
Available online www.jsaer.com

Journal of Scientific and Engineering Research

242

Journal of Scientific and Engineering Research, 2021, 8(9):242-248

Research Article

ISSN: 2394-2630

CODEN(USA): JSERBR

Unlocking Data Processing Efficiency: A Comprehensive Guide to

GCP Dataflow

Bhargav Bachina

Abstract GCP Dataflow offers a unified stream and batch data processing solution that is both serverless and

cost-effective. As a fully managed service, it boasts a range of features, detailed on its official website. Apache

Beam, on the other hand, provides an advanced unified programming model for implementing batch and

streaming data processing jobs across various execution engines, with GCP Dataflow serving as one of its

runners. This paper explores the initiation of GCP Dataflow, beginning with a straightforward Spring Boot

application and demonstrating integration with Apache Beam. The discussion covers running the application on

a local machine using the Direct Runner and includes practical examples. Topics include prerequisites, Apache

Beam setup, batch versus stream processing distinctions, creation of batch and stream processing jobs,

configuration of custom pipeline options, local machine pipeline execution, testing procedures, an illustrative

example project, and concluding insights.

Keywords Google Cloud Platform, Programming, Web Development, Cloud Computing, Software

Development

GCP Dataflow is a Unified stream and batch data processing that’s serverless, fast, and cost-effective. It is a

fully managed data processing service and has many other features which you can find on its website here

(https://cloud.google.com/dataflow). Apache Beam is an advanced unified programming model that implements

Bachina B Journal of Scientific and Engineering Research, 2021, 8(9):242-248

Journal of Scientific and Engineering Research

243

batch and streaming data processing jobs that run on any execution engine. GCP dataflow is one of the runners

that you can choose from when you run data processing pipelines.

At this time of writing, you can implement it in languages Java, Python, and Go. If you need to process large

datasets or data stream processing Apache beam is the tool that can process with a unified, portable, and

extensible programming model. You can get a lot of flexibility and advanced functionality that you need for

data processing jobs. There are so many runners you can choose from, for example, If you want to run the whole

thing on GCP you have Google Dataflow that you use as a runner.

In this post, we will see how we can get started with GCP Dataflow. We will start with a simple Spring Boot

application and see how to integrate with Apache Beam and run it on your local machine with Direct Runner

and see some example projects.

• Prerequisites

• How to get started with Apache Beam

• Batch vs Stream Processing Job

• Creating a Batch Processing Job

• Creating a Stream Processing Job

• Configure Custom Pipeline Options

• Run a Pipeline from Local Machine

• Testing Pipeline

• Example Project

• Conclusion

1. Prerequisites

There are some prerequisites for this project such as Apache Maven, Java SDK, and some IDE. You need to

install all these on your machine if you want to run this example project on your machine.

• JDK Installation (https://www.oracle.com/java/technologies/javase-downloads.html)

• Apache Maven (https://maven.apache.org/download.cgi)

• IntelliJ IDEA Community Edition (https://www.jetbrains.com/idea/download/#section=mac)

• GCP Cloud SDK (https://cloud.google.com/sdk)

• Gsutil tool (https://cloud.google.com/storage/docs/gsutil)

Make sure you install Java and Maven on your machine by testing with these commands. You need to add these

to your path so that you can run these commands.

java --versionmvn –version

Figure 1: Checking Versions

A.GCP Prerequisites

• Create a new project.

• You need to create a Billing Account

• Link Billing Account With this project.

• Enable All the APIs that we need to run the dataflow on GCP.

• Download the Google SDK

• Create GCP Storage Buckets for source and sinks.

Bachina B Journal of Scientific and Engineering Research, 2021, 8(9):242-248

Journal of Scientific and Engineering Research

244

Figure 2: GCP Storage Buckets

B. Service Account

Need to create a service account so that when you run the application from your local machine it can invoke the

GCP dataflow pipeline with owner permissions.

Figure 3: Service Account

You have to generate the key and download and set the environment variable

called GOOGLE_APPLICATION_CREDENTIALS.

export GOOGLE_APPLICATION_CREDENTIALS="/Users/bhargavbachina/gcp-credentials/gcp-dataflow-service-

account.json"

Finally, you can run the following command to log in to your GCP account.

gcloud auth login

2. How to get started with Apache Beam

Apache Beam currently supports three SDKs Java, Python, and Go. All these SDKs provide a unified

programming model that takes input from several sources. These sources can be finite data set from a batch data

source or an infinite data set from a streaming data source.

Figure 4: Apache Beam Programming Model

Bachina B Journal of Scientific and Engineering Research, 2021, 8(9):242-248

Journal of Scientific and Engineering Research

245

You define the pipeline for data processing, The Apache Beam pipeline Runners translate this pipeline with your

Beam program into API compatible with the distributed processing back-end of your choice. It supports multiple

Runners as shown in the above figure. You have to define an appropriate Runner when you run your Beam

program so that the Runner executes your pipeline.

If you want to know how to get started with Apache Beam and be familiar with the Java example project, check

out the below post.

How To Get Started with Apache Beam and Spring Boot (https://medium.com/bb-tutorials-and-thoughts/how-to-

get-started-with-apache-beam-and-spring-boot-482654071a48)

3. Batch vs Stream Processing Job

There are two types of jobs in the GCP Dataflow one is a Streaming Job, and another is Batch Job. For example,

you have one file, and you need to read it once a day and do all the processing. You can schedule a Batch Job that

reads the entire file at once. But this is not the case all the time, what if you must read files as they come and do

all the processing?

You need a streaming Job for that it constantly watches for the file in the GCS Bucket, and it reads the file as

soon as it arrives in the bucket and does all the processing.

4. Creating a Batch Processing Job

If you have a finite amount of data and can be processed at once without interruption or interaction, the

processing of this kind of data is termed Batch Processing. In the GCP Dataflow, you can read the entire file

from the GCP Bucket and do processing or you can constantly listen to the buckets and keeps on reading files.

Batch Processing applies to the first kind of work where you read the entire data set at once.

In the GCP Dataflow, you can use FileIO or TextIO to read the source.

Figure 5: Dataflow Reads the file

If you look at the above diagram you can see that the pipelines in the Dataflow read the specific file patterns and

read it completely. Below is the code snippet for both TextIO and FileIO I/O transforms.

https://gist.github.com/bbachi/37d562b75efbb1146b6301f8d144f3f4#file-pipeline-java

Here is a detailed example of how to create a Batch processing Job in GCP Dataflow.

How To Create a Batch Processing Job On GCP Dataflow (https://medium.com/bb-tutorials-and-thoughts/how-

to-create-a-batch-processing-job-on-gcp-dataflow-bac3505422a7)

5. Creating a Stream Processing Job

In the GCP Dataflow, you can use FileIO or TextIO to continuously read the source for new files. You can use

FileIO to continuously watch for specific file patterns and read those files.

Figure 6: Dataflow Watches for file patterns

If you look at the above diagram you can see that the pipelines in the Dataflow constantly watch for the specific

file patterns and read it. Below is the code snippet for both TextIO and FileIO I/O transforms.

https://gist.github.com/bbachi/37d562b75efbb1146b6301f8d144f3f4#file-pipeline-java

Bachina B Journal of Scientific and Engineering Research, 2021, 8(9):242-248

Journal of Scientific and Engineering Research

246

https://gist.github.com/bbachi/857b8ea27754b41131dd089974421620#file-pipeline-java

Here is a detailed example of how to create a Stream processing Job in GCP Dataflow.

How To Create a Stream Processing Job on GCP Dataflow (https://medium.com/bb-tutorials-and-thoughts/how-

to-create-a-streaming-job-on-gcp-dataflow-a71b9a28e432)

6. Configure Custom Pipeline Options

We can configure default pipeline options and how we can create custom pipeline options so that we can pass

them as command-line arguments when invoking the pipeline.

The options are limited here, for example, you can’t set the input file name or output file name in the standard

PipelineOptions

If you want to set these options as pipeline options, you can configure it. Let’s see how we can do that. First, we

need to define the interface that extends PipelineOptions like below.

https://gist.github.com/bbachi/fec69022a8c629c6e68712da65a25d53#file-runtimeoptions-java

Once you define the interface like above all you need to register this interface like below and you can set the

options or use the default options.

// register the classPipelineOptionsFactory.register(RuntimeOptions.class);

RuntimeOptions options = PipelineOptionsFactory.as(RuntimeOptions.class);

It’s recommended that you register your interface with PipelineOptionsFactory and then pass the interface when

creating the PipelineOptions object. When you register your interface with PipelineOptionsFactory, the --help can

find your custom options interface and add it to the output of the --help command. PipelineOptionsFactory will

also validate that your custom options are compatible with all other registered options.

Here is a detailed example of how to configure custom pipeline options.

How To Configure Custom Pipeline Options In Apache Beam (https://medium.com/bb-tutorials-and-

thoughts/how-to-configure-custom-pipeline-options-in-apache-beam-37a32f84d1aa)

7. Run a Pipeline from Local Machine

If you want to run the whole thing on your local machine the only thing you need to change is the input and

output files and the type of runner that you want to run this pipeline on, in this case, it is Direct Runner. You can

change these values in this example project, or you can check this below post as well.

How To Get Started With Apache Beam and Spring Boot (https://medium.com/bb-tutorials-and-thoughts/how-to-

get-started-with-apache-beam-and-spring-boot-482654071a48)

Once you set up all the options and authorize the shell with GCP Authorization all you need to tun the fat jar that

we produced with the command mvn package.

Make sure you set this environment variable like below and then run the remaining commands.

export GOOGLE_APPLICATION_CREDENTIALS="/Users/bhargavbachina/gcp-credentials/gcp-dataflow-service-

account.json"

// mvn cleanmvn clean

// packagemvn package

// Run the applicationjava -jar gcp-pipeline-1.1-SNAPSHOT.jar

https://miro.medium.com/v2/resize:fit:720/0*Pk9AdmkUAHlI89pX.gif

Once you run the command java -jar gcp-pipeline-1.1-SNAPSHOT.jar, It invokes the pipeline on GCP.

https://miro.medium.com/v2/resize:fit:720/0*5yKuxD0Amv1IyqsD.gif

Once the pipeline is run, you can see the status message as succeeded

https://gist.github.com/bbachi/857b8ea27754b41131dd089974421620#file-pipeline-java
https://medium.com/bb-tutorials-and-thoughts/how-to-create-a-streaming-job-on-gcp-dataflow-a71b9a28e432
https://medium.com/bb-tutorials-and-thoughts/how-to-create-a-streaming-job-on-gcp-dataflow-a71b9a28e432
https://gist.github.com/bbachi/fec69022a8c629c6e68712da65a25d53#file-runtimeoptions-java
https://medium.com/bb-tutorials-and-thoughts/how-to-configure-custom-pipeline-options-in-apache-beam-37a32f84d1aa
https://medium.com/bb-tutorials-and-thoughts/how-to-configure-custom-pipeline-options-in-apache-beam-37a32f84d1aa
https://medium.com/bb-tutorials-and-thoughts/how-to-configure-custom-pipeline-options-in-apache-beam-37a32f84d1aa
https://medium.com/bb-tutorials-and-thoughts/how-to-get-started-with-apache-beam-and-spring-boot-482654071a48
https://medium.com/bb-tutorials-and-thoughts/how-to-get-started-with-apache-beam-and-spring-boot-482654071a48
https://miro.medium.com/v2/resize:fit:720/0*Pk9AdmkUAHlI89pX.gif
https://miro.medium.com/v2/resize:fit:720/0*5yKuxD0Amv1IyqsD.gif

Bachina B Journal of Scientific and Engineering Research, 2021, 8(9):242-248

Journal of Scientific and Engineering Research

247

Figure 7: Pipeline Successful

Here is a detailed article on how to run a pipeline from a local machine.

How To Run a GCP Dataflow Pipeline from Local Machine (https://medium.com/bb-tutorials-and-

thoughts/how-to-run-a-gcp-dataflow-pipeline-from-local-machine-de4a6a4ff611)

8. Testing Pipeline

Testing the pipeline is as important as developing the pipeline. When you test your pipeline, you can completely

test it on your local machine with the help of DirectRunner. It’s faster in that way you don’t have to test

everything on remote runners such as GCP Dataflow, etc.

When you are testing a pipeline End-to-End you need to use classes such as TestPipeline and PAssert. Here are

the suggestions from the official docs of Apache Programming Model

• For every source of input data to your pipeline, create some known static test input data.

• Create some static test output data that matches what you expect in your pipeline’s final

output PCollection(s).

• Create a TestPipeline in place of the standard Pipeline.create.

• In place of your pipeline’s Read transform(s), use the Create transform to create one or

more PCollections from your static input data.

• Apply your pipeline’s transforms.

• In place of your pipeline’s Write transform(s), use PAssert to verify that the contents of the

final PCollections your pipeline produces match the expected values in your static output data.

Here is a detailed article on how to test the pipeline.

How To Test GCP Dataflow Pipeline (https://medium.com/bb-tutorials-and-thoughts/how-to-test-gcp-dataflow-

pipeline-2e1b56862c41)

9. Example Project

• How To Get Started with Apache Beam and Spring Boot (https://medium.com/bb-tutorials-and-

thoughts/how-to-get-started-with-apache-beam-and-spring-boot-482654071a48)

• How To Create a Batch Processing Job On GCP Dataflow (https://medium.com/bb-tutorials-and-

thoughts/how-to-create-a-batch-processing-job-on-gcp-dataflow-bac3505422a7)

• How To Create a Stream Processing Job On GCP Dataflow (https://medium.com/bb-tutorials-and-

thoughts/how-to-create-a-streaming-job-on-gcp-dataflow-a71b9a28e432)

• How To Configure Custom Pipeline Options In Apache Beam (https://medium.com/bb-tutorials-and-

thoughts/how-to-configure-custom-pipeline-options-in-apache-beam-37a32f84d1aa)

• How To Run a GCP Dataflow Pipeline from Local Machine (https://medium.com/bb-tutorials-and-

thoughts/how-to-run-a-gcp-dataflow-pipeline-from-local-machine-de4a6a4ff611)

• How To Test GCP Dataflow Pipeline (https://medium.com/bb-tutorials-and-thoughts/how-to-test-gcp-

dataflow-pipeline-2e1b56862c41)

• How To Read a PubSub Messages on GCP Dataflow (https://medium.com/bb-tutorials-and-

thoughts/how-to-read-a-pubsub-messages-on-gcp-dataflow-2658b23efa97)

https://medium.com/bb-tutorials-and-thoughts/how-to-run-a-gcp-dataflow-pipeline-from-local-machine-de4a6a4ff611
https://medium.com/bb-tutorials-and-thoughts/how-to-run-a-gcp-dataflow-pipeline-from-local-machine-de4a6a4ff611
https://medium.com/bb-tutorials-and-thoughts/how-to-test-gcp-dataflow-pipeline-2e1b56862c41
https://medium.com/bb-tutorials-and-thoughts/how-to-test-gcp-dataflow-pipeline-2e1b56862c41
https://medium.com/bb-tutorials-and-thoughts/how-to-read-a-pubsub-messages-on-gcp-dataflow-2658b23efa97
https://medium.com/bb-tutorials-and-thoughts/how-to-read-a-pubsub-messages-on-gcp-dataflow-2658b23efa97

Bachina B Journal of Scientific and Engineering Research, 2021, 8(9):242-248

Journal of Scientific and Engineering Research

248

10. Summary

This paper introduces GCP Dataflow, a serverless, efficient, and cost-effective data processing service, along

with Apache Beam, a versatile programming model for batch and streaming data processing. It highlights the

flexibility of Apache Beam and the various runners available, including Google Dataflow. The paper details the

setup process, Apache Beam integration, and local execution using the Direct Runner. Key topics covered

include Apache Beam setup, batch versus stream processing, job creation, custom pipeline configurations, local

pipeline execution, testing procedures, and an example project, providing a comprehensive overview of GCP

Dataflow initiation.

11.Conclusion

In conclusion, this paper has provided an overview of GCP Dataflow and Apache Beam, emphasizing their roles

in streamlining data processing tasks with efficiency and cost-effectiveness. By leveraging GCP Dataflow's

serverless architecture and Apache Beam's unified programming model, developers gain access to a powerful

toolset for handling both batch and streaming data processing jobs. The availability of multiple language

implementations and flexible execution options underscores the versatility of these technologies in addressing

diverse data processing needs. Through practical examples and demonstrations, readers have been equipped

with the knowledge necessary to begin utilizing GCP Dataflow and Apache Beam, laying the groundwork for

effective data processing workflows. With a focus on prerequisites, job creation, configuration options, and

testing procedures, this paper serves as a valuable resource for those embarking on data processing initiatives

using these innovative tools.

References

[1]. Google Cloud Documentation https://cloud.google.com/docs

[2]. GCP Dataflow Documentation https://cloud.google.com/dataflow

[3]. Java Documentation https://docs.oracle.com/en/java/

https://cloud.google.com/docs
https://cloud.google.com/dataflow
https://docs.oracle.com/en/java/

