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Abstract Let )(zp be a polynomial of degree n and let  be any real or complex number, then )(zpD , the 

polar derivative of )(zp , is called by Laguerre [6] the “emanant” of )(zp , by Polya and Szeg o [8] the 

“derivative of )(zp  with respect to the point ”, and by Marden[7], simply the “polar derivative” of )(zp . It 

is obviously of interest to obtain estimates concerning growth of )(zpD . In this paper we prove interesting 

results for the polar derivative of a lacunary type of polynomial which not only improve upon some earlier 

known results in the same area but also improve upon a result on ordinary derivative for polynomials in 

particular case. 
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1. Introduction  

Let   be a complex number. If )(zp  is a polynomial of degree n, then polar derivative of  )(zp  with respect to 

point  , denoted by  zpD , is defined by                   

       zpzzpnzpD '  .                                                                                        (1.1) 

and 

 
 zp

zpD
'lim 









 



.                                                                            (1.2)  

 It is obviously of interest to obtain estimates concerning the growth of  zpD . In this direction Aziz [1] 

proved several sharp results concerning the maximum modulus of the polar derivative of a polynomial p(z) with 

restricted zeros. 

For the class of polynomials not vanishing in the disc kz  , 1k , Aziz [1] proved the following result for the 

polar derivative of )(zp .    

           

Theorem A. If )(zp  is a polynomial of degree n having no zeros in the disc kz  , 1k , then for every real 

or complex number   with 1 ,                                              
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 .                                                                                               (1.3)   

The result is best possible and equality in (1.3) holds for the polynomial      nkzzp  , with real 1 . 

               

As a refinement of Theorem A, Aziz and Shah [2] proved the following result, for the polar derivative of )(zp . 

  

Theorem B. If   



n

j

j
j zazp

0
is a polynomial of degree n having no zero in  kz  , 1k , then for every real 

or complex number  with 1 , 
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The result is best possible and extremal polynomial is  
n

k

kz
zp 














1
for every real k . 

 

For the class of polynomial )(zp  having all its zeros in 1z , Shah [9] proved the following  

            

Theorem C. If all the zeros of the n
th
 degree polynomial )(zp  lie in 1z , then for every real or complex 

number   with 1 , 
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n

zpD
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max1
2

max


  .                                                                             (1.5)  

The result is sharp and extremal polynomial is    nzzp 1 with real 1 . 

For the class of polynomial )(zp  having all its zeros in 1z , Shah [9] extended Turán’s Theorem to the polar 

derivative of the polynomial and proved the following. 

            

Theorem D. If all the zeros of the n
th

 degree polynomial )(zp  lie in 1z , then for every real or complex 

number   with 1 , 
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  .                                                                                  (1.6)  

The result is sharp and extremal polynomial is    nzzp 1 with real 1  

As a generalization of Theorem D, Aziz and Rather [3] proved the following result for the polar derivative of a 

polynomial )(zp . 

 

Theorem E. If )(zp  is a polynomial of degree n having all its zeros in kz  , 1k , then for every real or 

complex number   with k , 
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 .                                                                        (1.7) 

Inequality (1.7) is best possible and equality occurs for    nkzzp   with real k . 
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2. Main Theorem 

For the class of Lacunary type of polynomials   
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, n 1 , we prove the following 

result which gives a generalization as well as an improvement of Theorem E. 

 

Theorem 2.1. If   
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, n 1 , is a polynomial of degree n having all its zeros in 

kz  , 1k , then for every real or complex number   with  k , we have 
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                                             (2.1)                                                                            

Dividing both sides of (2.1) by  , letting  , we obtain the following generalization of a result due to 

Govil [4] . 

            

Corollary 2.2. If   
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, n 1 , is a polynomial of degree n having all its zeros in 

kz  , 1k , then we have      

      .min
1

max
1

'max
11 













zp

k
zp

k

n
zp

kznzz 
                                                                    (2.2) 

 The result is sharp and extremal polynomial is    
n

kzzp  , where n is a multiple of  . 

For  =1, inequality (2.1) reduces to the following result due to Govil and Mc Tume[5]. 

            

Corollary 2.3. If   
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0
 is a polynomial of degree n having all its zeros in kz  , 1k , then for 

every real or complex number   with k , we have 
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 .                                                              (2.3)                                                                           

The inequality is sharp and equality holds for    nkzzp   with real k . 

 

 

3.  Lemmas 

For the proofs of the theorems, we need the following lemmas.          

   

Lemma 3.1. Let )(zp  be polynomial of degree n and   is any real or complex number with 0  .Then for   

1z ,                              

    )('1)( zpzzpnzqD   .                                                                                        (3.1) 

where        









z
pzzq n 1

. 

The above lemma is due to Aziz [1].  
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Lemma 3.2. If all the zeros of an n
th

 degree polynomial )(zp  lie in  kz  , then for k , the polar 

derivative  zpD  of )(zp  at point   also has all its zeros in kz  . 

The above lemma is due to Marden [7].   

          

Lemma 3.3. Let   



n

zaazp



0 , n 1 , be a polynomial of degree n not vanishing in kz  , 1k , 

and   









z
pzzq n 1

. Then for 1z  and R   1, 

           zpRzqzRqzpzRpk
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n
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.                                                                                    (3.2) 

The above lemma is due to Aziz and Rather [3].  

            

Lemma 3.4. Let   
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, n 1 , be a polynomial of degree n having all its zeros in 

kz  , 1k . Then for 1z  and R   1 

       
 

 zp
k

R
zqzRqzpzRpk

kzn

n




 min

1




.                                                                    (3.3) 

where         









z
pzzq n 1
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 Proof of Lemma 3.4. Since )(zp  has all its zeros in kz  , 1k , then   
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 has all its zeros in 

1
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,
1


kk

z . On applying Lemma 3.3 to q(z), we get for  1z , 
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Combining inequalities (3.4) and (3.5), we get 
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from which Lemma 3.4 follows. 

From the above lemma, we deduce the following result, by dividing both sides of inequality (3.3) by (R-1) and 

let 1R , which is also of independent interest . 

            

Lemma 3.5. Let   
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, n 1 , be a polynomial of degree n having all its zeros In 

kz  , 1k . Then for 1z  
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where     
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4. Proof of the Main Theorem  

Proof of Theorem 2.1. Let   









z
pzzq n 1

. Then it can be easily verified that for 1z ,                                

     zpzzpnzq ''                                                                                                        (4.1) 

Now for 1z , we have from (4.1)  

       zpzzpzzpnzpn ''   

         zpzqzpzpzzpn ''''  .                                                              (4.2) 

Inequality (4.2) when combined with Lemma 3.5, gives for 1z ,     
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where  zpm
kz 

 min . 

Now for every real or complex number , we have  

       zpzzpnzpD '  . 

This gives for 1z , 

       zpzzpnzpzpD ''          

=    zqzp ''   .                                                                                                     (4.4) 

Now on combining inequality (4.4) with Lemma 3.5, we get for 1z . 
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Inequality (4.3), when combined with above inequality (4.5), gives for 1z , 
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which on simplification gives for 1z ,  
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from which Theorem 2.1 follows easily. 
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