
Available online www.jsaer.com

Journal of Scientific and Engineering Research

123

Journal of Scientific and Engineering Research, 2022, 9(2):123-142

Research Article

ISSN: 2394-2630

CODEN(USA): JSERBR

Architecting and Deploying MERN Stack Applications on AWS

ECS

Bhargav Bachina

Abstract This paper presents a comprehensive guide for deploying MERN (MongoDB, Express.js, React.js,

Node.js) stack applications on Amazon Web Services (AWS) Elastic Container Service (ECS). With the

increasing popularity of MERN stack for web development and the growing adoption of cloud computing,

efficient deployment strategies are essential. Leveraging AWS ECS offers scalability, reliability, and ease of

management. The paper provides an overview of MERN stack components, AWS ECS features, and a step-by-

step deployment process covering containerization, task definition creation, cluster setup, service configuration,

and load balancing. Practical examples, code snippets, and best practices are discussed to empower developers

and DevOps engineers in efficiently deploying MERN stack applications on AWS ECS, facilitating streamlined

development workflows and robust, cloud-native solutions.

Keywords AWS, Programming, Software Development, Web Development, Cloud Computing

AWS provides more than 200 services and it’s very important to know which service you should select for your

needs. Amazon Elastic Container Service (Amazon ECS) is a highly scalable, fast, container management

service that makes it easy to run, stop, and manage Docker containers on a cluster of Amazon EC2 instances.

Amazon ECS lets you launch and stop container-based applications with simple API calls, allows you to get the

state of your cluster from a centralized service, and gives you access to many familiar Amazon EC2 features.

In this post, we are going to deploy the MERN Stack on AWS ECS. First, we dockerize our app and push that

image to Amazon ECR and run that app on Amazon ECS. We will also see how to access it from the browser.

• Prerequisites

• Example Project

• Set up a MongoDB Atlas

Bachina B Journal of Scientific and Engineering Research, 2022, 9(2):123-142

Journal of Scientific and Engineering Research

124

• Build For Production

• Externalize Environment Variables

• Dockerize the Project

• Running the WebApp on Docker

• Pushing Docker Image To ECR

• Deploying On AWS ECS

• Access the WebApp from the browser.

• Cleaning Up

• Summary

• Conclusion

1. Prerequisites

If you are new to web development, go through the below link on how to develop and build MERN Stack.

How To Develop and Build MERN Stack

(https://medium.com/bb-tutorials-and-thoughts/how-to-develop-and-build-mern-stack-9a7a1099624)

The other prerequisites to this post are Docker essentials. We are not going to discuss the basics such as what is a

container or Docker. Below are the prerequisites you should know before going through this article.

A. Docker Essentials

You need to understand Docker concepts such as creating images, container management, etc. Below are some of

the links that you can understand about Docker if you are new.

• Docker Docs (https://docs.docker.com/)

• Docker — A Beginner’s guide to Dockerfile with a sample project (https://medium.com/bb-tutorials-

and-thoughts/docker-a-beginners-guide-to-dockerfile-with-a-sample-project-6c1ac1f17490)

• Docker — Image creation and Management (https://medium.com/bb-tutorials-and-thoughts/docker-

image-creation-and-management-9d91e4c277b1)

• Docker — Container Management With Examples Understanding (https://medium.com/bb-tutorials-

and-thoughts/docker-container-management-with-examples-c280906158a8)

• Docker Volumes with an example (https://medium.com/bb-tutorials-and-thoughts/understanding-

docker-volumes-with-an-example-d898cb5e40d7)

B. Kubernetes Essentials

You need to understand Kubernetes’ essentials as well along with Docker essentials. Here are some of the docs to

help you understand the concepts of Kubernetes.

• Kubernetes Docs (https://kubernetes.io/docs/concepts/)

• How to Get Started with Kubernetes (https://medium.com/bb-tutorials-and-thoughts/how-to-get-

started-with-kubernetes-e06ea82d23b)

• Some Example Projects (https://medium.com/bb-tutorials-and-thoughts/docker/home)

C. AWS Prerequisites

Amazon is the leading cloud provider and pioneered Cloud Computing. AWS provides more than 200 services,

and it’s very important to know which service you should select for your needs.

If you are new to AWS or just getting started you can see the following article.

How To Get Started With AWS

(https://medium.com/bb-tutorials-and-thoughts/how-to-get-started-with-aws-9731a4f855a7)

2. Example Project

Here is an example of a simple tasks application that creates, retrieves, edits, and deletes tasks. We actually run

the API on the NodeJS server and you can use MongoDB to save all these tasks.

https://miro.medium.com/v2/resize:fit:720/1*JN0njPe-UZ16utRelcQn5w.gif

As you add users we are making an API call to the nodejs server to store them and get the same data from the

server when we retrieve them. You can see network calls in the following video.

https://miro.medium.com/v2/resize:fit:720/1*j7EWjQuwx76WTOILWDvXHQ.gif

https://medium.com/bb-tutorials-and-thoughts/how-to-develop-and-build-mern-stack-9a7a1099624
https://medium.com/bb-tutorials-and-thoughts/docker-a-beginners-guide-to-dockerfile-with-a-sample-project-6c1ac1f17490
https://medium.com/bb-tutorials-and-thoughts/docker-a-beginners-guide-to-dockerfile-with-a-sample-project-6c1ac1f17490
https://medium.com/bb-tutorials-and-thoughts/docker-image-creation-and-management-9d91e4c277b1
https://medium.com/bb-tutorials-and-thoughts/docker-image-creation-and-management-9d91e4c277b1
https://medium.com/bb-tutorials-and-thoughts/docker-container-management-with-examples-c280906158a8
https://medium.com/bb-tutorials-and-thoughts/docker-container-management-with-examples-c280906158a8
https://medium.com/bb-tutorials-and-thoughts/understanding-docker-volumes-with-an-example-d898cb5e40d7
https://medium.com/bb-tutorials-and-thoughts/understanding-docker-volumes-with-an-example-d898cb5e40d7
https://kubernetes.io/docs/concepts/
https://medium.com/bb-tutorials-and-thoughts/how-to-get-started-with-kubernetes-e06ea82d23b
https://medium.com/bb-tutorials-and-thoughts/how-to-get-started-with-kubernetes-e06ea82d23b
https://medium.com/bb-tutorials-and-thoughts/docker/home
https://medium.com/bb-tutorials-and-thoughts/how-to-get-started-with-aws-9731a4f855a7
https://miro.medium.com/v2/resize:fit:720/1*JN0njPe-UZ16utRelcQn5w.gif
https://miro.medium.com/v2/resize:fit:720/1*j7EWjQuwx76WTOILWDvXHQ.gif

Bachina B Journal of Scientific and Engineering Research, 2022, 9(2):123-142

Journal of Scientific and Engineering Research

125

Here is a Github link to this project. You can clone it and run it on your machine.

// clone the projectgit clone https://github.com/bbachi/mern-stack-example

// React Codecd uinpm installnpm start

// API codecd apinpm installnpm run dev

3. Set up a MongoDB Atlas

The core of MongoDB Cloud is MongoDB Atlas (https://www.mongodb.com/cloud/atlas), a fully managed

cloud database for modern applications. Atlas is the best way to run MongoDB, the leading modern database.

There are two ways to deploy MongoDB on AWS and you can check them here on this page

(https://aws.amazon.com/quickstart/architecture/mongodb/). We are using fully-managed MongoDB Cluster for

this post.

Let’s create your MongoDB Account here

(https://account.mongodb.com/account/login) .You can either log in with any of your Gmail accounts or you can

provide any other email address to create the account.

Figure 1: MongoDB Atlas login

Once you log in with your account you will see the dashboard below where you can create clusters.

Figure 2: MongoDB Dashboard

Let’s create a cluster called todo-cluster by clicking on the build a cluster and selecting all the details below.

Make sure you select AWS Cloud.

https://github.com/bbachi/mern-stack-example
https://account.mongodb.com/account/login

Bachina B Journal of Scientific and Engineering Research, 2022, 9(2):123-142

Journal of Scientific and Engineering Research

126

Figure 3: Creating a Cluster

Make sure you select the Cloud Environment since we are deploying this on AWS Cloud.

Figure 4: Cloud Environment

Here is the cluster we created below.

Figure 5: todo-cluster

Bachina B Journal of Scientific and Engineering Research, 2022, 9(2):123-142

Journal of Scientific and Engineering Research

127

You can click on the connect button to see the details about connecting to the cluster. You need to create a user

and Allow Access from anywhere for now.

Figure 6: Connecting to cluster

Figure 7: Connecting to cluster

You can see three ways of connecting to the cluster on the next screen.

Figure 8: Ways of connecting

We will see all these three ways to connect to the cluster in the next sections.

Bachina B Journal of Scientific and Engineering Research, 2022, 9(2):123-142

Journal of Scientific and Engineering Research

128

A. Create a Database

We have created a cluster and it’s time to create a database. Click on the collections to create a new database as

below.

Figure 9: Collections

Click on the Add My Own Data Button to create a new database.

Figure 10: Add My Own Data

I have given a database name as tasks and the collection name is todos.

Figure 11: Creating a Database

You will see the below dashboard once the database is created. We have a database with empty collections.

Figure 12: Empty Collection

Bachina B Journal of Scientific and Engineering Research, 2022, 9(2):123-142

Journal of Scientific and Engineering Research

129

Let’s insert the first document into the collection by clicking the button insert document

Figure 13: Inserting the Document

Figure 14: Document Inserted

B. Connect with Mongo Compass

We have seen three ways we can connect to this cluster and read the collections. Let’s connect to the database

with Mongo Compass. The first thing we need to do is to download and install Mongo Compass from this

link (https://www.mongodb.com/try/download/compass).

Let’s get a connection string from the Atlas dashboard as below.

Figure 15: Connect with MongoDB Compass

Replace the password with the password that you created above.

https://www.mongodb.com/try/download/compass

Bachina B Journal of Scientific and Engineering Research, 2022, 9(2):123-142

Journal of Scientific and Engineering Research

130

Figure 16: Connection String

Let’s connect to the database with the connection string

Figure 17: Connect with Connection String

You can actually see the same collection in the MongoDB Compass as well.

Figure 18: MongoDB Compass

Here is the connection string that you can connect to MongoDB.

mongodb+srv://admin123:admin123@todo-cluster.zpikr.mongodb.net/?retryWrites=true&w=majority

4. Build for Production

There are so many ways you can build MERN Stack for production and it depends on the use case or where we

are deploying the MERN Stack. This article explains different ways to build MERN Stack for production.

How to Build MERN Stack for Production (https://medium.com/bb-tutorials-and-thoughts/how-to-build-mern-

stack-for-production-1462e70a35cb)

http://twitter.com/todo
https://medium.com/bb-tutorials-and-thoughts/how-to-build-mern-stack-for-production-1462e70a35cb
https://medium.com/bb-tutorials-and-thoughts/how-to-build-mern-stack-for-production-1462e70a35cb

Bachina B Journal of Scientific and Engineering Research, 2022, 9(2):123-142

Journal of Scientific and Engineering Research

131

5. Externalize Environment Variables

Reading environment variables is one of the most common things that we do when we are building apps. It

doesn’t matter whether you are developing front end app or backend API you have so many variables that should

be outside of your application source code that makes your app or API more configurable. For example, if you

want to hide logger statements in production or do something else based on the environment you can pass this as

an environment variable. If you want to change later all you need to change is in one place.

Reading Environment Variables In NodeJS REST API

(https://medium.com/bb-tutorials-and-thoughts/reading-environment-variables-in-nodejs-rest-api-e75bb04b813d)

When it comes to this application, there are two environment variables one is the Mongo Connection string and

another one is PORT.

PORT=80MONGO_CONNECTION_STRING=mongodb+srv://admin123:admin123@todocluster.zpikr.mongodb.net

/?retryWrites=true&w=majority

You have to put these in the webpack.config.js file so that these values are used when we dockerize the app

for production.

https://gist.github.com/bbachi/aa25aec5b82320d28cc5ee137bb8b8cf#file-webpack-config-js

7. Dockerize the WebApp

Amazon EKS is a managed service that makes it easy for you to run Kubernetes on AWS. The first thing you

need to do is to dockerize your project.

We use the multi-stage builds for efficient docker images. Building efficient Docker images are very important

for faster downloads and lesser surface attacks. In this multi-stage build, building a React app and putting those

static assets in the build folder is the first step. The second step involves building the API. Finally, the third step

involves taking those static build files and API build and serving the React static files through the API server.

We need to update the server.js file in the NodeJS API to let Express know about the React static assets and

send the index.html as a default route. Here is the updated server.js file. Notice the line numbers 41 and 20.

https://gist.github.com/bbachi/e828985a85cfb9da08164afa88549211#file-server-js

Let’s build an image with the Dockerfile. Here are the things we need for building an image.

A. Stage 1

• Start from the base image node:14-slim

• There are two package.json files: one is for the nodejs server and another is for React UI. We need to

copy these into the Docker file system and install all the dependencies.

• We need this step first to build images faster in case there is a change in the source later. We don’t

want to repeat installing dependencies every time we change any source files.

• Copy all the source files.

• Install all the dependencies.

• Run npm run build to build the React App and all the assets will be created under build a folder within

the ui folder.

B. Stage 2

• Start from the base image node:14-slim

• Copy the nodejs package.json into ./api folder

• Install all the dependencies

• Finally, copy the server.js into the same folder

C. Stage 3

• Start from the base image node:14-slim

• Copy all the built files from UI Build

• Copy all the built files from API Build

• Finally, run this command node api.bundle.js

Here is the complete Dockerfile for the entire build.

https://gist.github.com/bbachi/06eecfc6c956d01c99180523c2677c15#file-dockerfile

https://medium.com/bb-tutorials-and-thoughts/reading-environment-variables-in-nodejs-rest-api-e75bb04b813d
http://twitter.com/todo
https://gist.github.com/bbachi/aa25aec5b82320d28cc5ee137bb8b8cf#file-webpack-config-js
https://gist.github.com/bbachi/e828985a85cfb9da08164afa88549211#file-server-js
https://gist.github.com/bbachi/06eecfc6c956d01c99180523c2677c15#file-dockerfile

Bachina B Journal of Scientific and Engineering Research, 2022, 9(2):123-142

Journal of Scientific and Engineering Research

132

Let’s build the image with the following command.

// build the imagedocker build -t mern-image

// check the imagesdocker images

Once the Docker image is built. You can run the image with the following command.

// run the containerdocker run -d -p 80:80 --name mern-stack mern-image

// list the containerdocker ps

// logsdocker logs mern-stack

// exec into running containerdocker exec -it mern-stack /bin/sh

Figure 19: docker ps

You can access the application on the web at this address http://localhost

Figure 20: MERN Stack Running on port 80

8. Pushing Docker Image to ECR

Amazon Elastic Container Registry (ECR) is a fully-managed Docker (https://aws.amazon.com/docker/)

container registry that makes it easy for developers to store, manage, and deploy Docker container images.

Amazon ECR is integrated with Amazon Elastic Container Service (ECS) (https://aws.amazon.com/ecs/),

simplifying your development to production workflow.

Amazon EKS works with Amazon ECR and ECR public. But, in this post, we see how we can use Amazon ECR

to store our Docker images. Once you set up the Amazon account and create an IAM user with Administrator

access the first thing you need to create a Docker repository.

You can create your first repository either by AWS console or AWS CLI

A. AWS Console

Creating a repository with an AWS console is straightforward and all you need to give a name.

Figure 21: Creating a Repository

http://localhost/

Bachina B Journal of Scientific and Engineering Research, 2022, 9(2):123-142

Journal of Scientific and Engineering Research

133

Figure 22: Repository

B. AWS CLI

The first thing you need to do is authenticate to your default registry. Here is the command to authenticate to your

default registry. You need to make sure you are putting the correct regions and account id in the command.

aws ecr get-login-password --region us-east-2 | docker login --username AWS --password-stdin

aws_account_id.dkr.ecr.us-east-2.amazonaws.com

Figure 23: Authenticating to ECR

aws ecr create-repository --repository-name rest-api --image-scanning-configuration scanOnPush=true --image-tag-

mutability IMMUTABLE --region us-east-2

Figure 23: Creating a Repository

You will have the same result as well.

Figure 24: Repository

C. Tagging your local Docker image and Pushing

You created a Docker image on your local machine earlier. It’s time to tag that image with this repository URI in

the above image.

docker tag webapp:latest 864227929192.dkr.ecr.us-east-2.amazonaws.com/webapp:v1

Once you tag the image and it’s time to push the Docker image into your repository.

// list the imagesdocker images

// push the imagedocker push 864227929192.dkr.ecr.us-east-2.amazonaws.com/webapp:v1

Figure 25: Pushing Docker Image

Bachina B Journal of Scientific and Engineering Research, 2022, 9(2):123-142

Journal of Scientific and Engineering Research

134

Figure 26: Docker Image Pushed to Repository

9. Deploying on AWS ECS

Amazon ECS makes it easy to deploy, manage, and scale Docker containers running applications, services, and

batch processes. Amazon ECS places containers across your cluster based on your resource needs and is

integrated with familiar features like Elastic Load Balancing, EC2 security groups, EBS volumes, and IAM roles.

You can explore more on the AWS documentation here

(https://docs.aws.amazon.com/AmazonECS/latest/developerguide/Welcome.html).

The Amazon ECS container agent makes calls to the Amazon ECS API on your behalf. Container instances that

run the agent require an IAM policy and role for the service to know that the agent belongs to you. We need to

add the AmazonEC2ContainerServiceforEC2Role policy to the user we created below.

Figure 27: The policy added to the user we created

These are the objects of AWS ECS and how they are related.

Figure 28: ECS objects

The first step is to create a cluster and you can select the Fargate one. We are launching using AWS using

Fargate. AWS Fargate is a technology that you can use with Amazon ECS to run containers

(https://aws.amazon.com/what-are-containers) without having to manage servers or clusters of Amazon EC2

instances. With AWS Fargate, you no longer have to provision, configure, or scale clusters of virtual machines to

run containers. This removes the need to choose server types, decide when to scale your clusters or optimize

cluster packing.

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/Welcome.html

Bachina B Journal of Scientific and Engineering Research, 2022, 9(2):123-142

Journal of Scientific and Engineering Research

135

Figure 29: Creating a cluster

You need to give it a name and some other configuration if needed.

Figure 30: Webapp-Cluster

You can cluster as below once created.

Figure 31: Cluster Created

Bachina B Journal of Scientific and Engineering Research, 2022, 9(2):123-142

Journal of Scientific and Engineering Research

136

Now, we need to create a task definition so that we can deploy that as a service on this cluster. Let’s click on the

tasks tab and go to the task definitions page. Let’s click on the hamburger icon on the left and click on the task

definitions.

Figure 32: Task Definitions

Let’s click on the create task definition.

Figure 33: Creating Task Definition

Select the Fargate on the next screen.

Figure 34: Fargate

Let’s configure task definition on the next screen such as name, CPU, memory, etc.

Bachina B Journal of Scientific and Engineering Research, 2022, 9(2):123-142

Journal of Scientific and Engineering Research

137

Figure 35: Configuring Task Definition

Figure 36: Configuring Task Definition

You need to add container details from the ECR that we pushed in the above sections.

Figure 37: Adding a container

Bachina B Journal of Scientific and Engineering Research, 2022, 9(2):123-142

Journal of Scientific and Engineering Research

138

Once you add the container and hit the create button and you can see the status of the task definition on the next

screen.

Figure 38: Launch Status

Let’s go to the cluster that we created above and click on the deploy button under the service section.

Figure 39: Deploying the service

On the next screen, we need to select the same task definition that we have created above.

Figure 40: Deployment Configuration

Finally, click on the deploy button.

Bachina B Journal of Scientific and Engineering Research, 2022, 9(2):123-142

Journal of Scientific and Engineering Research

139

Figure 41: Create Service

Once you click on the Create Service button, you can see the status below.

Figure 42: Deployment Successful

10: Access the WebApp from the browser

We know the web app runs on port 80 from the logs. You can see the logs when you click on the service and go

to the details page.

Figure 43: WebApp Logs

Now, we need to find the public IP Address of the service. You need to go to the Configuration and tasks tab and

click on the specific task definition that is running your ECR Image.

Bachina B Journal of Scientific and Engineering Research, 2022, 9(2):123-142

Journal of Scientific and Engineering Research

140

Figure 44: Tasks

Once you are on the task page you can take the public IP address from there or you can go to the particular EC2

instance.

Figure 45: Public IPAddress

Now, we know the WebApp runs on port 80 and you can access it with the below address.

http://3.17.69.231/

Figure 46: Accessing the WebApp

One thing you need to do is that you have to add an inbound rule for all the traffic. Let’s click on the ENI Id and

go to the Security Groups and add an inbound rule as below.

http://3.17.69.231/

Bachina B Journal of Scientific and Engineering Research, 2022, 9(2):123-142

Journal of Scientific and Engineering Research

141

Figure 47: Security Groups

Figure 48: InBound Rule

11. Cleaning Up

We need to clean up all the resources that we used here if you don’t want to incur any extra charges.

A. ECR

We need to remove the repository in the ECR.

Figure 49: Deleting the repository

B. ECS

We need to delete the cluster on the ECS.

Bachina B Journal of Scientific and Engineering Research, 2022, 9(2):123-142

Journal of Scientific and Engineering Research

142

Figure 50: Deleting Cluster

12: Summary

• Amazon Elastic Container Service (Amazon ECS) is a highly scalable, fast, container management

service that makes it easy to run, stop, and manage Docker containers on a cluster of Amazon EC2

instances.

• There are two launch types: EC2 and Fargate

• With AWS Fargate, you no longer have to provision, configure, or scale clusters of virtual machines to

run containers.

• We need to add AmazonEC2ContainerServiceforEC2Role policy to the user so that The Amazon

ECS container agent makes calls to the Amazon ECS API on your behalf.

• You can use any Docker image registry such as Docker Hub, AWS ECR, etc.

• Clean up all the resources after you practice this.

13. Conclusion

In this article, we've explored the process of deploying the MERN Stack on AWS ECS Fargate. Moving

forward, subsequent discussions will delve into additional aspects such as automating deployments, configuring

environment variables, establishing custom domain links, and other relevant configuration procedures. These

forthcoming insights will provide a comprehensive understanding of deploying and managing MERN Stack

applications on AWS ECS Fargate, contributing valuable insights to the field of cloud-based application

deployment and management.

References

[1]. AWS Docs for ECS https://docs.aws.amazon.com/ecs/

[2]. Official Docker Guides https://docs.docker.com/get-started/overview/

[3]. Official React Documentation https://react.dev/

[4]. Official MongoDB Docs https://www.mongodb.com/docs/

https://docs.aws.amazon.com/ecs/
https://docs.docker.com/get-started/overview/
https://react.dev/
https://www.mongodb.com/docs/

