Journal of Scientific and Engineering Research, 2022, 9(3):233-250

Research Article

ISSN: 2394-2630 CODEN(USA): JSERBR

Clustering Techniques Methods

Kailash Alle

Sr. Software Engineer, Comscore, Inc,

Email ID: Kailashalle@gmail.com

Abstract Understanding customers is a pivotal aspect of customer relationship management that directly influences a company's long-term success. By comprehensively understanding consumer traits, businesses can better target promotional and advertising campaigns, leading to increased long-term earnings. As an investigator for a telecommunications company, the goal is to delve deeper into customer characteristics. The task involves conducting market basket analysis on customer data to uncover significant relationships between consumer purchases. This approach aims to enhance operational efficiency and inform strategic organizational decisions, ultimately driving better customer engagement and improved financial outcomes.

Keywords Clustering Techniques Methods

Introduction to Scenario

Understanding customers is one of the most important aspects of customer relationship management that directly influences a company's long-term success. When a corporation has a greater understanding of its consumers' traits, this could good target promotion and advertising campaigns for them, resulting in higher long-term earnings.

You operate as an investigator for a telecoms business that wants to understand more about its customers' characteristics. You've been given with conducting market basket research on customer research to discover critical relationships between consumer purchases, enabling for better operational and organizational selection.

Analytical Question:

Which of your clients' primary characteristics indicate that they are at significant risk of churn? As a result, which clients are likely to leave? In other words, can we use deep classification of data mining to comprehend business customers and identify trends specific to churning customers?

The clustering technique methods of K-means will be used to solve this analysis.

Goals and Objectives:

Everybody in the organization will profit from recognizing, with some degree of certainty, which customers will be able to churn, since it will give importance to selling enhanced services to consumers with these traits and previous user experiences. This data analysis' purpose is to give numerical information to company stakeholders to assist them better understand their customers.

Justification for the Method

Assumptions Summary: Clustering Methodology

We are not attempting to forecast a result y relying on a variable (x) X in k-means clustering. In general, we're looking for trends in our data. To be even more particular, we establish a variable to recognize those trends. We make it so that each of the potential relying on variable's values corresponds to one of the relying variable's classes (SuperDataScience). To be clear, there is not a prior primary outcome.

As an outcome, we're trying to "cluster" our subscribers are divided into groups based on common features such as annual bandwidth usage or duration with the organization. "[A] decent clustering solution is one that finds clusters where the observations inside each cluster are more similar than the clusters themselves," Jeffares says (Jeffares, p. 1).

Hierarchical and k-means clustering approaches are the two clustering strategies presented in this task. According to a Data Camp course, "[a] key downside of runtime [is] hierarchical clustering", (Daityari, p. 1). While the dataset we're looking at isn't especially enormous, neither is the machine I'm using. One of the reasons we use the k-means algorithm is for this reason.

To choose k-means rather structured, we also analyzed the dataset size and patterns. Customer churn isn't about separating countries in soccer matches or creating a dendrogram, after all. What we need to show stakeholders is which consumer groups (clusters) are comparable. And, of course, how similar/different our consumer groups are, as well as how tightly/loosely packed they are (market segments).

The creative phase of investigation is this step. At this phase in the project, some trial and error are allowed.

Ultimately, we anticipate seeing consumer attrition having lower periods, using less of the supplied telecom services with the organization or perhaps we can learn from the survey results that consumer who churned were less satisfied and gave the company's customer service a lower rating, whilst customers who stayed loyal gave it a higher rating.

To analyze the data using Kmean technique we:

- First, we cleaned the dataset and extracted and loaded as "churn_prepared_kmeans.csv"
- Once loaded, we import Kmeans from Sklearn.cluster
- And then we use the Elbow method to find the optimum number of clusters and made a list of WCSS (Within Cluster Sum of Squares) by looping through kmean objects.
- And we plot the wcss list as 'churn_scree_tenure_v_monthly-charge.jpg'
- Once the dataset is ready, train the K-mean model on that dataset and using fit_predict method to divide customers into various clusters, we create the dependent variable.
 - A. Tenure vs Monthly charges: 6 Clusters of customers
 - B. Income vs Monthly charges: 4 Clusters of customers
 - C. Tenure vs Bandwidth: 2 Clusters of customers

• and plot centroids of each cluster

Once we plot the centroids, we generate plot description like get the title property handler, set the color of the title, etc....

B2. Appropriate Methodology

As VanderPlas notes out, a fundamental assumption in K-means clustering is that the "cluster center," or centroid, is all points within the arithmetic means (VanderPlas, p. 463) or "belonging to" a cluster.

"We wish to locate the centroid C that eliminates" the distortion, Jeffares demonstrates.

The Inside Cluster Sum of Squares (WCSS) is the variability measure of the data within each cluster, where J(x) equals:

Advantages/Benefit of The Tool

Tools will be used:

For this assessment, I'll use Python because the study will be supported by Jupyter notebooks in Python and I Python. Python includes many established data science and machine learning tools, , straightforward, and extensible programming style, and grammar. Python is cross-platform, so it will function whether the analysis is viewed on a Windows PC or a MacBook laptop. When compared to other programming languages such as R or MATLAB, it is quick (Massaron, p. 8). In addition, Python is often regarded in popular media as the most widely used programming language for data science and media (CBTNuggets, p. 1).

<u>NumPy</u> used to work with arrays,

Pandas used to load datasets,

Matplotlib used to plot charts,

Scikit-learn used for machine learning model classes,

SciPy used for mathematical problems, specifically linear algebra transformations, and

Seaborn used for a high-level interface and appealing visualizations.

Using the Pandas library and its accompanying "read csv" function to transform our data as a dataframe is a quick, exact example of loading a dataset and constructing a variable efficiently:

imported pandas as pd, df(dataframe) = pd.read csv('ChurnData.csv')

Data Objectives

The following will be part of Preparation of data:

We must assess the entire dataset that is free of anomalies as a crucial preprocessing goal. It's also crucial for our meaningful k-means clustering that we determine whether those independent binary variables should be encoded as dummy variables so that they can be included in our studies. For with this unsupervised "classification" method, we ultimately decided to exclude binary dummy variables. In our scatter plots, some variables, such as the critical Churn variable and the significant Age variable, showed uniform distributions. The commented-out code, on the other hand, has been saved for future reference.

Variables in the Dataset:

The variables in the original data that were considered to do the analysis are listed below and classed as continuous or categorical.

Except for the four columns of identification numbers at the beginning of the csv, the grid of features (columns we wish to maintain to find patterns) comprises all features.

Those will be taken out during the cleaning.

Tenure, Churn, Bandwidth GB Year, and Monthly Charge will be used for visualization reasons.

Continuous	Categorical
Children	Techie
Age	Contract
Income	Port_modem
Outage_sec_perweek	Tablet
Email	InternetService
Contacts	Phone
Yearly_equip_failure	Multiple
Tenure	OnlineSecurity
MonthlyCharge	OnlineBackup
Bandwidth_GB_Year	DeviceProtection
	TechSupport
	StreamingTV
	StreamingMovies

Data Preparation Procedures

- Using Pandas' read csv command, read the data collection into python programming.
- Using the info () and description() methods, evaluate the data for a better understanding of the input data.
- Using the variable "churn df" to name the dataset, and "df" to name the data frame's subsequent usable slices.
- Check for misspellings, strange variable names, and data that is missing.
- Identify outliers that may create or obscure statistical significance using histograms, Scatter plots and box plots.
- Computing replaces missing data with relevant central tendency measures (mean, median, or mode) or just Outliers a few standard deviations above the mean are removed.
- Remove non-essential categorical variables from the dataset to create a purely numerical dataframe for analysis.

• For usage in the K-means clustering model, save the cleaned dataset as "churn prepared kmeans.csv."

The dependent variable "Churn," which is binary and categorical and has values, "Yes" or "No," is extremely crucial to our decision-making process. Our categorical target variable, or y, will be "churn."

The following consistent explanatory factors may be relevant after cleaning the data:

- Bandwidth_GB_Year
- MonthlyCharge
- Tenure (the length of time a customer has been with the company)
- Yearly_equip_failure
- Contacts
- Email
- Outage_sec_perweek
- Income
- Age
- Children

Similarly, the based on this background factors' relevance may be discovered (with only two values, "Yes" or "No" all binary categorical variables, except where noted). The following values will be encoded as 1/0 dummy variables:

- StreamingMovies: Is the customer able to access on-demand movies (yes, no)
- StreamingTV: Whether the consumer has access to streaming television (yes, no)
- TechSupport: Is there a technical assistance add-on for the customer? (No, yes)
- DeviceProtection: Is the consumer eligible for a device protection add-on? (no,yes)
- OnlineBackup: Whether the consumer has purchased an add-on for internet backup (yes, no)
- OnlineSecurity: Whether the consumer has an online security add-on? (no, yes)
- Multiple: Whether or whether the consumer has more than one line of credit (yes, no)
- Phone: Whether the customer has access to a phone line (yes, no)
- InternetService: Customer's internet service provider fiber optic, None,DSL)
- Whether or not the customer possesses a tablet, Surface or iPad (no,yes)
- Whether the customer has a portable modem is determined by port modem (yes, no)
- Customer contract: contract terms of customer (one year, month-to-month, two year)
- Techie: Whether the customer perceives themselves to be technically savvy (as determined by a customer questionnaire completed when they enrolled for services) (no,yes)

In the decisionmaking process, discrete ordinal predictor variables created from consumer survey responses about various customer service attributes could be valuable. Customers in the surveys eight customer service rated based on ordinal numerical data aspects on a scale of 8 to 1 (8 being the most essential and 1 being the least important):

- Active listening Item1
- Courteous exchange Item2
- Respectful response Item3
- Options Item4
- Reliability Item5
- Timely_replacements Item6
- Timely_fixes Item7
- Timely responses Item8

1. Include standard imports all the required references:

Standard data science imports import numpy as np import pandas as pd from pandas import Series, DataFrame
Visualization libraries import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
<pre># Scikit-Learn import sklearn from sklearn import datasets from sklearn import preprocessing from sklearn.neighbors import KNeighborsClassifier from sklearn.model selection import train test split</pre>
from sklearn import metrics
from sklearn.metrics import classification_report
Scipy from scipy.cluster.vq import kmeans, vq

2. Change font and color of the Matplotlib:

In [2]:	<pre># Change color of Matplotlib font import matplotlib as mpl</pre>
	COLOR = 'white' mpl.rcParams['text.color'] = COLOR mpl.rcParams['axes.labelcolor'] = COLOR mpl.rcParams['xtick.color'] = COLOR mpl.rcParams['ytick.color'] = COLOR

3. Increase display cell-width

In [3]:	# Increase Jupyter display cell-width
	from IPython.core.display import display, HTML
	<pre>display(HTML("<style>.container { width:75% !important; }</style>"))</pre>

4. Ignore warning codes

In	[4]:	# Ignore Warning Code
		<pre>import warnings warnings.filterwarnings('ignore')</pre>
		warnings.littenwarnings(ignore)

5. Dataset

6. Dataset size

In [6]: # Get an idea of dataset size
 churn_df.shape

Out[6]: (10000, 50)

7. Data set features

8. Data frame Info

	w DataFrame i _df.info	Info						
<boun< th=""><th>d method Data</th><th>Frame.info</th><th>of</th><th>CaseOrder Cust</th><th>omer_id</th><th>1</th><th>Interaction</th><th></th></boun<>	d method Data	Frame.info	of	CaseOrder Cust	omer_id	1	Interaction	
0	1	K409198	aa90260b	4141-4a24-8e36	-b04ce1	lf4f77b		
1	2	\$120509	fb76459f-	c047-4a9d-8af9	-e0f7d4	ac2524		
2	3	K191035	344d114c-	3736-4be5-98f7	-c72c28	31e2d35		
3	4	D90850	abfa2b40-	2d43-4994-b15a	-989b8c	:79e311		
4	5	K662701	68a861fd-	0d20-4e51-a587	-8a9040	7ee574		
9995	9996	M324793		ae04-4518-bf0b				
9996	9997	D861732		0c09-4993-bbda				
9997	9998	1243405		9a01-4fff-bc59				
9998	9999	1641617		0052-4107-81ae				
9999	10000	T38070	9de5fb6e-	bd33-4995-aec8	-f01d01	l72a499		
			UID		State	X		
0	e885b299883d							
1	f2de8bef9647							
2	f1784cfa9f60			Yamhil]				
3	dc8a36507724			Del Mar				
4	aabb64a116e8	3fdc4befc1	Fbab1663f9	Needville	ТХ			
9995	9499fb4de533			Mount Holly				
9996	c09a841117fa			Clarksville				
9997	9c41f212d1e6			Mobeetie				
9998	3e1f269b40c2			Carrolltor				
9999	0ea683a03a3d	:d544aefe83	38aab16176	Clarkesville	GA			

9. Data types

In [9]:	<pre># Get data types of fe churn_df.dtypes</pre>	eatures
Out[9]:	CaseOrder	int64
ouc[9].		
	Customer_id	object
	Interaction	object
	UID	object
	City	object
	State	object
	County	object
	Zip	int64
	Lat	float64
	Lng	float64
	Population	int64
	Area	object
	TimeZone	object
	Job	object
	Children	int64
	Age	int64
	Income	float64
	Marital	object
	Gender	object
	Churn	object
	Outage_sec_perweek	float64
	Email	int64
	Contacts	int64
	Yearly_equip_failure	int64
	Techie	object
	Contract	object
	Port_modem	object
	Tablet	object
	InternetService	object
	Phone	object
	Multiple	object
	OnlineSecurity	object
	OnlineBackup	object
	DeviceProtection	object
	TechSupport	object
St	reamingTV	object
St	reamingMovies	object
Pa	perlessBilling	object
Pa	vmentMethod	object
	nure	float64
	nthlyCharge	float64
	ndwidth_GB_Year	float64
It	em1	int64
It	em2	int64
It	em3	int64
	em4	int64
	em5	int64
		int64
	em6	
	em7	int64
	em8	int64
dt	ype: object	

10. Data set

	CaseOrder	Customer_id	Interaction	UID	City	State	County	Zip	Lat	Lng	 MonthlyCharge
0	1	K409198	aa90260b- 4141-4a24- 8e36- b04ce114f77b	e885b299883d4f9fb18e39c75155d990	Point Baker	AK	Prince of Wales- Hyder	99927	56.25100	-133.37571	 172 45551
1	2	\$120509	fb76459f- c047-4a9d- 8af9- e0f764ac2524	f2de8bef964785f41a2959829830fb8a	West Branch	м	Ogemaw	48661	44.32893	-84.24080	242.63255
2	3	K191035	344d114c- 3736-4be5- 98f7- c72c281e2d35	f1784cfa9f5d92ae816197eb175d3c71	Yamhill	OR	Yamhili	97148	45.35589	-123.24657	159.94758
3	4	D90850	abfa2b40- 2d43-4994- b15a- 989b8c79e311	dc8a365077241bb5cd5ccd305136b05e	Del Mar	CA	San Diego	92014	32.96687	-117.24798	119.95684
4	5	K562701	68a8611d- 0d20-4e51- a587- 8a90407ee574	aabb64a116e83fdc4befc1fbab1663f9	Needville	тх	Fort Bend	77461	29.38012	-95.80673	149.94831

11. Descriptive statics

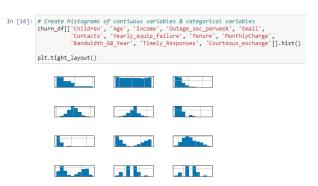
]:		CaseOrder	Zip	Lat	Lng	Population	Children	Age	Income	Outage_sec_perweek	Email	 MonthlyCharge	Bandwidth_GB_Yea
co	unt 10	00000.0000	10000.000000	10000.000000	10000.000000	10000.000000	10000.0000	10000.000000	10000.000000	10000.000000	10000.000000	10000.000000	10000.00000
m	ean 5	000.50000	49153.319600	38.757567	-90.782536	9756.562400	2.0877	53.078400	39805.926771	10.001848	12.016000	172.624816	3392.34155
	std 2	886.89568	27532.196108	5.437389	15.156142	14432.698671	2.1472	20.698882	28199.916702	2.976019	3.025898	42.943094	2185.29485
	min	1.00000	601.000000	17.966120	-171.688150	0.000000	0.0000	18.000000	348.670000	0.099747	1.000000	79.978860	155.50671
2	5% 2	500.75000	26292.500000	35.341828	-97.082812	738.000000	0.0000	35.000000	19224.717500	8.018214	10.000000	139.979239	1236.47082
5	0% 5	000.50000	48869.500000	39.395800	-87.918800	2910.500000	1.0000	53.000000	33170.605000	10.018560	12.000000	167.484700	3279.53690
7	5% 7	500.25000	71866.500000	42.106908	-80.088745	13168.000000	3.0000	71.000000	53246.170000	11.969485	14.000000	200.734725	5586.14137
	nax 10	000.00000	99929.000000	70.640660	-65.667850	111850.000000	10.0000	89.000000	258900.700000	21.207230	23.000000	290.160419	7158.98153

12. Remove categorical variables from dataset

```
In [12]: # Remove Less relevant categorical variables from dataset
churn_df = churn_df.drop(columns=['CaseOrder', 'Customer_id', 'Interaction', 'UID'])
```

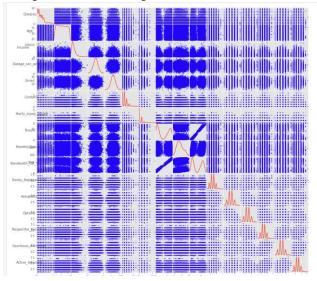
13. Using pandas read the data from clean data file and change the names of the last eight survey columns to better describe the variables:

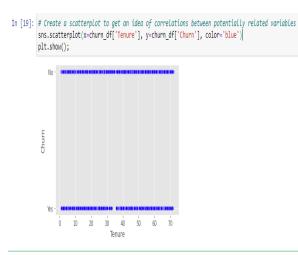
Load data set into Pandas dataframe churn_df = pd.read_csv("C:/Rekha/churn_clean.csv") # Rename Last 8 survey columns for better description of variables churn_df.rename(columns = {'Item1':'Timely_Response', 'Item2':'Timely_Fixes', 'Item3':'Timely_Replacements', 'Item3':'Reliability', 'Item5':'Options', 'Item6':'Respectful_Response', 'Item7':'Courteous_exchange', 'Item8':'Active_Listening'}, inplace=True)


14. Churn data frame with values:

To [14]+ #

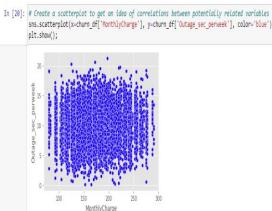
]:	City	State	County	Zip	Lat	Lng	Population	Area	TimeZone	Job	 MonthlyCharge	Bandwidth_GB_Year	Timely_Responses	Timely_Fixes	Timely_Replac
0	Point Baker	AK	Prince of Wales- Hyder	99927	56.25100	-133.37571	38	Urban	America/Sitka	Environmental health practitioner	 172.455519	904.536110	5	5	
1	West Branch	М	Ogemaw	48661	44.32893	-84.24080	10446	Urban	America/Detroit	Programmer, multimedia	 242.632554	800.982766	3	4	
2	Yamhill	OR	Yamhill	97148	45.35589	-123.24657	3735	Urban	AmericalLos_Angeles	Chief Financial Officer	159.947583	2054.706961	4	4	
3	Del Mar	CA	San Diego	92014	32.96687	-117.24798	13863	Suburban	America/Los_Angeles	Solicitor	 119.956840	2164.579412	4	4	
4	Needville	TX	Fort Bend	77461	29.38012	-95.80673	11352	Suburban	America/Chicago	Medical illustrator	 149.948316	271.493436	4	4	



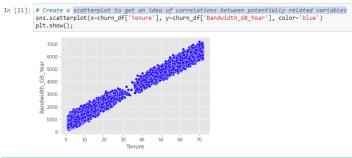

16. To plot style to ggplot:

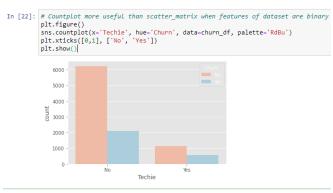
In [17]: # Set plot style to ggplot for aesthetics & R style
 plt.style.use('ggplot')

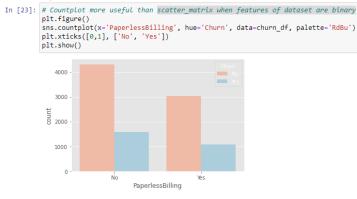
17. List the high-level overview of potential relationships and distributions:



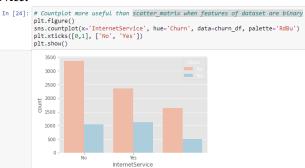
18. scatterplot of Tenure:



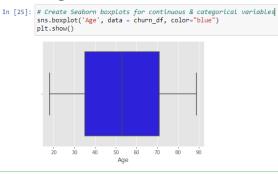

19. scatterplot of Monthly charge:


20. scatterplot of Tenure and Bandwidth_GB_Year:

21. scatter_matrix:



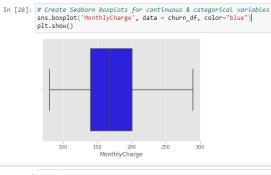
22. scatter matrix paperless Billing



23. scatter matrix Internet Service:

24. Seaborn boxplots for continuous & categorical variables

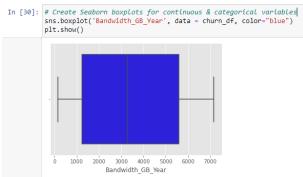
In


25. Find exact Age range in column

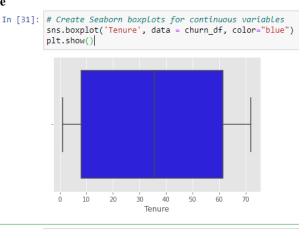
[26]:	<pre># Find exact Age range in column print("Minimum Age is", churn_df.Age.min()) print("Maximum Age is", churn_df.Age.max()) print("Age range is", churn_df.Age.max()-churn_df.Age.min())</pre>
	Minimum Age is 18 Maximum Age is 89 Age range is 71

26. Find exact Income range in column

27. Create Seaborn boxplots for Monthly Charge:



28. Find exact Monthly Charge range in column


In [29]:	<pre># Find exact MonthlyCharge range in column print("Minimum MonthlyCharge is", int(churn.df.MonthlyCharge.min())) print("Maximum MonthlyCharge is", int(churn.df.MonthlyCharge.max())) print("MonthlyCharge range is", int(churn_df.MonthlyCharge.max()-churn_df.MonthlyCharge.min()))</pre>
	Minimum MonthlyCharge is 70 Maximum MonthlyCharge is 290 MonthlyCharge range is 210

Journal of Scientific and Engineering Research

29. Create Seaborn boxplots for Band width_GB_Year:

30. Seaborn boxplots for tenure

31. missing data points within dataset

In [32]:	<pre># Discover missing data</pre>	
	<pre>data_nulls = churn_df.i print(data_nulls)</pre>	snull().sum()
	City	0
	State	0
	County	0
	Zip	0
	Lat	0
	Lng	0
	Population	0
	Area	0
	TimeZone	0
	Job	0
	Children	0
	Age	0
	Income	0
	Marital	0
	Gender	0
	Churn	0
	Outage_sec_perweek	0
	Email	0
	Contacts	0
	Yearly_equip_failure	0
	Techie	0
	Contract	0
	Port_modem	0
	Tablet	0
	InternetService	0
	Phone	0
	Multiple	0
	OnlineSecurity	0
	OnlineBackup	0
	DeviceProtection	0
	TechSupport	0

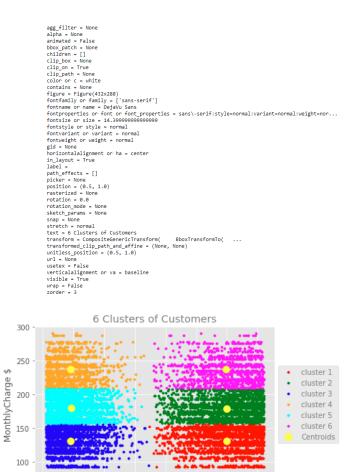
StreamingTV	0
StreamingMovies	0
PaperlessBilling	0
PaymentMethod	0
Tenure	0
MonthlyCharge	0
Bandwidth_GB_Year	0
Timely_Responses	0
Timely_Fixes	0
Timely_Replacements	0
Reliability	0
Options	0
Respectful_Response	0
Courteous_exchange	0
Active_listening	0
dtype: int64	

Analysis/Research

Calculations for the Output and Intermediate:

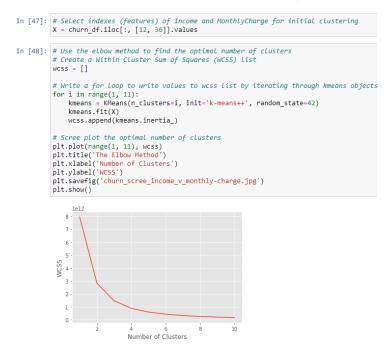
We iterated over 3 pairs of matched feature sets through using Scikit-learn KMeans class to generate meaningful heuristics from which to better understand our consumers and, as a result, make better business decisions. Among the three sets were:

Journal of Scientific and Engineering Research

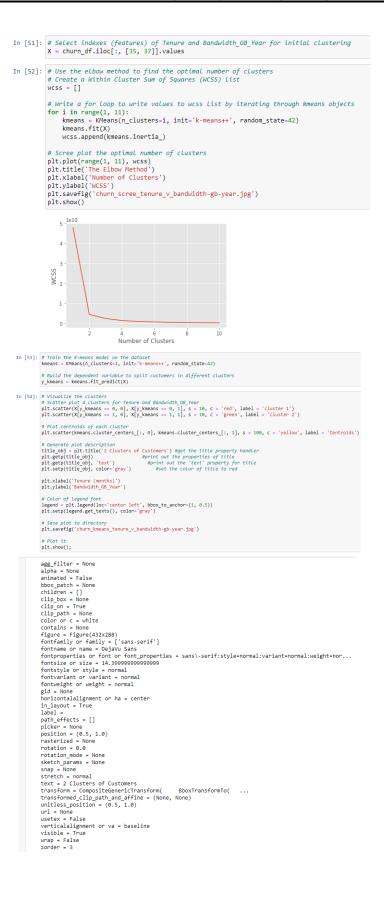

Tenure and Monthly Charge
 Object includes 6 clusters of customers
<pre>plt.scatter(X[v_kmeans == 0, 0], X[v_kmeans == 0, 1], s = 10, c = 'red', label = 'cluster 1')</pre>
plt.scatter(X[v_kmeans == 1, 0], X[v_kmeans == 1, 1], s = 10, c = 'green', label = 'cluster 2')
plt.scatter(X[v_kmeans == 2, 0], X[v_kmeans == 2, 1], s = 10, c = 'blue', label = 'cluster 3')
<pre>plt.scatter(X[v_kmeans == 3, 0], X[v_kmeans == 3, 1], s = 10, c = 'orange', label = 'cluster 4')</pre>
plt.scatter(X(v_kmeans == 4, 0), X(v_kmeans == 4, 1), s = 10, c = 'cyan', label = 'cluster 5')
<pre>plt.scatter(X[v_kmeans == 5, 0], X[v_kmeans == 5, 1], s = 10, c = 'magenta', label = 'cluster 6')</pre>
Monthly Charge and Income
 Object includes 4 clusters of customers
plt.scatter(X[v_kmeans == 0, 0], X[v_kmeans == 0, 1], s = 10, c = 'red', label = 'cluster 1')
<pre>plt.scatter(X[v_kmeans == 1, 0], X[v_kmeans == 1, 1], s = 10, c = 'green', label = 'cluster 2')</pre>
plt.scatter(X[v_kmeans == 2, 0], X[v_kmeans == 2, 1], s = 10, c = 'blue', label = 'cluster 3')
<pre>plt.scatter(X[v_kmeans == 3, 0], X[v_kmeans == 3, 1], s = 10, c = 'orange', label = 'cluster 4')</pre>
 Bandwidth GB Year and Tenure
 Object includes 2 clusters of customers
<pre>plt.scatter(X[v_kmeans == 0, 0], X[v_kmeans == 0, 1], s = 10, c = 'red', label = 'cluster 1')</pre>
<pre>plt.scatter(X[y_kmeans == 1, 0], X[y_kmeans == 1, 1], s = 10, c = 'green', label = 'cluster 2')</pre>
Plot Centroids for each cluster:
pit.scatter/kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1], s = 100, c = 'yellow', label = 'Centroids')

For each set, we applied the slide plot elbow technique to determine the ideal number of clusters. **D2. Execution of Code:**

Below are the K-means clustering code and graphics.


In [39]:	# Imp churr	<pre>wort prepared Churn datasetdf = pd.read_csv('C:/Kailash/Rekha/D212/data/churn_prepared_kmeans.csv', index_col=0)</pre>
In [40]:	# Import KNeans class from Scikit-Learn from sklearn.cluster import KNeans	
In [41]:	# Set plot style to ggplot for aesthetics & R style plt.style.use('ggplot')	
		K-means: Tenure v. MonthlyCharge
In	[42]:	# Select indexes (features) of Tenure and MonthlyCharge for initial clustering X = churn_df.iloc[:, [35, 36]].values
In	[43]:	<pre># Use the elbow method to find the optimal number of clusters # Create a Within Cluster Sum of Squares (WCSS) List wcss = []</pre>
		<pre># Write a for loop to write values to wcss list by iterating through kmeans objects for i in range(1, 11): kmeans = KMeans(n_clusters=i, init='k-means++', random_state=42) kmeans.fit(X) wcss.append(kmeans.inertia_)</pre>
		<pre># Scree plot the optimal number of clusters plt.plot(nange[1, 11], wess) plt.title('The Elbow Method') plt.xlabel('Mumber of clusters') plt.ylabel('WCSS') plt.show[) plt.show[)</pre>
		2 5 - 2 0 -
In [44]	kmean # Bui	in the K-means model on the dataset = "Khems(n_clusters-6, inic"(k-means++', random_state-42) Id the dependent variable to split customers in different clusters ms = kmeans.fipredict(X)
In [45]		(y_kmeans)
In [46]		<pre>4 15 5] uolize the clusters ter plot 5 clusters for Tenure v. MonthlyCharge catter(Xly_keens -= 0, 0], Xly_keens -= 0, 1], s = 10, c - 'red', label - 'cluster 1') catter(Xly_keens -= 1, 0], Xly_keens -= 2, 1], s = 10, c - 'green', label - 'cluster 2') catter(Xly_keens -= 3, 0], XLy_keens -= 2, 1], s = 10, c - 'mage', label - 'cluster 4') catter(Xly_keens -= 3, 0], XLy_keens -= 3, 0, 1, S, 10, c - 'green', label - 'cluster 4') catter(Xly_keens -= 3, 0, 1, XLy_keens -= 4, 1], s = 10, c - 'mage', label - 'cluster 4') catter(Xly_keens -= 4, 0], S = 10, c - 'genset', label - 'cluster 4') catter(Xly_keens -= 5, 0], XLy_keens -= 4, 1], s = 10, c - 'genset', label - 'cluster 6')</pre>
	# Gen title plt.g plt.g	etp(title_obj) #print out the properties of title etp(title_obj, 'text') #print out the 'text' property for title
		<pre>stp(tile_obj, color-igray') #set the color of title to red label('renure(months)') label('nonth)charge 5')</pre>
	# Col legen	<pre>or flegend(loc'center left', bbox_to_anchor-(1, 0.5)) d = plt.legend(loc'center left', bbox_to_anchor-(1, 0.5)) ettplagend(get(exts(s), color-(grwy'))</pre>
	# Sav plt.s	<pre>e plot to directory avefig('churn_temeans_tenure_v_monthly-charge.jpg')</pre>
	# PLO plt.s	

K-means: Income v. MonthlyCharge



In [49]:	# Train the K-means model on the dataset kmeans = KMeans(n_clusters-4, init='k-means++', random_state=42)
	# Build the dependent variable to split customers in different clusters y_kmeans = kmeans.fit_predict(X)
In [50]:	<pre># Visualize the clusters # Scatter plot 4 clusters for Income and MonthlyCharge plt.scatter(X[y_kmeans == 0, 0], X[y_kmeans == 0, 1], s = 10, c = 'red', label = 'cluster 1') plt.scatter(X[y_kmeans == 1, 0], X[y_kmeans == 1, 1], s = 10, c = 'green', label = 'cluster 2') plt.scatter(X[y_kmeans == 2, 0], X[y_kmeans == 2, 1], s = 10, c = 'blue', label = 'cluster 3') plt.scatter(X[y_kmeans == 3, 0], X[y_kmeans == 3, 1], s = 10, c = 'orange', label = 'cluster 4')</pre>
	<pre># Plot centroids of each cluster plt.scatter(kmeans.cluster_centers_[:, 1], s = 100, c = 'yellow', label = 'Centroids')</pre>
	<pre># Generate plot description title_obj = plt.title('4 Clusters of Customers') #get the title property handler plt.getp(title_obj)</pre>
	<pre>plt.xlabel('Income \$') plt.ylabel('WonthlyCharge \$')</pre>
	<pre># Color of Legend font legend - plt.legend(loc-'center left', bbox_to_anchor-(1, 0.5)) plt.setp(legend.get_texts(), color-'gray')</pre>
	# Save plot to directory pl.savefjd('churn_kmeans_income_v_monthly-charge.jpg')
	<pre># Plot it plt.show();</pre>
	agg_filter = None
	<pre>alpha = None animated = False bbox.patch = None children = [] clip_box = None clip_path = None color or c = white contains = None figure = Figure(42x288) fontramily or family = ['sans-serif'] fontname on name = DejaVu Sans fontrogen is or font or font properties = sans\-serif:style=normal:variant=normal:weight=nor fontsize on size = 14.399999999999 fontstyle = normal fontvariant or variant = normal fontvariant or variant = normal fontvariant or weight = normal gid = None horizontallignment or ha = center in_layout = True label = path_effects = [] picker = None position = (0.5, 1.0) rasterized = None stretch = normal text = 4 Clusters of Customers transform = CompositeGenericFransform(BboxTransformTo(transforme_clip_path_ad_affine = (None, None) untless_position = (0.5, 1.0) untless_position = (0.5, 1.0) untless_position = (0.5, 1.0) untless_position = (0.5, 1.0)</pre>
	usetex = False verticalalignment or va = baseline
	visible = True
	wrap = False
	zorder = 3
	4 Clusters of Customers
0- 0-	cluster 1
arg	200 - cluster 1
ζ,	cluster 3
lthi	cluster 4 Centroids
MonthlyCharge \$	150 - Centrolds
	100 -
	e "North e secher e e e e
	o 50000 100000 150000 250000 250000

K-means: Tenure v. Bandwidth_GB_Year

Income \$

PART V. Do the following to describe your data analysis:

E1. Clustering Technique Accuracy

"Validating the clustering technique is somewhat tricky compared to supervised machine learning algorithm since there is no ground truth labels in clustering Procedure," Manimaran writes on TowardsDataScience.com (Manimaran, p. 1).

So, when measuring the accuracy of our k-means clustering, we'll take three criteria into account:

- Number of clusters
- Clustering quality
- Clustering tendency

Number of clusters

We utilized the elbow technique to determine the best number of clusters k by plotting the k values against withincluster variation, as shown in the scree plots above. Two, four, and six are clustered in our elbow results.

Clustering quality

We can see how tight clusters are in relation to their respective centroids after clustering. Our clusters are not firmly grouped around their centroids, as evidenced by the depicted clusters for our three k-means clusterings. Instead, we have "levels" or "bands" of clusters due to the nature of the customer dataset.

Clustering tendency

As seen by our scatter matrix above (see bivariate plots including customer survey findings - Replacements, Reliability, etc.), many of our prospective numerical variables contain evenly distributed data points. Our studies will be based on Tenure, non-uniform distributions of, Bandwidth GB Year, MonthlyCharge and Income. As a result, meaningful clusters may be more likely to emerge. We also don't use dummy variables, which are also equally distributed.

Conclusions & Implications:

We must return to our original study question, "Can we better understand our consumers and find patterns specific to consumers who churn utilizing unsupervised learning data mining?" for answers and ramifications.

We employed the Within Cluster Sum of Squares (WCSS), sometimes known as the "elbow" method, to find the best clustering algorithm k for our three bivariate clustering's. The following are the findings and their implications:

- We observed two primary categories when we compared bandwidth usage yearly to customer tenure with the telecom firm. Customers who stay for a small period and use less GBs, and those who stay for a longer period and use more GBs. This conclusion appears to be self-evident, and it implies that we should try to keep clients.
- We observed four key categories, or perhaps market sectors, when comparing monthly fee to client income. Although we should expect monthly prices to rise in tandem with user income. We couldn't locate this information. Customers' monthly charges ranged from low to high within each customer income cluster We'd want to see higher-income individuals overspend or, at the very least, create marketing tactics that encourage them to spend their disposable cash with us rather than elsewhere.
- Eventually, when monthly charges were compared to customer tenure with the telecom provider, the WCSS recommended six ideal clustering's, which mirrored the preceding results with bandwidth only. This outcome

may provide us the best insight of which groups to market to more aggressively, those who pay a lesser monthly fee but stay for longer periods of time, and, hopefully, reduces spam to those who have over spent money with us but are not staying for longer periods of time.

Finally, churn, or short stay with a company, appears to be linked to the use of fewer services and, possibly, spending fewer dollars with us.

Restrictions

The data for this telecom firm dataset does not come from a warehouse, which is a drawback of this investigation. It's as if we used Python statistical libraries to generate the data at random in this instance. As a result, we are unable to contact the personnel that arranged and acquired this data to inquire as to why certain uniformities occur, and whether A/B testing or other comparisons are more relevant to answering issues about customer retention or churn, in their subject-matter-expert judgments. In a real-world project, we'd go to the department where the data was collected and, hopefully, discover more significant results through a more rigorous, focused procedure.

E4. Plan of Action

Marketers and decision-makers should be aware of this our bivariate research suggests certain links. We should look at the qualities that are shared by those who are leaving the company and attempt to reduce the likelihood that they will occur with any future consumer. Early descriptive statistical analyses imply that customers are less likely to abandon a company if they subscribe to more services, such as an online backup or additional port modem. Clearly, it is in the best interests of the company to give customers with more services and enhance their customer experience by supporting them in knowing all the mobile phone service, but a variety of other services are available to them as a subscriber.

Having said that, there is a subset of consumers that earn a lot of money but pay a low monthly fee. More marketing and direct contact from our advertisers should be directed towards these demographics.

There are also pockets of low-income users, with both high and low monthly fees. As an ethical company, we should avoid targeting these market segments because 1) they clearly do not have the financial means to invest on "luxury" services like streaming videos, 2) these customers may be unable to make their monthly payments and may leave our company, migrating to other companies' "free trial" offers, leaving us with an unpaid bill.

PART VI. Documentary Evidence

Panopto recording:

https://wgu.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=346a3e96-f762-424f-99c4-ae58011f984c **Third Party Evidence:**

Title: (Visualize missing values (NaN) values using Missingno Library | Python |), GeeksForGeeks. Date: July 4th, 2019

URL: https://www.geeksforgeeks.org/python-visualize-missing-values-nan-values-using-missingno-library/

Title: (Machine Learning A-Z: Hands-On Python & R in Data Science), SuperDataScience

Date: August 15th, 2021

URL: https://www.superdatascience.com/

References

- Author: Jeffares, A, Date: November 19th, 2019, Title: K-means: A Complete Introduction. Toward Data Science, https://towardsdatascience.com/k-means-a-complete-introduction-1702af9cd8c.
- [2]. Author: Daityari, S, Date: October 3rd,2021, Title: Basics of k-means clustering, Data Camp https://campus.datacamp.com/courses/cluster-analysis-in-python/k-means-clustering-3?ex=1.
- [3]. Author: VanderPlas, J, Date: 2017, Title: Python Data Science Handbook. O'Reilly.
- [4]. Author: Massaron, L. & Boschetti, A, Date: 2016, Title: Regression Analysis with Python. Packt Publishing.
- [5]. Author: CBT Nuggets, Date: September 20th,2018, Title: Why Data Scientists Love Python.

