 98.92%, 98.62%, 98.54%, 98.48%, 98.62%, and 98.63%, which is depicted in Table 2 and

Figure 8. But, when analogized to the proposed model, the existing LSTM, Recurrent Neural Network (RNN),

Deep Belief Network (DBN), and Deep Neural Network (DNN) attained lower values. Hence, in the proposed

model, the use of OS regularization and SLU activation function improved the identification of deviation in CN.

Table 3: Comparison of Existing Works

Study Method OPST (ms) NL (ms) RU (%)

Proposed Work RBL-SSOA 6215 4172 97.89

(Zhang et al., 2021) PSO - 26880 96

(Junaid et al., 2020) ACO 35000 23000 -

(Sefati et al., 2021) GWOA 7500 - 85

(Parsa & Moghim, 2021) ORA - 6550 -

(Singh et al., 2021) ACO 58000 - -

The comparison of the proposed RBL-SSOA with existing PSO, ACO, GWOA, and Opportunistic Routing

Algorithm (ORA) regarding OP selection is described in Table 3. The OP was selected with 6215ms OPST by

the proposed model. But, ACO and GWOA did not schedule the load, which led to an OPST of 35000ms and

7500ms. Moreover, the PSO and ORA models attained 96% RU and 6550ms NL, respectively, which was

inefficient in managing the load. Therefore, in OP selection, the proposed model achieved excellent results.

5. Conclusion

Here, this paper managed the load in CN effectively. Here, the network traffic data was pre-processed and the

relevant features were extracted. Next, the loads were identified with an FT of 5132ms by using 2R-FIS. Then,

by utilizing the WS-PFS methods, the loads were scheduled with a JFI of 0.94. Next, by using the RBL-SSOA,

the OP was selected with an NL of 4172ms. The path correlation between multiple applications was calculated,

and the re-selection of OP was made based on the coefficient value. Lastly, the network deviation was identified

Venkatesan A Journal of Scientific and Engineering Research, 2022, 9(4):215-227

Journal of Scientific and Engineering Research

226

using O2SLU-LSTM with an accuracy of 98.92% during transmission. Therefore, the proposed model

maintained the network’s QoS by effective LM.

6. Future Work

To enhance the data access speed in the CN, data storage will also be considered along with the proposed

framework In the future.

References

[1]. Caminero, A. C., & Muñoz-Mansilla, R. (2021). Quality of service provision in fog computing:

Network-aware scheduling of containers. Sensors, 21(12), 1–16. https://doi.org/10.3390/s21123978

[2]. Ebadifard, F., & Babamir, S. M. (2021). Autonomic task scheduling algorithm for dynamic workloads

through a load balancing technique for the cloud-computing environment. Cluster Computing, 24,

1075–1101. https://doi.org/10.1007/s10586-020-03177-0

[3]. Golchi, M. M., Saraeian, S., & Heydari, M. (2019). A hybrid of firefly and improved particle swarm

optimization algorithms for load balancing in cloud environments: Performance evaluation. Computer

Networks, 162, 1–15. https://doi.org/10.1016/j.comnet.2019.106860

[4]. Guo, Z., Xu, Y., Liu, Y. F., Liu, S., Chao, H. J., Zhang, Z. L., & Xia, Y. (2021). AggreFlow: Achieving

Power Efficiency, Load Balancing, and Quality of Service in Data Center Networks. IEEE/ACM

Transactions on Networking, 29(1), 17–33. https://doi.org/10.1109/TNET.2020.3026015

[5]. Hossain, M. S., You, X., Xiao, W., Lu, J., & Song, E. (2019). QoS-oriented multimedia transmission

using multipath routing. Future Generation Computer Systems, 99, 226–234.

https://doi.org/10.1016/j.future.2019.04.006

[6]. Junaid, M., Sohail, A., Ahmed, A., Baz, A., Khan, I. A., & Alhakami, H. (2020). A Hybrid Model for

Load Balancing in Cloud Using File Type Formatting. IEEE Access, 8, 118135–118155.

https://doi.org/10.1109/ACCESS.2020.3003825

[7]. Kaur, M., & Aron, R. (2021). A systematic study of load balancing approaches in the fog computing

environment. In Journal of Supercomputing (Vol. 77, Issue 8). Springer US.

https://doi.org/10.1007/s11227-020-03600-8

[8]. Li, C., Tang, J., Ma, T., Yang, X., & Luo, Y. (2020). Load balance based workflow job scheduling

algorithm in distributed cloud. Journal of Network and Computer Applications, 152, 1–15.

https://doi.org/10.1016/j.jnca.2019.102518

[9]. Mapetu, J. P. B., Kong, L., & Chen, Z. (2021). A dynamic VM consolidation approach based on load

balancing using Pearson correlation in cloud computing. In Journal of Supercomputing (Vol. 77, Issue

6). Springer US. https://doi.org/10.1007/s11227-020-03494-6

[10]. Milan, S. T., Rajabion, L., Ranjbar, H., & Navimipour, N. J. (2019). Nature inspired meta-heuristic

algorithms for solving the load-balancing problem in cloud environments. Computers and Operations

Research, 110, 159–187. https://doi.org/10.1016/j.cor.2019.05.022

[11]. Mishra, A., & Tiwari, D. (2020). A Proficient Load Balancing Using Priority Algorithm in Cloud

Computing. Proceedings of the 2020 IEEE International Conference on Machine Learning and Applied

Network Technologies, ICMLANT 2020, 1–6. https://doi.org/10.1109/ICMLANT50963.2020.9355972

[12]. Murtaza, F., Akhunzada, A., Islam, S. ul, Boudjadar, J., & Buyya, R. (2020). QoS-aware service

provisioning in fog computing. Journal of Network and Computer Applications, 165, 1–14.

https://doi.org/10.1016/j.jnca.2020.102674

[13]. Parsa, A., & Moghim, N. (2021). QoS-aware routing and traffic management in multi-flow

opportunistic routing. Computers and Electrical Engineering, 94, 1–14.

https://doi.org/10.1016/j.compeleceng.2021.107330

[14]. Patel, K. D., & Bhalodia, T. M. (2019). An efficient dynamic load balancing algorithm for virtual

machine in cloud computing. 2019 International Conference on Intelligent Computing and Control

Systems, ICCS 2019, 145–150. https://doi.org/10.1109/ICCS45141.2019.9065292

Venkatesan A Journal of Scientific and Engineering Research, 2022, 9(4):215-227

Journal of Scientific and Engineering Research

227

[15]. Sefati, S. S., Mousavinasab, M., & Zareh Farkhady, R. (2021). Load balancing in cloud computing

environment using the Grey wolf optimization algorithm based on the reliability: performance

evaluation. Journal of Supercomputing, 78(1), 18–42. https://doi.org/10.1007/s11227-021-03810-8

[16]. Sharma, N., & Maurya, S. (2019). SLA-Based Agile VM Management in Cloud Datacenter.

Proceedings of the International Conference on Machine Learning, Big Data, Cloud and Parallel

Computing: Trends, Prespectives and Prospects, COMITCon 2019, 252–257.

https://doi.org/10.1109/COMITCon.2019.8862260

[17]. Singh, H., Tyagi, S., & Kumar, P. (2021). Cloud resource mapping through crow search inspired

metaheuristic load balancing technique. Computers and Electrical Engineering, 93, 1–13.

https://doi.org/10.1016/j.compeleceng.2021.107221

[18]. Verma, S., & Bala, A. (2021). Auto-scaling techniques for IoT-based cloud applications: a review. In

Cluster Computing (Vol. 24, Issue 3). Springer US. https://doi.org/10.1007/s10586-021-03265-9

[19]. Yakubu, I. Z., Musa, Z. A., Muhammed, L., Ja’afaru, B., Shittu, F., & Matinja, Z. I. (2020). Service

Level Agreement Violation Preventive Task Scheduling for Quality of Service Delivery in Cloud

Computing Environment. Procedia Computer Science, 178, 375–385.

https://doi.org/10.1016/j.procs.2020.11.039

[20]. Zhang, P., Liu, F., Jiang, C., Benslimane, A., Gorricho, J. L., & Serrat-Fernández, J. (2021). A Multi-

Domain VNE Algorithm Based on Load Balancing in the IoT Networks. Mobile Networks and

Applications, 27(1), 124–138. https://doi.org/10.1007/s11036-020-01714-0

