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Abstract The evolution of a system is represented by transitions from one state to the next, and the system's 

physical or mathematical behavior can also be depicted by defining all of the numerous states it can be in and 

demonstrating how it moves between them. In this study, the iterative solution methods for the stationary 

distribution of Markov chains which start with an initial estimate of the solution vector and then alter it in such a 

way that it gets closer and closer to the genuine solution with each step or iteration., and also involved the 

matrices operation such as multiplication with one or more vectors,  which leaves the transition matrices 

unchanged and saves time has been investigated, in order to provide some insight into the solutions of stationary 

distribution of Markov chain. Our quest is to compute the solutions using decomposition and aggregation 

algorithmic numerical iterative methods by considering the following three steps: the left-hand eigenvector    of 

length    corresponding to the eigenvalue closest to 1,     , in each block             is computed; the 

weights   , an approximate solution to the stationary probability vector   is estimated and the global solution 

                                              is computed. Concept of eigen values and vectors, Matrix 

operations such as Lower, upper and diagonal matrices and normalization principle are used with the help of 

some existing laws, theorems and formulas of Markov chain. The global solution   are obtained for the 

illustrative examples in each block   

 

Keywords eigen value, eigen vector, Courtois matrix, nearly completely decomposable (NCD), Perron root, 

iterative aggregation/disaggregation (IAD) 

Introduction  

A de-compositional approach to solving Markov chains is intuitively very attractive since it appeals to the 

principle of divide and conquer: if the model is too large or complex to analyze in toto, it is divided into 

subsystems, each of which is analyzed separately, and a global solution is then constructed from the partial 

solutions. Ideally the problem is broken into subproblems that can be solved independently and the global 

solution is obtained by “pasting” together the subproblem solutions. Although it is rare to find Markov chains 

that can be divided into independent sub-chains, it is not unusual to have Markov chains in which this condition 

almost holds. An important class of problems that frequently arise in Markov modeling are those in which the 

state space may be partitioned into disjoint subsets with strong interactions among the states of a subset but with 

weak interactions among the subsets themselves. Such problems are sometimes referred to as nearly completely 

decomposable (NCD), nearly uncoupled, or nearly separable. It is apparent that the assumption that the 

subsystems are independent and can therefore be solved separately does not hold. Consequently, an error arises. 

This error will be small if the assumption is approximately true. In the discipline of numerical analysis, there are 

two types of solution methods: iterative solution methods and direct solution methods. Iterative approaches start 

with an initial estimate of the solution vector and then alter it in such a way that it gets closer and closer to the 
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genuine solution with each step or iteration. It eventually converges on the true solution. If there is no known 

initial approximation, a guess is performed or an arbitrary initial vector is used instead. The solution must be 

computed when a specified number of well-defined stages have been completed.  The most widely utilized 

methods for deriving the stationary probability vector from either the stochastic transition probability matrix or 

the infinitesimal generator are iterative methods of one form or another. This decision was made for a variety of 

reasons. First, a look at the conventional iterative approaches reveals that the matrices are only involved in one 

operation: Romanovsky [1] established the application and simulation of discrete Markov Chains, which was 

followed by Stewart [2-3] with the development of Numerical Solutions of Markov Chains, while Pesch et al. 

[4] demonstrated the appropriateness of the Markov chain technique in the wind feed in Germany (2015). Uzun 

and Kiral [5] used the Markov chain model of fuzzy state to anticipate the direction of gold price movement and 

to estimate the probabilistic transition matrix of gold price closing returns, whereas Aziza et al. [6] used the 

Markov chain model of fuzzy state to predict monthly rainfall data (2019). Clemence [7] demonstrated the 

application of Markov chain to the spread of disease infection, demonstrating that Hepatitis B became more 

infectious over time than tuberculosis and HIV, while Vermeer and Trilling [8] demonstrated the application of 

Markov chain to journalism. However, in this study, the decomposition and aggregation numerical iterative 

solution methods and algorithms for computing the stationary distribution of Markov chain are considered. 

 

Notation 

         irreducible nearly completely decomposable (NCD) stochastic matrix, i.e., probability of leaving  

(any state of) block   to enter (any state of) block   

         coupling matrix 

                 length of eigen vector in each block   

    the eigen vector of length    

                 stationary probability distribution matrix in each block   

   ,         the eigenvalue closest to 1 in each block   

    is the proportion of time spend in block   

                 normalization of    

 

Materials and Methods 

Let an irreducible nearly completely decomposable (NCD) stochastic matrix B be written as 

   

          
          
 
   

 
   

 
 

 
   

   

Where 

                              

And 

                       

Such a matrix has         eigenvalues that are extremely near to 1, and none of the previous point iterative 

approaches are useful in dealing with this circumstance. Block and de-compositional approaches, on the other 

hand, can be quite effective. We'll start by looking at what happens when all of the off-diagonal blocks are zero. 

i.e., 
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Each     is a stochastic matrix in this case. The Markov chain can be segmented into N irreducible classes, each 

with its own stationary distribution. Each    can be found on its own page. 

                        

When the Markov chain is nearly completely decomposable (NCD) rather than completely decomposable, we 

can use the following approximate solution procedure: 

Results and Discussion 

Step (a): Solve blocks as if independent 

Assume that the system is completely decomposable and compute the stationary probability distribution for each 

component as the first step in approximating the solution of       when      . The fact that the     are 

strictly substochastic rather than stochastic is the first issue that arises. One simple solution is to ignore the 

problem entirely and deal directly with the substochastic matrices    . In other words, we can use the normalized 

eigenvector corresponding to the Perron root (the eigenvalue closest to 1) of block     as the probability vector, 

with the elements denoting the probabilities of being in each of the block's states conditioned on being in this 

block. 

Illustrative example 1:  the procedure is examined using the 8 × 8 Courtois matrix, an examination of which 

reveals that it is nearly completely decomposable (NCD) into a block of order 3, a second of order 2, and a third 

of order 3: 

 

 

 

 
 
 
 
 

                                               
                                               
   
   

      
   

       
   

   
      
   

       
   

       

      
   

      
   

       
   

             
   

       
   

             
   

   
            

   
              

   
          

   
   

      
   
   

      

      
      
   

      
   
    

   
   
   
    
      
     

 
 
 
 
 

 

For this matrix, we have the following blocks, Perron roots, and corresponding left-hand eigenvectors: 

     
            
            
            

                                                     

     
         
        

                                           

     
             
            

              
                                                       

To summarize, in part (a), the left-hand eigenvector    of length    corresponding to the eigenvalue closest to 1,  

   , in each block             is computed. In other words, we solve the N eigenvalue problems 
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Step (b): Estimate block probabilities 

The second issue is that just concatenating the stationary probability vectors for each block will not provide a 

probability vector. Each sub-elements vector's add up to one. Each sub-vector must still be weighted by the 

chance of being in its sub-block of states. The     probability distributions are conditional probabilities in the 

sense that they describe the probability of being in one of the states of subset  ,            conditioned on 

the fact that the Markov chain is in one of those states. That condition must be removed. To calculate the 

probability of being in a certain block of states, we need to create a matrix with the element     corresponding to 

the probability of transitioning from block   to block  . This is a        -dimensional stochastic matrix that 

describes the interactions between blocks. To construct this matrix, also known as the coupling matrix, we must 

reduce each block      of   to a single element. The block probabilities, or weights, required to build the global 

approximation are provided by the stationary distribution of the coupling matrix. In the case of the running 

example, we must determine weights          , and    such that  

                           

is a close approximation to   . Here    represents the percentage of time we spend in block  . Our original (8×8) 

stochastic matrix must be reduced to a (3×3) stochastic matrix. This is done by first replacing each block's row 

with the sum of its elements. The probability of leaving state   of block   and entering (one of the states of) 

block   is given by the sum of the elements of row k of block    . It doesn't matter which state of block   is the 

target state any longer. The procedure executed for each block is     . 

Illustrative example 2: Summing across the block rows of the Courtois matrix gives 

 

 
 
 
 
 

                 
                 
      
      
      
       
       
       

      
      
     
       
       
       

      
      
      
      
      
       

 
 
 
 
 

  

The probability of leaving (any state of) block   and entering (any state of) block  j is then calculated using these 

results. This means that each column sub-vector,     , must be reduced to a scalar. The     element of      is 

the probability of leaving state   of block   and entering into block j. We must sum the elements of this vector 

after each element has been weighed by the chance of existing in that state to obtain the total probability of 

leaving (any state of) block   and entering (any state of) block j. (given that the Markov chain is in one of the 

states of that block). The elements of the stationary probability vector can be used to calculate these weighing 

factors. They are the components of 
  

     
. The        element of the reduced         matrix is therefore given 

by 

    
  

     
             

Where 

   
  

     
. 

If   is an irreducible stochastic matrix, then   also is irreducible and stochastic. Let   denote its left 

eigenvector, i.e.,       and        The     component of   is the stationary probability of being in (one of 

the states of) block  . It is easy to show that 

                                

Of course, because the vector is unknown, it is impossible to determine the weights      . They can, however, 

be approximated by setting       and utilizing the probability vector generated from each of the individual 

   . As a result, the weights    may be calculated, and an approximate solution to the stationary probability 

vector   can be found. 
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Illustrative example 2:  Performing these operations, we obtain the following coupling matrix for the Courtois 

example: 

                                                          

 

 
 
 
 
 

                 
                 
      
      
      
       
       
       

      
      
     
       
       
       

      
      
      
      
      
       

 
 
 
 
 

  
                    
                    
                    

    

Its eigenvalues are                     and its stationary probability vector is 

                         

Step (c): Compute global approximation 

We are now in a position to form the stationary probability vector's final estimate. The approximation gives 

                          

where the    are approximations to 
  

     
  

Illustrative example 3: In the running example we obtain the approximate solution  

                                                                    , 

which may be compared to the exact solution 

                                                                   . 

To recapitulate, an approximation to the stationary probability vector of an NCD Markov chain may be achieved 

by first solving each of the blocks separately, then constructing and solving the coupling matrix, and then 

putting the parts together to form the approximate solution. The states have been organized in such a way that 

the transition probability matrix has the necessary NCD block structure. The entire operation might be written as 

an algorithm. 

Algorithm 2: NCD Decomposition Approximation 

1. Solve the individual blocks:                                        

2. (a) Form the coupling matrix:             . 

(b) Solve the coupling problem:     ,      . 

3. Construct the approximate solution:                           . 

The question now is whether we can feed this approximation back into the decomposition procedure to improve 

the approximation even further. The    are utilized to build the coupling matrix, as you can see. We get the same 

solution to the coupling matrix as before if we replace them with the new approximations      As a result, the 

computed approximation will remain unchanged. However, it was discovered that giving the approximation a 

power step before plugging it back into the decomposition process had a highly beneficial effect. Later, this 

power step was replaced by a block Gauss–Seidel step, which became known as a disaggregation step; the 

aggregation step was formed and solved the matrix D. Iterative aggregation/disaggregation is the name given to 

the entire process (IAD). The algorithm is shown in the diagram below. A superscript in parentheses on the 

appropriate variable names indicates the iteration number. The initial vector is designated as     . This could be 

a random selection or an approximation obtained from the simple decomposition strategy. Many of the steps in 

the decomposition algorithm have related steps. Many of the steps in the decomposition algorithm have related 

steps. The construction of the coupling matrix (Step 3) is, for example, similar in both. Step 4(a) relates to 

forming the computed approximation in the decomposition algorithm, while Step 4(b) corresponds to solving 
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the different blocks, with the exception of the block Gauss–Seidel step in the iterative 

aggregation/disaggregation (IAD) process. 

Algorithm 2: Iterative Aggregation/Disaggregation 

1. Let          
      

             
     be a given initial approximation to the solution to the  , and set 

      

2. Compute           
        

               
         where  

  
      

  
     

   
     

 
 

                    . 

3. (a) Form the coupling matrix:      
        

                                    

(b) solve the coupling problem               ,           . 

      4.   (a) construct the row vector 

     
       

           
       

                    
       

        

 (b)  solve the following   system of equations to find     : 

  
      

          
             

                           .        (10) 

5. Normalize and conduct a test for convergence. Then stop and take      as the required solution vector. 

Otherwise set       and go to step 2. 

It is essential in these methods that the matrix has the block structure that the algorithms require, and it may be 

required to reorganize the states to achieve this. We can only guarantee that the resulting transition matrix has a 

property that directly represents the structural properties of the nearly completely decomposable (NCD) system 

after reordering the states. The convergence behavior may be substantially less satisfying if the partitioning 

provided to the algorithm does not match the decomposability features of the matrix. The states can be reordered 

by considering the Markov chain as a directed graph and removing the edges with small weights (probabilities). 

The connected components of         must then be found using a graph algorithm, where    is the modified 

transition probability matrix. The algorithm's complexity is             , where    is the number of vertices in 

the graph and     is the number of edges. 

Illustrative example 4: Both the iterative aggregation and disaggregation (IAD) and the block Gauss–Seidel 

(BGS) methods are particularly effective when used to the Courtois matrix. The table below illustrates that with 

the IAD approach, full machine precision is obtained in only four iterations, while with the BGS method, it 

takes nine iterations. The diagonal block equations are solved using LU decomposition in both cases. 

Table 1: Iterative Aggregation/Disaggregation (IAD) and Block Gauss–Seidel (BGS) Residual for 

Courtois Matrix 

IAD and BGS residuals for the Courtois NCD matrix        

Iteration IAD residual BGS residual 

                   

1 0.93581293961421 0.94805408435419 

2 0.00052482104506 0.01093707688215 

3 0.00000000280606 0.00046904081241 

4 0.00000000000498 0.00002012500900 

5 0.00000000000412 0.00000086349742 

6 0.00000000000351 0.00000003705098 

7 0.00000000000397 0.00000000158929 

8 0.00000000000529 0.00000000006641 

9 0.00000000000408 0.00000000000596 

10 0.00000000000379 0.00000000000395 

 

The critical points are Steps 3 and 4(b). In Step 3, it is more efficient to compute      only once for each block 

and to store it somewhere for use in all future iterations. This is only possible if sufficient memory is available; 

otherwise it is necessary to compute it each time it is needed. To obtain the vector   in Step 3(b), any of the 

methods of numerical iteration may be used, since the vector   is simply the stationary probability vector of an 
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irreducible stochastic matrix C. In Step 4(b), each of the   systems of equation (10) can be written as       

where          
   and  

         
   

       
   

                 

    is a completely substochastic matrix in all instances, making B nonsingular. If the system is nearly 

completely decomposable, the vector   will have a small norm (NCD). If a direct technique is employed, the LU 

decomposition of                        only needs to be done once because it is constant from iteration to 

iteration. We have an iteration algorithm within an iteration algorithm when we employ an iterative method. In 

this scenario, it is preferable to conduct only a few iterations (e.g., 8–12 for the Gauss–Seidel method) each time 

a solution of        
     is required, but to use the final estimate obtained at one step as the initial 

approximation the next time the same subsystem is required. 

Illustrative example 5: Returning to the Courtois matrix, the table below shows the number of Iterations 

required to obtain full machine accuracy using the Gauss–Seidel iterative approach when the diagonal block 

equations in the IAD method are solved. It is clear that another iteration is now required. 

Table 2: Iterative Aggregation/Disaggregation (IAD):  Gauss–Seidel for Block solutions 

IAD: Gauss–Seidel for Block solutions 

Iteration Residual:          
           

1 0.14117911369086 

2 0.00016634452597 

3 0.00000017031189 

4 0.00000000015278 

5 0.00000000000014 

6 0.00000000000007 

7 0.00000000000006 

8 0.00000000000003 

9 0.00000000000003 

10 0.00000000000006 

 

Also, when we look at the convergence of the inner Gauss–Seidel technique for diagonal blocks—as shown in 

the table below for the first diagonal block of size      —we can see that after only a few steps, the iterations 

become stuck. Progress slows to a crawl after around six iterations in each global iteration. As a result, when 

using iterative methods to solve the (inner) block equations, only a small number of iterations should be 

employed. 

Table 3: Global Iteration of Stationary Probability Distribution  

Inner Iteration 1 2 3 4 

1  0.013160745 0.000009106488 0.00000002197727 0.00000000002345 

2 0.0032775892 0.000002280232 0.00000000554827 0.00000000000593 

3 0.0008932908 0.000000605958 0.00000000142318 0.00000000000151 

4 0.0002001278 0.000000136332 0.00000000034441 0.00000000000037 

5 0.0001468896 0.000000077107 0.00000000010961 0.00000000000011 

6 0.0001124823 0.000000051518 0.00000000003470 0.00000000000003 

7 0.0001178683 0.000000055123 0.00000000003872 0.00000000000002 

8 0.0001156634 0.000000053697 0.00000000003543 0.00000000000002 

9 0.0001155802 0.000000053752 0.00000000003596 0.00000000000002 

10 0.0001149744 0.000000053446 0.00000000003562 0.00000000000002 

11 0.0001145044 0.000000053234 0.00000000003552 0.00000000000002 

12 0.0001140028 0.000000052999 0.00000000003535 0.00000000000002 

13 0.0001135119 0.000000052772 0.00000000003520 0.00000000000002 

14 0.0001130210 0.000000052543 0.00000000003505 0.00000000000002 

15 0.0001125327 0.000000052316 0.00000000003490 0.00000000000002 

16 0.0001120464 0.000000052090 0.00000000003475 0.00000000000002 
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Conclusion 

 The solutions of stationary distribution of Markov chain is  investigated and computed using the decomposition 

and aggregation algorithmic numerical iterative methods by considering the following three steps: the left-hand 

eigenvector    of length    corresponding to the eigenvalue closest to 1,     , in each block             is 

computed; the weights   , an approximate solution to the stationary probability vector   is estimated and the 

global solution                                               is computed. Concept of eigen values and 

vectors, Matrix operations such as Lower, upper and diagonal matrices and normalization principle are used 

with the help of some existing laws, theorems and formulas of Markov chain. The global solution   are 

obtained for the illustrative examples in each block  . 
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