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Abstract In this study, we investigate the fixed point property for asymptotically nonexpansive mappings on some 

large classes of closed, bounded and convex subsets in some 𝐿1[0,1]-like Banach spaces which are in connection 

with the corresponding function spaces of the Köthe-Toeplitz duals of some generalized Cesàro difference 

sequence spaces. In 1970, Cesàro Sequence Spaces was introduced by Shiue.  In 1981, Kızmaz  defined difference 

sequence spaces for ℓ∞, c0 and c. Then, in 1983, Orhan introduced Cesàro Difference Sequence Spaces. It has 

been noticed that their Köthe-Toeplitz duals are contained in ℓ1 and fails the fixed point property for nonexpansive 

mappings. Very recently Nezir and Mustafa studied these spaces and they saw that there exist large classes of 

closed bounded and convex subsets with fixed point property for nonexpansive mappings as they wanted to do an 

analogue study of Goebel and Kuczumow’s from 1979 where Goebel and Kuczomow studied the same question 

in larger space  ℓ1. It is notable that after Goebel and Kuczumow’s study, Kaczor and Prus wanted to find large 

classes of closed bounded and convex subsets with fixed point property for asymptotically nonexpansive 

mappings; then indeed they gave positive answer in ℓ1. In this study, we study Kaczor and Prus analogy in the 

Lebesgue-like corresponding function spaces of the spaces in connection with the Köthe-Toeplitz duals of 

generalized Cesàro difference sequence spaces and show that affine asypmtotically nonexpansive mappings on 

some large classes of closed, bounded and convex subsets of those spaces have fixed points. 

Keywords Fixed point property, Asymptotically nonexpansive mappings, Köthe-Toeplitz duals, Cesaro 

difference sequences, Lebesgue-like Banach space 

2010 Mathematics Subject Classification: 46B45, 47H09, 46B10 

1. Introduction and preliminaries 

A Banach space (𝑋, ‖. ‖) said to have the fixed point property for nonexpansive mappings if every non-expansive 

self mappings defined on any non-empty closed, bounded and convex subset of the Banach space has a fixed 

point. As it is well known that nonexpansive mappings are the mappings which do not increase distances; that is, 

for a self mapping 𝑇 defined on a subset C of a Banach space if ∥ 𝑇(𝑥) − 𝑇(𝑦) ∥≤∥ 𝑥 − 𝑦 ∥, for  all  𝑥, 𝑦 ∈ 𝐶 then 

we say 𝑇 is nonexpansive mapping. It has been seen that most classical Banach spaces fail the fixed point property 

and especially there is a fact that if a Banach space is a non-reflexive Banach lattice then it fails the fixed point 

property if it contains either an isomorphic copy of c0, Banach space of scalar sequences converging to 0, or an 

isomorphic copy of ℓ1, Banach space of absolutely summable scalar sequences. It is a well known fact that there 

is a strong relation between reflexivity and fixed point property. Moreover, researchers have been interested in 
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checking if a nonreflexive Banach space can be renormed to have the fixed point property to see how the fixed 

point property is related with reflexivity. In fact, the first example of a nonreflexive Banach space which is 

renormable to have the fixed point property was given by Lin [12]. Lin showed this fact by setting an equivalent 

norm on Banach space of absolutely summable scalar sequences, ℓ1 . Because of sharing many common 

properties, it is natural to ask if , Banach space of scalar sequences converging to 0, 𝑐0 can be renormed to have 

the fixed point property for non-expansive mappings as another well known classical non-reflexive Banach space. 

Hernandes-Lineares and Japón [14] obtained an example for the class of nonreflexive Banach spaces which can 

be renormed to have the fixed point property for affine nonexpansive mappings and their space was the Banach 

space of Lebesgue integrable functions on [0,1], 𝐿1[0,1]. It can be said that all these works are inspired by the 

work of Goebel and Kuczumow [9]. Goebel and Kuczumow showed that there exists very large class of non-

weakly compact, closed, bounded and convex subsets of ℓ1 respect to weak* topology of ℓ1 with fixed point 

property for non-expansive mappings. Goebel and Kuczumow showed that there exists very large class of non-

weakly compact, closed, bounded and convex subsets of ℓ1 respect to weak* topology of ℓ1 with fixed point 

property for non-expansive mappings. Later, Kaczor and Prus [10] investigated if similar result could be done for 

asymptotically nonexpansive mappings and they saw that there exists a large class of closed, bounded, convex 

subsets in ℓ1 with fixed point property for affine asymptotically non-expansive mappings.  

Thus, in this study, we work on Kaczor and Prus analogy for some Banach space contained in Lebesgue space 

𝐿1[0,1]. The spaces we consider are some spaces in structural connection with the corresponding function spaces 

of the Köthe-Toeplitz duals of some generalized Cesàro Difference Sequence Space which contained in Lebesgue 

space 𝐿1[0,1]. We show that there exists a very large class of closed, bounded and convex subsets of those spaces 

with the fixed point property for asymptotically non-expansive mappings under affinity condition. 

We recall that the Cesàro sequence spaces 

ces𝑝 = {𝑥 = (𝑥𝑛)𝑛 ⊂ ℝ| (∑ (
1

𝑛
∑ |𝑥𝑘|𝑛

𝑘=1 )
𝑝

∞
𝑛=1 )

1
𝑝⁄

< ∞} 

and  

ces∞ = {𝑥 = (𝑥𝑛)𝑛 ⊂ ℝ| sup
𝑛

1

𝑛
∑ |𝑥𝑘|𝑛

𝑘=1 < ∞} 

were introduced by Shiue [19] in 1970, where 1 ≤ 𝑝 < ∞. It has been shown that ℓ𝑝 ⊂ ces𝑝for 1 < 𝑝 ≤ ∞. 

Moreover, it has been shown that Cesàro sequence spaces ces𝑝for 1 < 𝑝 < ∞ are seperable reflexive Banach 

spaces. Furthermore, it was also proved by Cui [3], Cui, Hudzik and Li [4], and Cui, Meng, and Pluciennik [5] 

that Cesàro sequence spaces ces𝑝for 1 < 𝑝 < ∞ have the fixed point property.  

Later, in 1981, Kızmaz [11] introduced difference sequence spaces for ℓ∞, cand c0 where they are the Banach 

spaces of bounded, convergent and null sequences 𝑥 = (𝑥𝑛)𝑛, respectively. As it is seen below, his definitions for 

these spaces were given using difference operator applied to the sequence 𝑥, △ 𝑥 = (𝑥𝑘 − 𝑥𝑘+1)𝑘. 

ℓ∞(△) = {𝑥 = (𝑥𝑛)𝑛 ⊂ ℝ| △ 𝑥 ∈ ℓ∞}, 

c(△) = {𝑥 = (𝑥𝑛)𝑛 ⊂ ℝ| △ 𝑥 ∈ c}, 

c0(△) = {𝑥 = (𝑥𝑛)𝑛 ⊂ ℝ| △ 𝑥 ∈ c0}. 

Kızmaz also investigated Köthe-Toeplitz Duals and some properties of these spaces. Furthermore, Cesàro 

sequence spaces 𝑋𝑝 of non-absolute type were defined by NgPeng-Nung and LeePeng-Yee [17] as follows: 

𝑋𝑝 = {𝑥 = (𝑥𝑛)𝑛 ⊂ ℝ| (∑ |
1

𝑛
∑ 𝑥𝑘

𝑛
𝑘=1 |

𝑝
∞
𝑛=1 )

1
𝑝⁄

< ∞} 

and  

𝑋∞ = {𝑥 = (𝑥𝑛)𝑛 ⊂ ℝ| sup
𝑛

|
1

𝑛
∑ 𝑥𝑘

𝑛
𝑘=1 | < ∞}, 

where 1 ≤ 𝑝 < ∞. They prove that 𝑋𝑝  is linearly isomorphic and isometric to ℓ𝑝  for 1 ≤ 𝑝 ≤ ∞. Thus, one 

would easily deduce that they have similar properties in terms of the fixed point theory. That is, for 1 < 𝑝 < ∞ 

they have the fixed point property for nonexpansive mappings but for other two cases they fail. A survey study 

on Cesàro sequence spaces studying fixed point theory can be seen in the study by Chen, Cui, Hudzik, and Sims 

[2].   
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An important study by Orhan [18] was done, and he introduced Cesàro Difference Sequence Spaces by the 

following definitions: 

𝐶𝑝 = {𝑥 = (𝑥𝑛)𝑛 ⊂ ℝ| (∑ |
1

𝑛
∑ △ 𝑥𝑘

𝑛
𝑘=1 |

𝑝
∞
𝑛=1 )

1
𝑝⁄

< ∞} 

and  

𝐶∞ = {𝑥 = (𝑥𝑛)𝑛 ⊂ ℝ| sup
𝑛

|
1

𝑛
∑ △ 𝑥𝑘

𝑛
𝑘=1 | < ∞}, 

where 1 ≤ 𝑝 < ∞ and △ 𝑥𝑘 = 𝑥𝑘 − 𝑥𝑘+1 for each 𝑘 ∈ ℕ. He noted that their norms are given as below for any 

𝑥 = (𝑥𝑛)𝑛: 

‖𝑥‖𝑝
∗ = |𝑥1| + (∑ |

1

𝑛
∑△ 𝑥𝑘

𝑛

𝑘=1

|

𝑝∞

𝑛=1

)

1
𝑝⁄

and   ‖𝑥‖∞
∗ = |𝑥1| + sup

𝑛
|
1

𝑛
∑△ 𝑥𝑘

𝑛

𝑘=1

|, 

respectively. 

Orhan showed that there exists a linear bounded operator 𝑆: 𝐶𝑝 → 𝐶𝑝 for 1 ≤ 𝑝 ≤ ∞ such that Köthe-Toeplitz 

𝛽 −Duals of these spaces are given respectively as follows: 

𝑆(𝐶𝑝)𝛽 = {𝑎 = (𝑎𝑛)𝑛 ⊂ ℝ|(𝑛𝑎𝑛)𝑛 ∈ ℓ𝑞} where 1 < 𝑝 < ∞ and 𝑞 =
𝑝

𝑝 − 1
, 

𝑆(𝐶1)𝛽 = {𝑎 = (𝑎𝑛)𝑛 ⊂ ℝ|(𝑛𝑎𝑛)𝑛 ∈ ℓ∞} and 

𝑆(𝐶∞)𝛽 = {𝑎 = (𝑎𝑛)𝑛 ⊂ ℝ|(𝑛𝑎𝑛)𝑛 ∈ ℓ1}. 

It is easily deduced that these spaces also have the similar properties in terms of the fixed point theory. That is, 

for 1 < 𝑝 < ∞ they have the fixed point property for nonexpansive mappings but for other two cases they fail. 

Note also that Köthe-Toeplitz Dual for 𝑝 = ∞ case in Orhan’s study and ℓ∞ case in Kızmaz study coincides. So 

for 𝑚 = 1, considering the Köthe-Toeplitz Dual, we can write  

Υ1: = 𝑆(𝐶∞)𝛽 = {𝑎 = (𝑎𝑛)𝑛 ⊂ ℝ|(n𝑎𝑛)𝑛 ∈ ℓ1} 

= {𝑎 = (𝑎𝑘)𝑘 ⊂ ℝ ∶     ‖𝑎‖𝛥 = ∑

∞

𝑘=1

𝑘|𝑎𝑘| < ∞} 

such that Υ1 ⊂ ℓ1 and the corresponding function space for this dual can be given as below:   

 Σ1: = {
𝑓: [0,1] → ℝ
measurable

:  ‖𝑓‖ =   ∫
1

0
t|𝑓(𝑡)|𝑑𝑡 < ∞  }.  

Here note that 𝐿1[0,1] ⊂ Σ1 and Υ1 is the space when counting measure is used for Σ1.  

Et and Çolak [6] generalized the spaces introduced in Kızmaz’s work [11] in the following way for 𝑚 ∈ ℕ.  

ℓ∞(△𝑚) = {𝑥 = (𝑥𝑛)𝑛 ⊂ ℝ| △𝑚 𝑥 ∈ ℓ∞}, 

c(△𝑚) = {𝑥 = (𝑥𝑛)𝑛 ⊂ ℝ| △𝑚 𝑥 ∈ c}, 

c0(△𝑚) = {𝑥 = (𝑥𝑛)𝑛 ⊂ ℝ| △𝑚 𝑥 ∈ c0} 

where △ 𝑥 = (△ 𝑥𝑘) = (𝑥𝑘 − 𝑥𝑘+1)𝑘 , △0 𝑥 = (𝑥𝑘)𝑘, △𝑚 𝑥 = (△𝑚 𝑥𝑘) = (△𝑚−1 𝑥𝑘 −△𝑚−1 𝑥𝑘+1)𝑘 and 

△𝑚 𝑥𝑘 = ∑ (−1)𝑖(𝑚
𝑖

)𝑚
𝑖=0 𝑥𝑘+𝑖  for each 𝑘 ∈ ℕ. 

Also, Et [7] and Tripathy et. al. [20] generalized the space introduced by Orhan [18] in the following way for 𝑚 ∈

ℕ. 

𝑋𝑝(△𝑚) = {𝑥 = (𝑥𝑛)𝑛 ⊂ ℝ| (∑ |
1

𝑛
∑ △𝑚 𝑥𝑘

𝑛
𝑘=1 |

𝑝
∞
𝑛=1 )

1
𝑝⁄

< ∞} 

and  

𝑋∞(△𝑚) = {𝑥 = (𝑥𝑛)𝑛 ⊂ ℝ| sup
𝑛

|
1

𝑛
∑ △𝑚 𝑥𝑘

𝑛
𝑘=1 | < ∞}, 

Then, it is seen that that Köthe-Toeplitz Dual for 𝑝 = ∞ case in Et’s study [7] and ℓ∞ case in Et and Çolak study 

[6] coincides such that Köthe-Toeplitz Dual was given as below for any 𝑚 ∈ ℕ. 

Υ𝑚 ≔ {𝑎 = (𝑎𝑛)𝑛 ⊂ ℝ ∶  (𝑛𝑚𝑎𝑛)𝑛 ∈ ℓ1} = {𝑎 = (𝑎𝑘)𝑘 ⊂ ℝ ∶   ‖𝑎‖ = ∑ 𝑘𝑚|𝑎𝑘|

∞

𝑘=1

< ∞}. 

Note that Υ𝑚 ⊂ ℓ1 for any 𝑚 ∈ ℕ. 
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One can see that corresponding function space for these duals can be given as below: 

Σ𝑚 ≔ {
𝑓: [0,1] → ℝ
measurable

: ‖𝑓‖ =  ∫ 𝑡𝑚|𝑓(𝑡)|𝑑𝑡

1

0

< ∞ }. 

Note that 𝐿1[0,1] ⊂ Σ𝑚 and Υ𝑚 is the space when counting measure is used for Σ𝑚 . 

 

We also note that under affinity condition, Goebel and Kuczumow analogy for Σ1  was studied by Nezir and 

Oymak [16] but without the need for affinity condition, in the study by Nezir and Mustafa [15] study, Goebel and 

Kuczumow analogy was studied. As noted in the study by Nezir and Mustafa [15], one can consider another space 

which is in structural connection with Σ1. Nezir and Mustafa answered some fixed point theory oriented questions 

for the Köthe-Toeplitz dual of a Cesàro difference sequence space, the aforementioned space which has structural 

connection with Σ1 and the corresponding function spaces for both. In fact, Nezir and Mustafa showed those two 

function spaces fail the weak fixed point property for isometries and contractive mappings, that is they find weakly 

compact and convex subsets and fixed point free isometric and contractive self mappings defined on those subsets. 

Moreover, they study Goebel and Kuczumow analogy for the corresponding sequence spaces of those function 

spaces when the counting measure is used. Here we will be concentrated on the aforementioned structural related 

space with Σ𝑚 for any 𝑚 ∈ ℕ. The space we consider will be defined as below for any 𝑚 ∈ ℕ. 

ℳ𝑚: = {
𝑓: [0,1] → ℝ
measurable

:  ‖𝑓‖ =   ∫
1

0

|𝑓(𝑡)|

𝑡𝑚
𝑑𝑡 < ∞  }. 

 

As we have already stated, in this study, for any 𝑚 ∈ ℕ, we consider Kaczor and Prus [10] analogy for ℳ𝑚 which 

is contained in the Lebesgue space 𝐿1[0,1]. We show that there exists a large class of closed, bounded and convex 

subsets of ℳ𝑚 with fixed point property for affine asymptotically ‖ . ‖~-nonexpansive mappings.  

Now we provide some preliminaries before giving our main results.  

Definition 1.1. Let (𝑋, ∥⋅∥) be a Banach space and 𝐶 is a non-empty closed, bounded, convex subset. 

1.  If 𝑇: 𝐶 → 𝐶 is a mapping such that for all 𝜆 ∈ [0,1] and for all 𝑥, 𝑦 ∈ 𝐶, 𝑇((1 − 𝜆)𝑥 + 𝜆 𝑦) = (1 − 𝜆)𝑇(𝑥) +

𝜆 𝑇(𝑦) then 𝑇 is said to be an  affine mapping. 

2. If  𝑇: 𝐶 → 𝐶 is a mapping such that  ∥ 𝑇(𝑥) − 𝑇(𝑦) ∥≤∥ 𝑥 − 𝑦 ∥ ,    𝑓𝑜𝑟  𝑎𝑙𝑙  𝑥, 𝑦 ∈ 𝐶 then 𝑇 is said to be a  

nonexpansive mapping. Also, if for every nonexpansive mapping 𝑇: 𝐶 → 𝐶, there exists 𝑧 ∈ 𝐶 with 𝑇(𝑧) = 𝑧, then 

𝐶 is said to have the  fixed point property for nonexpansive mappings [fpp(ne)]. 

3.  If  𝑇: 𝐶 → 𝐶 is a mapping such that there exists a sequence of scalars (𝑘𝑛)𝑛∈𝑁 decreasingly approach  to  1   

and   ∥ 𝑇𝑛(𝑥) − 𝑇𝑛(𝑦) ∥≤ 𝑘𝑛 ∥ 𝑥 − 𝑦 ∥ ,    𝑓𝑜𝑟  𝑎𝑙𝑙  𝑥, 𝑦 ∈ 𝐶  and for all 𝑛 ∈ ℕ  then 𝑇  is said to be an 

asymptotically nonexpansive mapping. 

Also, if for every asymptotically nonexpansive mapping 𝑇: 𝐶 → 𝐶, there exists 𝑧 ∈ 𝐶 with 𝑇(𝑧) = 𝑧, then 𝐶 is said 

to have the  fixed point property for asymptotically nonexpansive mappings [fpp(ane)]. 

Remark 1.1. In 1979, Goebel and Kuczumow [9] showed there exists a large class of closed, bounded and convex 

subsets of ℓ1 using a key lemma they obtained. Their lemma says that if {𝑥𝑛} is a sequence in ℓ1 converging to 𝑥 

in weak-star topology, then for any 𝑦 ∈ ℓ1,  

 𝑟(𝑦) = 𝑟(𝑥) + ‖𝑦 − 𝑥‖1  𝑤ℎ𝑒𝑟𝑒  𝑟(𝑦) = 𝑙𝑖𝑚𝑠𝑢𝑝
𝑛

‖𝑥𝑛 − 𝑦‖1  . 

We will call this fact ∴. 

The analogue of this lemma for 𝐿1[0,1] is observed via the result in Brezis and Lieb [1]. Note that Hernández-

Linares pointed this fact in his Ph.D. thesis, Hernández-Linares [13], written under supervision of Maria Japon 

Pineda. Now we provide the lemma which is deduced by their results and will be key for our results in this section.  

Lemma 1.1. Let {𝑓𝑛}𝑛∈ℕ be a sequence of real valued measurable functions which are uniformly bounded in 

𝐿1[0,1] . Assume that 𝑓𝑛  converges to an 𝑓 ∈ 𝐿1[0,1]  pointwise almost everywhere (a.e.). Then for any 𝑔 ∈

𝐿1[0,1],  

 𝑆(𝑔) = 𝑆(𝑓) + ‖𝑓 − 𝑔‖1  𝑤ℎ𝑒𝑟𝑒  𝑆(𝑔) = 𝑙𝑖𝑚𝑠𝑢𝑝
𝑛

‖𝑓𝑛 − 𝑔‖1  . 
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Since ℳ𝑚 is contained in the Lebesgue space 𝐿1[0,1] and in fact 𝐿1[0,1] is isometrically isomorphic to ℳ𝑚, for 

any 𝑚 ∈ ℕ, for ℳ𝑚 the following lemma can be given as straight and quick result.   

Lemma 1.2. Let {𝑓𝑛}𝑛∈ℕ be a sequence of real valued measurable functions which are uniformly bounded in ℳ𝑚 

for any 𝑚 ∈ ℕ. Fix 𝑚 ∈ ℕ and suppose that 𝑓𝑛  converges to an 𝑓 ∈ ℳ𝑚  pointwise almost everywhere (a.e.). 

Then for any 𝑚 ∈ ℕ and any 𝑔 ∈ ℳ𝑚, 𝑆(𝑔) = 𝑆(𝑓) + ‖𝑓 − 𝑔‖  𝑤ℎ𝑒𝑟𝑒  𝑆(𝑔) = 𝑙𝑖𝑚𝑠𝑢𝑝
𝑛

‖𝑓𝑛 − 𝑔‖. 

 

2. Main Result 

In this section, for any 𝑚 ∈ ℕ, we consider Kaczor and Prus [10] analogy for ℳ𝑚, a space structural related with 

the corresponding function space of the Köthe-Toeplitz Dual of a generalized Cesàro Difference Sequence Space. 

We show that for any 𝑚 ∈ ℕ, there exists a large class of closed, bounded and convex subsets of ℳ𝑚 with fixed 

point property for affine asymptotically nonexpansive mappings.  

Now, we consider the following class of closed, bounded and convex subsets. Note that here we will be using the 

ideas similar to those in the section 2 of Ph.D. thesis of Everest [8], written under supervision of Chris Lennard, 

where Everest firstly provides Goebel and Kuczumow’s proofs in detailed. 

So we demonstrate examples of these subsets and provide a theorem related with each of them. 

Example 2.1. Fix 𝑏 ∈ (0,1) and 𝑚 ∈ ℕ. Define a sequence (𝑓𝑛)𝑛∈ℕ by setting 𝑓1: = 𝑏 𝑒1,𝑓2: = 𝑏 𝑒2,  and 𝑓𝑛: =

𝑒𝑛, for all integers 𝑛 ≥ 3 where the sequence (𝑒𝑛)𝑛∈ℕ is given by the formula 𝑒𝑛: = (𝑛 + 1)𝑡𝑛+𝑚 , ∀𝑛 ∈ ℕ. Next, 

we can define a closed, bounded, convex subset 𝐸(𝑚) of ℳ𝑚 by  

𝐸(𝑚): = {∑

∞

𝑛=1

𝛽𝑛𝑓𝑛:  ∀𝑛 ∈ ℕ, 𝑡𝑛 ≥ 0  𝑎𝑛𝑑  ∑

∞

𝑛=1

𝛽𝑛 = 1}  . 

Example 2.2. Fix 𝑏 ∈ (0,1) and 𝑚 ∈ ℕ. Define a sequence (𝑓𝑛)𝑛∈ℕ by setting 𝑓1: = 𝑏 𝑒1,𝑓2: = 𝑏 𝑒2,  and 𝑓𝑛: =

𝑒𝑛, for all integers 𝑛 ≥ 3 where the sequence (𝑒𝑛)𝑛∈ℕ is given by the formula 𝑒𝑛: =
𝑡𝑚𝑛𝑒𝑛𝑡

(𝑒𝑛−1)
 , ∀𝑛 ∈ ℕ. Next, we 

can define a closed, bounded, convex subset 𝐸(𝑚) of ℳ𝑚 by  

𝐸(𝑚): = {∑

∞

𝑛=1

𝛽𝑛𝑓𝑛:  ∀𝑛 ∈ ℕ, 𝑡𝑛 ≥ 0  𝑎𝑛𝑑  ∑

∞

𝑛=1

𝛽𝑛 = 1}  . 

Example 2.3. Fix 𝑏 ∈ (0,1) and 𝑚 ∈ ℕ. Define a sequence (𝑓𝑛)𝑛∈ℕ by setting 𝑓1: = 𝑏 𝑒1,𝑓2: = 𝑏 𝑒2,  and 𝑓𝑛: =

𝑒𝑛, for all integers 𝑛 ≥ 3 where the sequence (𝑒𝑛)𝑛∈ℕ is given by the formula 𝑒𝑛: =
𝑡𝑚𝑛𝑒𝑛𝑡

(𝑒−1)
𝜒

[0,
1

𝑛
]
  , ∀𝑛 ∈ ℕ, where 

𝜒  is the characteristics funtion. Next, we can define a closed, bounded, convex subset 𝐸(𝑚) of ℳ𝑚 by  

𝐸(𝑚): = {∑

∞

𝑛=1

𝛽𝑛𝑓𝑛:  ∀𝑛 ∈ ℕ, 𝑡𝑛 ≥ 0  𝑎𝑛𝑑  ∑

∞

𝑛=1

𝛽𝑛 = 1}  . 

Example 2.4. Fix 𝑏 ∈ (0,1) and 𝑚 ∈ ℕ. Define a sequence (𝑓𝑛)𝑛∈ℕ by setting 𝑓1: = 𝑏 𝑒1,𝑓2: = 𝑏 𝑒2,  and 𝑓𝑛: =

𝑒𝑛 , for all integers 𝑛 ≥ 3 where the sequence (𝑒𝑛)𝑛∈ℕ is given by the formula 𝑒𝑛: =
𝑡𝑚4𝑛

𝜋(1+𝑛2𝑡2)
𝜒

[0,
1

𝑛
]
 , ∀𝑛 ∈ ℕ, 

where 𝜒  is the characteristics funtion. Next, we can define a closed, bounded, convex subset 𝐸(𝑚) of ℳ𝑚 by  

𝐸(𝑚): = {∑

∞

𝑛=1

𝛽𝑛𝑓𝑛:  ∀𝑛 ∈ ℕ, 𝑡𝑛 ≥ 0  𝑎𝑛𝑑  ∑

∞

𝑛=1

𝛽𝑛 = 1}  . 

Theorem 2.1. For any b∈ (0,1) and any 𝑚 ∈ ℕ, each set  𝐸(𝑚) defined as in the examples above has the fixed 

point property for affine asymptotically ‖ . ‖-nonexpansive mappings. 

 

Proof.  Fix 𝑏 ∈ (0,1) and 𝑚 ∈ ℕ. Let 𝑇: 𝐸(𝑚) → 𝐸(𝑚) be an affine asymptotically nonexpansive mapping. Then, 

since 𝑇 is affine, by Lemma 1.1.2 in the Ph.D. thesis of Everest [8], there exists a sequence (𝑥(𝑛))
𝑛∈ℕ

∈ 𝐸 such 

that ‖𝑇𝑥(𝑛) − 𝑥(𝑛)‖
𝑛
→ 0. Without loss of generality, passing to a subsequence if necessary, there exists 𝑥 ∈

𝑆(𝐶∞)𝛽 such that 𝑥(𝑛) converges to 𝑥 in weak∗ topology. Then, by Goebel Kuczumow analog fact ∴ given in the 

last part of the previous section, we can define a function 𝑠: 𝑆(𝐶∞)𝛽 → [0, ∞) by  
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 𝑠(𝑦) = limsup
𝑛

‖𝑥(𝑛) − 𝑦‖    , ∀𝑦 ∈ ℳ𝑚 and so 𝑠(𝑦) = 𝑠(𝑥) + ‖𝑥 − 𝑦‖  , ∀𝑦 ∈ ℳ𝑚. 

Now define  the weak* closure of the set 𝐸(𝑚) as it is seen below.  

𝑊: = 𝐸(𝑚)
𝑤∗

= {∑

∞

n=1

𝑡𝑛𝑓𝑛:  𝑒𝑎𝑐ℎ  𝑡𝑛 ≥ 0  𝑎𝑛𝑑  ∑

∞

𝑛=1

𝑡𝑛 ≤ 1} 

Since 𝑇  is asymptotically nonexpansive mapping, there exists a decreasing sequence (kn)n∈N  in [1, ∞) 

converging to 1 such that ∀x, 𝑦 ∈ 𝐸(𝑚) and ∀n ∈ ℕ,  

‖𝑇𝑛x − 𝑇𝑛y‖ ≤ kn ∥ x − y ∥. 

Case 1:𝑥 ∈ 𝐸(𝑚).  

Fix r ∈ ℕ. Then, we have 𝑠(𝑇𝑟𝑥) = 𝑠(𝑥) + ‖𝑇𝑟𝑥 − 𝑥‖ and  ∀n ∈ ℕ, 

       𝑠(𝑇𝑟𝑥) = limsup
𝑛

‖𝑇𝑟𝑥 − 𝑥(𝑛)‖                                                                                           

                  ≤ limsup
𝑛

‖𝑇𝑟𝑥 − 𝑇𝑟(𝑥(𝑛))‖ + limsup
𝑛

‖𝑥(𝑛) − 𝑇𝑟(𝑥(𝑛))‖                      (2.1) 

                  ≤ krlimsup
𝑛

‖𝑥 − 𝑥(𝑛)‖ + limsup
𝑛

‖𝑥(𝑛) − 𝑇𝑟(𝑥(𝑛))‖ 

  ≤ krlimsup
𝑛

‖𝑥 − 𝑥(𝑛)‖ + limsup
𝑛

∑‖𝑇𝑗−1(𝑥(𝑛)) − 𝑇𝑗(𝑥(𝑛))‖

𝑟

𝑗=1

                       

≤ krlimsup
𝑛

‖𝑥 − 𝑥(𝑛)‖ + limsup
𝑛

∑ kj−1

𝑟

𝑗=1

‖𝑥(𝑛) − 𝑇(𝑥(𝑛))‖                          

                   = kr𝑠(𝑥). 

Therefore, ‖𝑇𝑟𝑥 − 𝑥‖ ≤ (kr − 1)𝑠(𝑥) and so by taking limit as r → ∞, we have lim
𝑟

‖𝑇𝑟𝑥 − 𝑥‖ = 0 but then 

since lim
𝑟

‖𝑇𝑇𝑟𝑥 − T𝑥‖ ≤ lim
𝑟

k1‖𝑇𝑟𝑥 − 𝑥‖ = 0 , lim
𝑟

‖𝑇𝑟+1𝑥 − T𝑥‖ = 0  and so 𝑇𝑟𝑥  converges to 𝑥  and 𝑇𝑥 . 

Thus, by the uniqueness of limits  𝑇𝑥 = 𝑥. 

Case 2: 𝑥 ∈ 𝑊\𝐸(𝑚). 

Then, 𝑥 is of the form ∑∞
𝑛=1 𝛾𝑛𝑓𝑛  such that  ∑∞

𝑛=1 𝛾𝑛 < 1  𝑎𝑛𝑑  𝛾𝑛 ≥ 0, ∀𝑛 ∈ ℕ. 

Define 𝛿: = 1 − ∑∞
𝑛=1 𝛾𝑛 and next define 

h: = (𝛾1 + 𝛿)𝑓1 + ∑

∞

𝑛=2

𝛾𝑛𝑓𝑛. 

Then,  ‖h − 𝑥‖ = ‖𝑏𝛿𝑒1‖ = 𝑏𝛿. 

Now fix 𝑦 ∈ 𝐸(𝑚) of the form ∑∞
𝑛=1 𝑡𝑛𝑓𝑛 such that ∑∞

𝑛=1 𝑡𝑛 = 1 with 𝑡𝑛 ≥ 0, ∀𝑛 ∈ ℕ. 

Then,   

‖y − 𝑥‖ = ‖∑

∞

𝑘=1

β𝑘𝑓𝑘 − ∑

∞

𝑘=1

𝛾𝑘𝑓𝑘‖ = ‖∑

∞

𝑘=1

β𝑘𝑓𝑘 − ∑

∞

𝑘=1

𝛾𝑘𝑓𝑘‖                                       

= ‖∑

∞

𝑘=1

(β𝑘 − 𝛾𝑘)𝑓𝑘‖                                                                               

        = ∫
1

0

1

𝑡𝑚
|∑

∞

𝑘=1

(β𝑘 − 𝛾𝑘)𝑓𝑘| 𝑑𝑚 =  ∫
1

0

|∑

∞

𝑘=1

(β𝑘 − 𝛾𝑘)
1

𝑡𝑚
𝑓𝑘| 𝑑𝑚         

≥ |∫
1

0

∑

∞

𝑘=1

(β𝑘 − 𝛾𝑘)
1

𝑡𝑚
𝑓𝑘𝑑𝑚|                                                           

= |∑

∞

𝑘=1

(β𝑘 − 𝛾𝑘)|                                                                                  

   = |1 − ∑

∞

𝑘=1

𝛾𝑘|                                                                                         

  = 𝛿                                                                                                             
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Hence, 

‖y − 𝑥‖ ≥ 𝑏𝛿 ≥ ‖ℎ − 𝑥‖. 

Next, we have the following. 

 𝑠(ℎ) = 𝑠(𝑥) + ‖h − 𝑥‖ ≤ 𝑠(𝑥) + ‖𝑇𝑟h − 𝑥‖ = 𝑠(𝑇𝑟h)                                                                                   

                                       = limsup
𝑛

‖𝑇𝑟ℎ − 𝑥(𝑛)‖ then similarly to the inequality (2.1) 

                                       ≤ limsup
𝑛

‖𝑇𝑟ℎ − 𝑇𝑚(𝑥(𝑛))‖ + limsup
𝑛

‖𝑥(𝑛) − 𝑇𝑟(𝑥(𝑛))‖ 

                                       ≤ krlimsup
𝑛

‖ℎ − 𝑥(𝑛)‖ + limsup
𝑛

‖𝑥(𝑛) − 𝑇𝑟(𝑥(𝑛))‖ 

                      ≤ krlimsup
𝑛

‖ℎ − 𝑥(𝑛)‖ + limsup
𝑛

∑‖𝑇𝑗−1(𝑥(𝑛)) − 𝑇𝑗(𝑥(𝑛))‖

𝑟

𝑗=1

 

                 ≤ krlimsup
𝑛

‖ℎ − 𝑥(𝑛)‖ + limsup
𝑛

∑ kj−1

𝑟

𝑗=1

‖𝑥(𝑛) − 𝑇(𝑥(𝑛))‖ 

                                       = kr𝑠(ℎ).                                                            

Hence, 𝑠(ℎ) ≤ 𝑠(𝑇𝑟h) ≤ kr𝑠(ℎ) and so taking limit as r → ∞, we have  

lim
𝑚

 𝑠(𝑇𝑟h) = 𝑠(ℎ)  since lim
𝑟

kr = 1 . That is, lim
𝑟

 𝑠(𝑥) + ‖𝑇𝑟h − 𝑥‖ = 𝑠(𝑥) + ‖h − 𝑥‖  which means 

lim
𝑟

‖𝑇𝑟h − 𝑥‖ = ‖h − 𝑥‖.                                                                                      (2.2) 

Moreover, for any 𝑦 ∈ 𝐸(𝑚), 

‖y − ℎ‖ = ‖∑

∞

𝑘=1

𝑡𝑘𝑓𝑘 − (𝛾1 + 𝛿)𝑓1 − ∑

∞

𝑘=2

𝛾𝑘𝑓𝑘‖                                                     

= ‖∑

∞

𝑘=2

(𝑡𝑘 − 𝛾𝑘)𝑓𝑘 − (𝛾1 + 𝛿 − 𝑡1)𝑓1‖                                    

= ∫
1

0

1

𝑡𝑚
|∑

∞

𝑘=2

(𝑡𝑘 − 𝛾𝑘)𝑓𝑘 − (𝛾1 + 𝛿 − 𝑡1)𝑓1| 𝑑𝑚                  

≤ ∑

∞

𝑘=2

|𝑡𝑘 − 𝛾𝑘| + 𝑏|𝛾1 + 𝛿 − 𝑡1|                                               

    = ∑

∞

𝑘=2

|𝑡𝑘 − 𝛾𝑘| + 𝑏 |𝛾1 + 1 − ∑

∞

𝑘=1

𝛾𝑘 − 1 + ∑

∞

𝑘=2

𝑡𝑘|                 

≤ ∑

∞

𝑘=2

|𝑡𝑘 − 𝛾𝑘| + b ∑

∞

𝑘=2

|𝑡𝑘 − 𝛾𝑘|                                               

= (1 + b) ∑

∞

𝑘=2

|𝑡𝑘 − 𝛾𝑘|                                                                

=
1 + 𝑏

1 − 𝑏
(1 − b) ∑

∞

𝑘=2

|𝑡𝑘 − 𝛾𝑘|                                                     

=
1 + 𝑏

1 − 𝑏
[𝑏𝛿 − 𝑏𝛿 + (1 − b) ∑

∞

𝑘=2

|𝑡𝑘 − 𝛾𝑘|]                           

              =
1 + 𝑏

1 − 𝑏
[𝑏(1 − (1 − 𝛿)) − 𝑏𝛿 + (1 − b) ∑

∞

𝑘=2

|𝑡𝑘 − 𝛾𝑘|]                 

              =
1 + 𝑏

1 − 𝑏
[𝑏(1 − (1 − 𝛿)) + (1 − b) ∑

∞

𝑘=2

|𝑡𝑘 − 𝛾𝑘| − 𝑏𝛿]                 
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                        =
1 + 𝑏

1 − 𝑏
[𝑏 (∑

∞

𝑘=1

𝑡𝑘 − ∑

∞

𝑘=1

𝛾𝑘) + (1 − b) ∑

∞

𝑘=2

|𝑡𝑘 − 𝛾𝑘| − 𝑏𝛿]                  

              ≤
1 + 𝑏

1 − 𝑏
[𝑏 ∑

∞

𝑘=1

|𝑡𝑘 − 𝛾𝑘| + (1 − b) ∑

∞

𝑘=2

|𝑡𝑘 − 𝛾𝑘| − 𝑏𝛿]                  

Hence, 

‖y − ℎ‖ ≤
1 + 𝑏

1 − 𝑏
[𝑏|𝑡1 − 𝛾1| + ∑

∞

𝑘=2

|𝑡𝑘 − 𝛾𝑘| − 𝑏𝛿] =
1 + 𝑏

1 − 𝑏
[‖y − 𝑥‖ − ‖h − 𝑥‖] 

Now, fix 휀 > 0 and recall that 𝑏 ∈ (0,1). Then, we can choose 𝜇(휀): =
1−𝑏

1+𝑏
휀 ∈ (0, ∞) such that for any 𝑦 =

∑∞
𝑘=1 𝑡𝑘𝑓𝑘 ∈ 𝐸(𝑚), 

|‖y − 𝑥‖ − ‖h − 𝑥‖| ≤ ‖y − 𝑥‖ − ‖h − 𝑥‖ < 𝜇. 

Then, ‖y − ℎ‖ <
1+𝑏

1−𝑏
𝜇 = 휀. 

Hence, for every 휀 > 0, there exists 𝜇 = 𝜇(휀) such that if |‖y − 𝑥‖ − ‖h − 𝑥‖| < 𝜇 then ‖y − ℎ‖ < 휀 so this 

implies for any sequence (𝑧𝑛)𝑛 in 𝐸(𝑚) with lim
𝑛

‖𝑧𝑛 − 𝑥‖ = ‖h − 𝑥‖ implies lim
𝑛

‖𝑧𝑛 − ℎ‖ = 0.  But then since 

in (2.2) we obtained lim
𝑟

‖𝑇𝑟h − 𝑥‖ = ‖h − 𝑥‖, we have lim
𝑟

‖𝑇𝑟h − ℎ‖ = 0. 

Furthermore, 

‖ℎ − 𝑇ℎ‖ ≤ lim
𝑟

‖𝑇𝑟h − ℎ‖ + lim
𝑟

‖𝑇𝑟h − 𝑇ℎ‖ 

≤ k1lim
𝑟

‖𝑇𝑟−1h − ℎ‖ = 0 

Hence, 𝑇ℎ = ℎ and so 𝐸(𝑚) has fpp(ane.) as desired. 
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