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Abstract The study in Cartesian coordinates of a form material of a simple wall consisting of Kapok-plaster 

with the following characteristics (
101..1,0  CmW and  

127 .10.73,4  sm ). 

A study of the thermal behavior in transient regime of Kapok associated with plaster as a binder is carried out. 

Analysis of the results from representations of temperature and heat flux density allowed characterization of the 

Kapok-plaster thermal insulation from the one-dimensional transient dynamic regime study. The resolution of 

the one-dimensional heat diffusion equation by the analytical method made it possible to determine the 

evolution of the temperature and the flux density according to the depth and the thickness under the influence of 

the heat exchange coefficient at the front face. The study showed that the Kapok-plaster material is a good 

thermal insulator. 
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Introduction 

Artificial insulation poses an environmental problem unlike natural biodegradable insulation [1]. Kapok [2] a 

natural biodegradable product, is used as a thermal insulator [3-5] in association with plaster as a binder. The 

study is part of improving the use of natural local products on thermal insulation. The heat transfer through the 

kapok-plaster material [6] is studied considering a material of parallelepiped shape. The proposed study is done 

in one dimension in a Cartesian coordinate system. The imposed heat exchanges take place on the front and rear 

faces. Researchers have worked on several local materials of plant [7], animal [8, 9] or synthetic [10-12] origin 

for thermal comfort [13-15]. 

In this work, we study the transient heat transfer [16-18] in a material consisting of Kapok-plaster under the 

influence of the heat exchange coefficient [19, 20]. 

Depending on the depth and the heat exchange coefficient we present the profiles of the temperature and density 

curves of heat flow. 

After using the different types of results we highlight the quality of the Kapok-plaster thermal insulation. 

 

Materials and Methods 

Figure 1 represents the study model, it is a simple wall in kapok-plaster of thickness L. 

The thermal exchanges between the material and the two faces (exterior and interior) are assumed to be 

convective. They are quantified by heat transfer coefficients on the front and back sides. 

 1aT
and 2aT

 : temperature in dynamic transient mode of indoor and outdoor environment respectively; 
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 CTithhxT 0

21 10)0,,,( 
: initial temperature of the kapok-plaster insulating material; 

 mL 05,0
: material length along the axis x ; 

 1h
and 2h )..( 102  CmW : heat transfer coefficient from single wall to front and back side respectively.  
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Figure 1: Sample of Kapok-plaster 

where: 

 ).( 3mkg
: density of material; 

 )..( 11  CkgJC o

: mass thermal capacity; 

 
)..( 101  CmW

: thermal conductivity of material; 

 
).( 3mWP

: internal heat supply (heat sink) of material; 

 
)(mx

: depth position. 

Simplified form of this equation, in absence of internal heat sinks and for 

constant thermal conductivity (assumed isotropic material) is given by: 
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Theory 

Unidirectional transfer of heat in thermal insulating tow-plaster is regulated by equation (2) below: 
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 thhxTT ,,, 21

is temperature inside material; x depth and t time. Equation (3) gives expression of the 

diffusivityα. 
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α  thermal diffusivity (m2.s−1) 

λthermal conductivity (W.m−2.℃−1) 
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ρ density of the material (kg.m−2) 

Boundary conditions: 
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To solve the equation (1) we make dimensionless by asking: 
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With 

),(  u
: reduced temperature; 

L

x
u 

 : reduced space variable 

and 

02
;

.
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F0: reduced variable of time or number of Fourier 

 

Heat equation (1) becomes: 
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Boundary conditions (4) and (5) become (9) and (10): 
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Seek the solution of equation (7) in the form of equation (10): 

)11();().(),(  HuUu 
 

Using equations (7) and (10) we obtain that (11) 

    

 

β  positive constant. 

From equation (11) we obtain two differential equations: 

i) Differential equation in time is given by (13): 
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ii) Differential equation in space (14) is written: 
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    Boundary conditions of space: 
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With 

Lh
Bi

.1
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   and     

Lh
Bi

.2
2 

 

Biot numbers respectively to the front side and the back side. 

Temporal equation (14) has the solution: 
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τd ∶ reduced time constant and βn≠0 Differential equation (14) has the solution: 
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with, nϵ N 

anandbn coefficients determined from the boundary conditions. 
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Expression (20) allows us to find transcendental equation (21): 
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Transcendental equation is divided into two functions: 

i) Trigonometric function denoted  
)( nft 

 

)22();tan()( nnft  
 

ii) Homogeneous function denoted 
)( nfh 

 

 
Figure 2: Graphical determination of the eigenvalues (βn) of the transcendent equation 
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In this figure we present the evolution of ft (βn) and fh (βn) as a function of the eigenvalues of the transcendent 

equation for different values of the coefficients. 

The intersection of the two curves fh (βn) and ft (βn) corresponds to the solution. 

Table 1 summarizes the eigenvalues found of βn  

Table 1: The eigenvalues of βn  of the equation 

n 1 2 3 4 5 

βn  4.6 7.5 10.5 13.4 16.6 

 

2.1. Temperature expression 

The Euler-Fourier integrals allow us to obtain the constants H1n(0) and H2n(0) 
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We get the expression for the final temperature:
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2.2. Expression of heat flux density 

By generalizing the relation to a one-dimensional configuration: 

  )26(;,,,.),,,( 2121 thhxTthhx


 
 

With, the operator( x






) designates the gradient vector 

We derive the temperature,  thhxT ,,, 21  as a function of x. 
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By applying the product of the derivative of the temperature with respect to the following component x and the 

thermal conductivity λ. We get the expression for the heat flux density: 
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From expression (28) we plot the heat flux density according to the different parameters. 

 

3. Results and Discussions 

3.1 Evolution of the temperature and the density of the heat flow as a function of the depth for different 

values of the exchange coefficient 

This wall is a material is made of Kapok-plaster. In this study we have a single wall with a thickness of 5cm. 

Heat flux is from the front side assuming that from the back side is assumed to be low. The initial temperature 

of the material is fixed at 10 ° C. The outdoor environment has a temperature of 30 ° C. 

For figures 3 and 4 we have plotted the temperature and the heat flux density as a function of the depth under 

the influence of the heat exchange coefficient at the front face h1. 

We note a decrease in temperature as well as in heat flux density depending on the depth of the wall made of 

Kapok-plaster material. This thermal drop in depth shows that this material is a good insulator. 



FAYE S et al                                             Journal of Scientific and Engineering Research, 2021, 8(9):199-206 

 

Journal of Scientific and Engineering Research 

204 

 

 

 

3.2. Evolution of the temperature and the density of heat flow as a function of the exchange coefficient 

For low values of the exchange coefficient on the front face, the temperature and the heat flux density evolve 

exponentially before stabilizing at temperature values depending on the depth. We note that as one penetrates 

the material layer, the effect of the exchange coefficient at the front face in the evolution of heat flow becomes 

less and less important. 

For figure 5 we see for each point of the material, the temperature increases exponentially as a function of h1 

and then reaches a level which corresponds to the maximum temperature that this point can take where the 

stored energy is maximum at this point. 

For figure 6 the heat flux density increases exponentially as a function of h1 then reaches a plateau and it hardly 

increases any more. The material seems to store thermal energy, hence a situation of saturation of the energy 

stored in large values of the exchange coefficient. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3. Evolution of temperature and heat flow density as a function of time 

Figures 7 and 8 give the temperature and heat flux density of the samples as a function of time under the 

influence of the heat exchange coefficient at the front face. 

For figure 7 the temperature increases as a function of time. This shows the material heats up over time. This 

translates into a storage of thermal energy. 

Figure 3: Temperature as a function of material 

depth.  ℎ2=0.005W.m
-2

.C
-1 

; t=10s 

 

 

 

Figure 4: Heat flux density as a function of 

material depth.ℎ2=0.005W.m
-2

.C
-1 

; t=10s 

 

 

Figure 5: Temperature as a function to the 

heat exchange coefficient on the front face ℎ1  

of the material. ℎ2=0.005W.m
-2

.C
-1 

; t=10s 

 

 

 

Figure 6: Heat flux density as a function of the 

exchange coefficient at the front face 

ℎ1material.ℎ2=0.005W.m
-2

.C
-1 

; t=10s. 
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For Figure 8 the heat flux density decreases as a function of time inside the material. This decrease is due to a 

loss of heat in the kapok-plaster material. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Conclusion 

The study of the thermal behavior of the Kapok-plaster insulating material through a model of the temperature 

and the heat flux density has made it possible to highlight the quality of the material. 

The influence of the exchange coefficient at the front face on the temperature and heat flux density of the 

Kapok-plaster material, under transient conditions, is noted. This shows that the Kapok-plaster used is a good 

insulator. 
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