Bounds for Emanant of Lacunary Type Complex Polynomial

Roshan Lal Keshtwal

Department of Mathematics, V.S.K.C. Government Postgraduate College Dakpathar, Dehradun-248125 Uttarakhand, India.
E-mail: rlkeshtwal@gmail.com

Abstract

Let $p(z)$ be a polynomial of degree n and let α be any real or complex number, then $D_{\alpha} p(z)$, the polar derivative of $p(z)$, is called by Laguerre [6] the "emanant" of $p(z)$, by Polya and Szeg \ddot{o} [8] the "derivative of $p(z)$ with respect to the point α ", and by Marden[7], simply the "polar derivative" of $p(z)$. It is obviously of interest to obtain estimates concerning growth of $D_{\alpha} p(z)$. In this paper we prove interesting results for the polar derivative of a lacunary type of polynomial which not only improve upon some earlier known results in the same area but also improve upon a result on ordinary derivative for polynomials in particular case.

Keywords Polynomials; Polar derivative; Inequalities; Zeros
(2020) Subject Classification: 30A10, 30D15

1. Introduction

Let α be a complex number. If $p(z)$ is a polynomial of degree n, then polar derivative of $p(z)$ with respect to point α, denoted by $D_{\alpha} p(z)$, is defined by
$D_{\alpha} p(z)=n p(z)+(\alpha-z) p^{\prime}(z)$.
and
$\lim _{\alpha \rightarrow \infty}\left[\frac{D_{\alpha} p(z)}{\alpha}\right]=p^{\prime}(z)$.
It is obviously of interest to obtain estimates concerning the growth of $D_{\alpha} p(z)$. In this direction Aziz [1] proved several sharp results concerning the maximum modulus of the polar derivative of a polynomial $p(z)$ with restricted zeros.
For the class of polynomials not vanishing in the disc $|z|<k, k \geq 1$, Aziz [1] proved the following result for the polar derivative of $p(z)$.

Theorem A. If $p(z)$ is a polynomial of degree n having no zeros in the disc $|z|<k, k \geq 1$, then for every real or complex number α with $|\alpha| \geq 1$,

$$
\begin{equation*}
\max _{|z|=1}\left|D_{\alpha} p(z)\right| \leq n\left(\frac{k+|\alpha|}{1+k}\right) \max _{|z|=1}|p(z)| . \tag{1.3}
\end{equation*}
$$

The result is best possible and equality in (1.3) holds for the polynomial $p(z)=(z+k)^{n}$, with real $\alpha \geq 1$.

As a refinement of Theorem A, Aziz and Shah [2] proved the following result, for the polar derivative of $p(z)$.

Theorem B. If $p(z)=\sum_{j=0}^{n} a_{j} z^{j}$ is a polynomial of degree n having no zero in $|z|<k, k \geq 1$, then for every real or complex number α with $|\alpha| \geq 1$,

$$
\begin{equation*}
\max _{|z|=1}\left|D_{\alpha} p(z)\right| \leq \frac{n}{1+k}\left\{(|\alpha|+k) \max _{|z|=1}|p(z)|-(|\alpha|-1) \min _{|z|=k}|p(z)|\right\} . \tag{1.4}
\end{equation*}
$$

The result is best possible and extremal polynomial is $p(z)=\left(\frac{z+k}{1+k}\right)^{n}$ for every real $\alpha \geq k$.

For the class of polynomial $p(z)$ having all its zeros in $|z| \leq 1$, Shah [9] proved the following

Theorem C. If all the zeros of the $n^{\text {th }}$ degree polynomial $p(z)$ lie in $|z| \leq 1$, then for every real or complex number α with $|\alpha| \geq 1$,

$$
\begin{equation*}
\max _{|z|=1}\left|D_{\alpha} p(z)\right| \geq \frac{n}{2}(|\alpha|-1) \max _{|z|=1}|p(z)| . \tag{1.5}
\end{equation*}
$$

The result is sharp and extremal polynomial is $p(z)=(z-1)^{n}$ with real $\alpha \geq 1$.
For the class of polynomial $p(z)$ having all its zeros in $|z| \leq 1$, Shah [9] extended Turán's Theorem to the polar derivative of the polynomial and proved the following.

Theorem D. If all the zeros of the $n^{\text {th }}$ degree polynomial $p(z)$ lie in $|z| \leq 1$, then for every real or complex number α with $|\alpha| \geq 1$,

$$
\begin{equation*}
\max _{|z|=1}\left|D_{\alpha} p(z)\right| \geq \frac{n}{2}(|\alpha|-1) \max _{|z|=1}|p(z)| . \tag{1.6}
\end{equation*}
$$

The result is sharp and extremal polynomial is $p(z)=(z-1)^{n}$ with real $\alpha \geq 1$
As a generalization of Theorem D, Aziz and Rather [3] proved the following result for the polar derivative of a polynomial $p(z)$.

Theorem E. If $p(z)$ is a polynomial of degree n having all its zeros in $|z| \leq k, k \leq 1$, then for every real or complex number α with $|\alpha| \geq k$,
$\max _{|z|=1}\left|D_{\alpha} p(z)\right| \geq n\left(\frac{|\alpha|-k}{1+k}\right) \max _{|z|=1}|p(z)|$.
Inequality (1.7) is best possible and equality occurs for $p(z)=(z-k)^{n}$ with real $\alpha \geq k$.

2. Main Theorem

For the class of Lacunary type of polynomials $p(z)=a_{n} z^{n}+\sum_{j=\mu}^{n} a_{n-j} z^{n-j}, 1 \leq \mu \leq n$, we prove the following result which gives a generalization as well as an improvement of Theorem E.

Theorem 2.1. If $p(z)=a_{n} z^{n}+\sum_{j=\mu}^{n} a_{n-j} z^{n-j}, 1 \leq \mu \leq n$, is a polynomial of degree n having all its zeros in $|z| \leq k, k \leq 1$, then for every real or complex number α with $|\alpha| \geq k^{\mu}$, we have
$\max _{|z|=1}\left|D_{\alpha} p(z)\right| \geq n\left(\frac{|\alpha|-k^{\mu}}{1+k^{\mu}}\right) \max _{|z|=1}|p(z)|+\frac{n}{k^{n-\mu}}\left(\frac{|\alpha|+1}{1+k^{\mu}}\right) \min _{|z|=k}|p(z)|$
Dividing both sides of (2.1) by $|\alpha|$, letting $|\alpha| \rightarrow \infty$, we obtain the following generalization of a result due to Govil [4] .

Corollary 2.2. If $p(z)=a_{n} z^{n}+\sum_{j=\mu}^{n} a_{n-j} z^{n-j}, 1 \leq \mu \leq n$, is a polynomial of degree n having all its zeros in $|z| \leq k, k \leq 1$, then we have

$$
\begin{equation*}
\max _{|z|=1}\left|p^{\prime}(z)\right| \geq \frac{n}{1+k^{\mu}}\left\{\max _{|z|=1}|p(z)|+\frac{1}{k^{n-\mu}} \min _{|z|=k}|p(z)|\right\} . \tag{2.2}
\end{equation*}
$$

The result is sharp and extremal polynomial is $p(z)=\left(z^{\mu}+k^{\mu}\right)^{\frac{n}{\mu}}$, where n is a multiple of μ.
For $\mu=1$, inequality (2.1) reduces to the following result due to Govil and Mc Tume[5].

Corollary 2.3. If $p(z)=\sum_{j=0}^{n} a_{j} z^{j}$ is a polynomial of degree n having all its zeros in $|z| \leq k, k \leq 1$, then for every real or complex number α with $|\alpha| \geq k$, we have

$$
\begin{equation*}
\max _{|z|=1}\left|D_{\alpha} p(z)\right| \geq n\left(\frac{|\alpha|-k}{1+k}\right) \max _{|z|=1}|p(z)|+\frac{n}{k^{n-1}}\left(\frac{|\alpha|+1}{1+k}\right) \min _{|z|=k}|p(z)| . \tag{2.3}
\end{equation*}
$$

The inequality is sharp and equality holds for $p(z)=(z-k)^{n}$ with real $\alpha \geq k$.

3. Lemmas

For the proofs of the theorems, we need the following lemmas.

Lemma 3.1. Let $p(z)$ be polynomial of degree n and α is any real or complex number with $|\alpha| \neq 0$.Then for $|z|=1$,
$\left|D_{\alpha} q(z)\right|=\left|n \bar{\alpha} p(z)+(1-\bar{\alpha} z) p^{\prime}(z)\right|$.
where $\quad q(z)=z^{n} \overline{p\left(\frac{1}{\bar{z}}\right)}$.
The above lemma is due to Aziz [1].

Lemma 3.2. If all the zeros of an $n^{\text {th }}$ degree polynomial $p(z)$ lie in $|z| \leq k$, then for $|\alpha| \geq k$, the polar derivative $D_{\alpha} p(z)$ of $p(z)$ at point α also has all its zeros in $|z| \leq k$.
The above lemma is due to Marden [7].

Lemma 3.3. Let $p(z)=a_{0}+\sum_{v=\mu}^{n} a_{v} z^{v}, 1 \leq \mu \leq n$, be a polynomial of degree n not vanishing in $|z|<k, k \geq 1$, and $q(z)=z^{n} \overline{p\left(\frac{1}{\bar{z}}\right)}$. Then for $|z|=1$ and $R \geq 1$,
$k^{\mu}|p(R z)-p(z)| \leq|q(R z)-q(z)|-\left(R^{n}-1\right) \min _{|z|=k}|p(z)|$.
The above lemma is due to Aziz and Rather [3].

Lemma 3.4. Let $p(z)=a_{n} z^{n}+\sum_{j=\mu}^{n} a_{n-j} z^{n-j}, 1 \leq \mu \leq n$, be a polynomial of degree n having all its zeros in $|z| \leq k, k \leq 1$. Then for $|z|=1$ and $R \geq 1$
$k^{\mu}|p(R z)-p(z)| \geq|q(R z)-q(z)|+\frac{\left(R^{n}-1\right)}{k^{n-\mu}|z|=k} \min _{|c|}|p(z)|$.
where $\quad q(z)=z^{n} \overline{p\left(\frac{1}{\bar{z}}\right)}$.

Proof of Lemma 3.4. Since $p(z)$ has all its zeros in $|z| \leq k, k \leq 1$, then $q(z)=z^{n} p\left(\frac{1}{\bar{z}}\right)$ has all its zeros in $|z| \geq \frac{1}{k}, \frac{1}{k} \geq 1$. On applying Lemma 3.3 to $q(\mathrm{z})$, we get for $|z|=1$,

$$
\begin{equation*}
\frac{1}{k^{\mu}}|q(R z)-q(z)| \leq|p(R z)-p(z)|-\left(R^{n}-1\right) \min _{|z|=\frac{1}{k}}|q(z)| \tag{3.4}
\end{equation*}
$$

But
$\min _{|z|=\frac{1}{k}}|q(z)|=\min _{|z|=\frac{1}{k}}\left|z^{n} \overline{p\left(\frac{1}{\bar{z}}\right)}\right|=\min _{|z|=1}\left|\frac{z^{n}}{k^{n}} \overline{p\left(\frac{k}{\bar{z}}\right)}\right|$
$=\frac{1}{k^{n}} \min _{|z|=1}|p(k z)|=\frac{1}{k^{n}} \min _{|z|=k}|p(z)|$.
Combining inequalities (3.4) and (3.5), we get
$\frac{1}{k^{\mu}}|q(R z)-q(z)| \leq|p(R z)-p(z)|-\frac{\left(R^{n}-1\right)}{k^{n}} \min _{|z|=k}|p(z)|$,
from which Lemma 3.4 follows.
From the above lemma, we deduce the following result, by dividing both sides of inequality (3.3) by ($R-1$) and let $R \rightarrow 1$, which is also of independent interest .

Lemma 3.5. Let $p(z)=a_{n} z^{n}+\sum_{j=\mu}^{n} a_{n-j} z^{n-j}, 1 \leq \mu \leq n$, be a polynomial of degree n having all its zeros In $|z| \leq k, k \leq 1$. Then for $|z|=1$

$$
\begin{equation*}
k^{\mu}\left|p^{\prime}(z)\right| \geq\left|q^{\prime}(z)\right|+\frac{n}{k^{n-\mu}} \min _{|z|=k}|p(z)| . \tag{3.6}
\end{equation*}
$$

where $q(z)=z^{n} \overline{p\left(\frac{1}{\bar{z}}\right)}$.

4. Proof of the Main Theorem

Proof of Theorem 2.1. Let $q(z)=z^{n} \overline{p\left(\frac{1}{\bar{z}}\right)}$. Then it can be easily verified that for $|z|=1$,

$$
\begin{equation*}
\left|q^{\prime}(z)\right|=\left|n p(z)-z p^{\prime}(z)\right| \tag{4.1}
\end{equation*}
$$

Now for $|z|=1$, we have from (4.1)
$|n p(z)|=\left|n p(z)-z p^{\prime}(z)+z p^{\prime}(z)\right|$
$\leq\left|n p(z)-z p^{\prime}(z)\right|+\left|p^{\prime}(z)\right|=\left|q^{\prime}(z)\right|+\left|p^{\prime}(z)\right|$.
Inequality (4.2) when combined with Lemma 3.5, gives for $|z|=1$,

$$
\begin{equation*}
\left|p^{\prime}(z)\right| \geq \frac{n}{1+k^{\mu}}|p(z)|+\frac{n m}{k^{n-\mu}\left(1+k^{\mu}\right)} . \tag{4.3}
\end{equation*}
$$

where $m=\min _{|z|=k}|p(z)|$.
Now for every real or complex number α, we have
$D_{\alpha} p(z)=n p(z)+(\alpha-z) p^{\prime}(z)$.
This gives for $|z|=1$,

$$
\begin{align*}
\left|D_{\alpha} p(z)\right| & \geq|\alpha|\left|p^{\prime}(z)\right|-\left|n p(z)-z p^{\prime}(z)\right| \\
& =|\alpha|\left|p^{\prime}(z)\right|-\left|q^{\prime}(z)\right| \tag{4.4}
\end{align*}
$$

Now on combining inequality (4.4) with Lemma 3.5, we get for $|z|=1$.

$$
\begin{equation*}
\left|D_{\alpha} p(z)\right| \geq\left(|\alpha|-k^{\mu}\right)\left|p^{\prime}(z)\right|+\frac{n m}{k^{n-\mu}} . \tag{4.5}
\end{equation*}
$$

Inequality (4.3), when combined with above inequality (4.5), gives for $|z|=1$,
$\left|D_{\alpha} p(z)\right| \geq\left(|\alpha|-k^{\mu}\right)\left\{\frac{n}{1+k^{\mu}}|p(z)|+\frac{n m}{k^{n-\mu}\left(1+k^{\mu}\right)}\right\}+\frac{n m}{k^{n-\mu}}$.
which on simplification gives for $|z|=1$,
$\left|D_{\alpha} p(z)\right| \geq n\left(\frac{|\alpha|-k^{\mu}}{1+k^{\mu}}\right)|p(z)|+\frac{n(|\alpha|+1)}{k^{n-\mu}\left(1+k^{\mu}\right)^{\prime}} m$.
from which Theorem 2.1 follows easily.
Acknowledgement: The author is thankful to anonymous referee for valuable comments and suggestions.

References

[1]. A. Aziz, Inequalities for the polar derivative of a polynomial, J. Approx. Theory, 55(1988) 183-193.
[2]. A. Aziz and W.M. Shah, Inequalities for the polar derivative of a polynomial, Indian J. Pure. Appl. Math. 29(1998) 163-173.
[3]. A. Aziz and N.A. Rather, A refinement of a Theorem of Paul Turan concerning polynomials, Math. Inequal. Appl. 1(1998) 231-238.
[4]. N.K. Govil, Some inequalities for derivative of polynomials, J. Approx. Theory, 66(1991) 29-35.
[5]. N.K. Govil and G. N. Mc Tume, Some generalizations involving the polar derivative for an inequality of Paul Turan, Acta. Math. Hung., 104(1-2) (2004), 115-126.
[6]. E. Laguerre, "Oeuvres", 1Gauthier-villars, Paris, (1898).
[7]. M. Marden, Geometry of polynomials, IInd ed. Surveys, No-3, Amer. Math. Soc. Providence, R.I., 1966.
[8]. G. Polya and G. Szeg \ddot{o}, "Problems and Theorems in Analysis" Vol-1, Springler-Verlag, Berlin, 1972.
[9]. W. M. Shah, A generalization of a Theorem of Paul Turan, J. Ramanujan Math. Soc., 1(1996) 67-72.

