
Available online www.jsaer.com 
 

Journal of Scientific and Engineering Research 

266 

Journal of Scientific and Engineering Research, 2022, 9(11):266-269 

 

    

 
Research Article 

ISSN: 2394-2630 

CODEN(USA): JSERBR  

    

 

Automation with Ansible and Puppet: Streamlined Deployment 

Updates, and Patching Processes 
 

Gowtham Mulpuri 

 

Silicon Labs, TX, USA 

Email: gowtham.mulpuri@silabs.com  

Abstract The continuous evolution of software development practices necessitates efficient, reliable, and 

scalable solutions for deployment, updates, and patching. Automation tools such as Ansible and Puppet have 

emerged as key enablers in this landscape, offering streamlined processes that enhance productivity, reduce 

errors, and maintain consistency across environments. This white paper delves into the capabilities of Ansible 

and Puppet, exploring how they can be leveraged to automate deployment, updates, and patching in a diverse IT 

infrastructure. Drawing from a broad spectrum of industry practices, we illustrate the transformative impact of 

these tools on operational efficiency and system reliability. 

 

Keywords Ansible, Puppet, Automation, DevOps, Configuration Management, Infrastructure as Code, 

Continuous Deployment, Continuous Integration. 

1. Introduction  

In the realm of software development and IT operations, the quest for agility, speed, and reliability is ever-

present. As infrastructure complexity grows and deployment cycles shorten, traditional manual processes for 

software deployment and system updates have become cumbersome and error-prone. This has catalyzed the 

adoption of automation tools like Ansible and Puppet, which facilitate the seamless management of servers, 

applications, and services across a wide range of environments. This white paper presents an overview of 

automation with Ansible and Puppet, underscoring their significance in modern DevOps practices. 

 

2. Ansible and Puppet: Architecture Overview and Real-Time Use Cases 

Ansible Architecture: 

Here is the Figure 1 below illustrating the architectures of Ansible highlighting their operational workflows and 

integration into DevOps practices: 

• Playbooks for defining automation tasks. 

• Inventory for managing configurations across hosts. 

• Modules for executing specific tasks on hosts. o APIs for integrating with other tools and services. o 

CMDB for storing information on hardware and software assets 



Mulpuri G                                               Journal of Scientific and Engineering Research, 2022, 9(11):266-269 

Journal of Scientific and Engineering Research 

267 

 
Figure 1: Ansible Architecture  

 

• Ansible: The core automation engine that uses simple YAML syntax for its playbooks. 

• Playbooks: YAML files that describe the desired state of the system, tasks, and how to achieve them. 

• Inventory: Defines the hosts and groups of hosts upon which commands, modules, and tasks in a 

playbook operate 

• Modules: The units of code that Ansible executes. Each module has a particular use, from managing 

services to executing commands. 

• APIs: Ansible can interact with different APIs to manage resources outside of the servers, such as 

cloud services. 

• CMDB (Configuration Management Database): Stores information about the hardware and software 

across an organization, which can be used by Ansible for dynamic inventory purposes. 

• Ansible: A powerful open-source automation tool, Ansible simplifies complex tasks such as 

configuration management, application deployment, and task automation. It uses YAML syntax for its 

playbooks, making it accessible and easy to understand. Ansible operates over SSH and does not 

require agent installation, streamlining the management of numerous nodes and systems. 

• Real-Time Use Case: A global e-commerce company uses Ansible to automate its cloud infrastructure 

setup across multiple regions. By defining infrastructure as code, Ansible playbooks are used to 

provision, configure, and manage hundreds of AWS instances, ensuring consistency and reducing 

manual errors. The automation of deployment processes allows for rapid scaling during peak shopping 

seasons, significantly improving the company's operational efficiency and customer satisfaction. 

Puppet Architecture: 

• Puppet: The configuration management tool that allows defining the state of your IT infrastructure, 

using Puppet code or manifests. 

• Manifests: Puppet code files for managing various resources of the system, ensuring they are in the 

desired state. 

• Modules: Reusable, standalone blocks of Puppet code that are used for specific tasks. 

• PuppetDB: Stores configuration data for Puppet. It can integrate with other tools and services. 

• Puppet Server: The server component of Puppet that compiles configurations for every Puppet agent 

node, managing the configuration and distribution. 



Mulpuri G                                               Journal of Scientific and Engineering Research, 2022, 9(11):266-269 

Journal of Scientific and Engineering Research 

268 

 
Figure 2: Puppet Architecture  

 

This diagram showcases how both Ansible and Puppet integrate into DevOps practices through automation 

pipelines, providing visual insights into their distinct yet complementary roles in infrastructure management and 

automation. 

• Puppet: As one of the pioneering configuration management tools, Puppet provides a robust platform 

for automating the provisioning, configuration, and management of servers and applications. Puppet 

uses its declarative language, allowing administrators to define desired system states, which Puppet 

then enforces automatically across the infrastructure. 

• Real-Time Use Case: A financial services firm leverages Puppet to ensure compliance and security 

standards across its IT infrastructure. Puppet's role-based access control and detailed change-reporting 

capabilities enable the firm to automate the enforcement of regulatory requirements, manage 

configurations across thousands of nodes, and quickly remediate any noncompliant settings, thereby 

reducing the risk of security breaches and compliance violations. 

Streamlining Deployment Processes 

Deployment automation with Ansible and Puppet ensures consistent and repeatable processes, minimizing 

human intervention and the potential for errors. Ansible playbooks and Puppet manifests can define the exact 

steps and configurations required for deploying applications, from dependencies and services to network 

settings. This section explores practical scenarios and benefits, such as reduced deployment times, increased 

reliability, and the ability to easily scale deployment efforts. 

Automating Updates and Patching 

Keeping systems up-to-date and secure is a critical but time-consuming task in IT operations. Ansible and 

Puppet automate the application of updates and patches, ensuring that systems are promptly and consistently 

updated without disrupting services. This section discusses strategies for managing updates, handling 

dependencies, and ensuring minimal downtime, alongside real-world case studies illustrating the effectiveness 

of these tools in maintaining system security and compliance. 

Scalability and Flexibility 

Ansible and Puppet support scalable automation, from managing a handful of servers to thousands of nodes 

across multiple environments. Their flexibility allows for managing a diverse set of technologies and platforms, 

from onpremises servers to cloud environments, making them suitable for businesses of any size and 

complexity. 

Improved Compliance and Security 

Automating with Ansible and Puppet helps enforce compliance policies and security standards across the 

infrastructure. By defining desired states and configurations, organizations can ensure that their systems adhere 

to regulatory requirements and security best practices, with detailed reporting for audit trails. 

 



Mulpuri G                                               Journal of Scientific and Engineering Research, 2022, 9(11):266-269 

Journal of Scientific and Engineering Research 

269 

Advantages of Automation 

• Efficiency and Speed: Automation drastically reduces the time and effort required to deploy 

applications, apply updates, and execute configurations, enabling IT teams to focus on more strategic 

tasks. 

• Consistency and Reliability: By defining infrastructure as code, Ansible and Puppet eliminate 

variability, ensuring that environments are configured uniformly and correctly across development, 

testing, and production. 

• Scalability: Automated processes can be easily replicated and scaled, facilitating the management of a 

growing number of servers and applications without a corresponding increase in administrative 

overhead. 

 

3. Conclusion 

The integration of Ansible and Puppet into IT workflows represents a paradigm shift towards more agile, 

efficient, and reliable infrastructure management. By automating deployment, updates, and patching processes, 

organizations can achieve significant operational improvements, reduce risks, and better support the demands of 

modern software development and delivery. As the landscape of IT infrastructure continues to evolve, the role 

of automation tools like Ansible and Puppet will undoubtedly expand, further enhancing their value to DevOps 

teams and organizations at large. 

 

References 

[1]. Ansible Documentation: https://docs.ansible.com/  

[2]. Puppet Documentation: https://puppet.com/docs/  

[3]. "Infrastructure as Code: Managing Servers in the Cloud" by Kief Morris  

[4]. "Ansible for DevOps: Server and Configuration Management for Humans" by Jeff Geerling  


