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Abstract This article is on the influence of combination of viscosity in an unsteady MHD flow in a vertical
channel. The governing equations of motion were employed and solved analytically. Transform is carried out on
the governing equations to form sets of nonlinear coupled equation by suitable transformation using stream
functions and non-dimensionalize the non-linear partial differential governing equations to ordinary differential
equations using the non-dimensional quantities. Solving the resulting sets of ordinary differential equations by
using perturbation technique to obtain expressions for the velocity, temperature and concentration profiles. We
analyse the effects of velocity, temperature and concentration of the fluid at the various physical parameters;
Womersley parameter (Al), Eckert number (Ec), Reynolds number (Re), Prandlt number (Pr), Grashof number
(Gr), Schmidt number (Sc), Chemical reaction parameter (K,), and the Mass Grashof number (Gc). Graphical
results are presented and discussed.
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Introduction

The unsteady and steady flow of Newtonian and non-Newtonian fluids in a porous media in which the main
driving force is gravitational force has attracted the attention of many scientists in the recent times. This is due
to its large area of applications and significant roles in Engineering and sciences particularly in applied
Geophysics, Geology, Ground water flow, Food Technology, Filtration process, enhanced oil recovery, oil
reservoir engineering and oil recovery processes. Gravity flow of non-Newtonian fluid through porous medium
is involved in some important engineering applications: enhanced oil recovery by thermal methods, polymer
solutions, geothermal power, geothermal reservoirs, food stuff processing and emulsions of oil and foam
solutions acting as display fluids in certain oil fields. The term “non-Newtonian” implies that the viscosity is not
only dependent upon temperature and pressure, but also on the rate of shear that is applied to the fluid.
However, Newtonian fluid will have essentially the same viscosity no matter the rate of shear applied. The non-
Newtonian behavior of many fluids has been recognized for a long time. However, the science of rheology is
still in its infancy in many respects and as such, new phenomena are being discovered on a constant basis with
new theories propounded. In the current study, attempts have been made to obtain relationships, mathematical
and empirical descriptions of the flow of non-Newtonian fluids (power-law) through porous media.

Hartman and Lazarus [1] in 1937 studied the influence of a transverse uniform magnetic field on the flow of a
viscous incompressible electrically conducting fluid between two infinite parallel stationary and insulating
plates. Since then this pioneering work in MHD flow has received much attention and has been extended in
numerous ways. Many studies are on MHD flows, notably among them are : Mostafa and Mahmoud [ 2 ]
studied the variable viscosity and chemical reaction effects on mixed convection heat and mass transfer along a
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semi infinite vertical plate. Ganesan and Plani [5] worked on numerical solution of transient free convection
MHD flow of an incompressible viscous fluid flow past a semi infinite inclined plate with variable surface heat
and mass flux. Likewise, Sparrow and Cress [8] worked on the effect of a magnetic field on free convection heat
transfer. Recently Sarmal and Hazarika [7] presented their research work on effects of variable viscosity and
thermal conductivity on heat and mass transfer flow along a vertical plate in the presence of a magnetic field.
This work is focused on investigating the influence of the effect of viscosity in an unsteady MHD flow with
viscous dissipation and concentration in a porous vertical channel and to examine the effects of some parameters
on velocity, temperature and concentration profiles.

Mathematical Formulation of the Problem

Consider a steady free convection flow of a viscous and incompressible electrically conducting fluid along a
porous vertical channel. The flow is as shown in Figure 1 below. The effect of a uniform transverse magnetic
field B on unsteady two-dimensional electric conducting fluid flows are considered and its velocities are given
as

q = U(X’ y!t)l +V(X! ylt)J (a)

D: —ooLXL+OO,—b(X)4y4b(X)) where (

through a symmetric vertical channel ( X, y) are Cartesian

co-ordinates such that OX is the axis of symmetry of the channel and y =%b(x) are the rigid and

impermeable walls of the channel. The walls of the channel are kept at a constant temperature T . The fluid is
incompressible with uniform properties i.e. density P Kinematic viscosity V' and electrical conductivity O . A

volume flux with oscillating frequency 0 and pulse m is prescribed as in figure 1 below:

Y A
Bo l

T=Tw | ————— |

y=b(x)

y(x)=—b(x)

N s

- 1 1

Figure 1: Problem Geometry (Source Mhone and Makinde, 2006)
b(x) ist
.[0 udy = Q1+ me*")

(b)

A uniform magnetic force is applied in the A very small magnetic Reynolds number is
assumed and therefore the induced magnetic field is neglected. Two key physical effects occur when the fluid
moves into the magnetic field; the first one is that an electric field E is induced in the flow. There is no excess

y —direction

charge density and then VE=0, Neglecting the induced magnetic field implies that VxB=0 ang
therefore the induced electric field is negligible. The second key effect is dynamical i.e. a Lorentz force (

JxB ), where J is the current density acts on the fluid and modifies its motion. Therefore, there is a transfer of
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energy ( J.E ) from the electromagnetic field to the fluid. In this study\, relativistic effects are neglected, and J
is given by Ohm’s law:

J =0(qxB) ©
Within the framework of these assumptions the magneto-hydrodynamic flow relevant to the problem is
governed by the set of equations
Mathematical Analysis
The governing equations for motion under the auspices of the Continuity equation, Momentum equation, Energy
equation and Concentration equation are considered.

ou ov
—+—=0
OX 8y (1)
2
a—u+ua—u+va—u=—1E+VV2u—@—ﬂ—u+gﬁ(T -T,)+9B(C-C,)
ot OX OX P OX P pk 2
ov oV oV 1 oP 9
—+U—+V—=———+VVV
o ox oy poy 3)
oT oT oT
— 4+ U—+V—=
ot OX oy
k vifauY (av) 1fov au)| oBu?
— VT +2— (—j +(—j +—(—+—j +—2 +gB(T-T,)+9gB(C-C,)
PCp Cp[ ox oy) 2lox oy PCp 0 0 "
2 2
£+u§+v£:D%+D12+KL(C—CO)
ot ox oy oy oy (5)
With conditions:
N _g T _p
Symmetry: oy ,v=0, oy ,C=0o0ny=0 (6)
u+v@—0
Non-slip: dx ,T:Tw, C=C, ony = b(x) )
It is convenient to introduce the stream function ¥ defined by
OX 8
So that
w_oy n_ oy
X oxdy ox X
a_dy v__dy
oy oy dy  oxoy 9)

Substituting equation (9) into (1) gives
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821// oy
OXoy 6X8y

} It satisfied continuity equation. (10)

2 2
But {ZXVZ/ + gyl/zl} = o Which can also be written as

2 _
Vv =0 (11)

To eliminate the pressure term from (2) and (3), differentiate (2) with respect to Y and (3) with respect to X
gives

2
a{a” U va—”} e e SR LU AN ICRCh)
gyfot ox oy p oy X 6yp8ypk6y6y
(12a)
d|ov v v 18[8P} , OV
—+U—+V —— | — |+VWV " —

ox| ot ox ay p OX| OX OX (12b)
Subtract equation (12b) from (12a) to give
a[au av} 6[8u 8v} a{au av} {8u av}
—|———|+=|V—-V— [+—|U—-Uu— Ve ——-—
otloy ox| oy| oy ox| ox| oy  ox dy o

oB¢ ou ,u@u
S R -T,)+gp(C-C

N Koy ay[gﬂ(r ) +9B8(C-Cy)] .
Substituting (9) into (13) yields
oty oyl of ovdy owdv] ofovdy ovdv]_
at| oy? % oy| ox oy* ox ox* | ox| oy oy® oy ox?

,| 0w Oy O'Baz// ,uaa) 0
A% -T c-C

{Wﬁaxz} b o pk oy oy 9T T OACG] (14)
Simplifying (14) further to obtain
dw o0(ow) _, oBZ oy p oo o
ot =W TG L Z s [g AT -T,) +9B(C - Cy)
ot a (y,x) p oy* pkoy’ ay[ ] (15)

g{ v &y _ov &y }g{a_wazw_a_waw} 0 (@.p)

where YL ¥ 0 X ox oy’ 0y OXdy  OX OyoX |_ 0 (y,X) (16)

Substituting (9) into (4) leads to

2 2 2 2 2 2 2
O 0w dl Oy al _ K Gep, o, VI|[Ow ) [ Ow) 110w 0w
ot oy ox ox oy pCp Cp| | oxoy oxoy 2\ oy* ox®

+9p8(T -Ty) +9B(C-C,)
pCp (17)

Further simplifying of (17) resulted into
(gri‘*
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LA _ ko v (Sw Sy av(dy) oBfoyY
ot a(y,x) pCp col oy o) cplaxay)  pCpl oy

Similarly substituting (9) into (5) using the same approach as in above leads to

2 2
0w i _pFC 0T o o
o oy ox oxoy % oy (19)

Simplifying equation (19) further to obtain

2 2
@+Q(—‘”'C]=DQ+D 0T 1K (C-Cy)

a o\ yx oy’? oy? (20)
The corresponding boundary conditions are:
2
V_o y=0 oo
oy oy Ony=0 1)
d_l,//:@_l//@: , T=T, WZQ(1+mei°‘) ony =b(x).
dy ox dx

(22)
The function b(x) is assumed to depend upon a small parameter € such that

b(x,2)= aos( 0}[0«9—%«1} -

where % the characteristics constant half width of the channel, L is the characteristics
constant length of the channel and S is the function describing the channel wall divergence geometry. This
assumption helps us to simplify the problem by writing the equations in non-dimensional form. To achieve this,

TO is defined as the reference temperature and the following non-dimensional qualities were introduced.
2
’ a) ’ gx ’ ’ 14
a):ao , X:—’ y:l’ l//:z’ t:5t’
Q A, A, Q
T-T, ca? c-C
o=——2, p=S2p g0 (24)
T,—T, PVvQ C,—C,

Differentiating (24) with respect to x, y and t the non-dimensional quantities and Substituting into (15, 17, 18,

19) and after neglecting terms of order g and higher order as well as the primes for charity to obtain

2 2 2
o _,00_ ReF(a}’W)H)@ W+Fsa Vs —Gr%—Gc%}

§ Ca e ¥ oy 5)
0 pr9 _Repr 5[‘9 “’J QF (az‘”] ~Gro—Geg |-PrE (62‘”)

v o\ y.x % % -
%+Re£§(w’¢j SCa ¢+Sc162—9+ K¢

ot a o\ Y, X oy? oy’ (27)
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a,L a,L
Gr=gB2—(T,-T, Ge=gp-—(C,-C,
r=g Q(W ) c=g Q( )

Where thermal Grashof number, mass Grashof number,

2 2
Q:O'Boaol_ a:5a0 Re:%
PQ is the magnetic field intensity parameter V' the womersley number, V  the

QZ
c = 2 _
effective Reynolds number aOCrw_To)Cp is the Eckert number Sc= Da05 Schmitt number and

V
K 1=K cpemical reacti Pr=rCsi

chemical reaction number and "k the prandlt number.

The boundary conditions are:

OV _o, y-0W o 20_

9Y _o, y=0, =0

oy’ oy oy onY=0 (28)
8W it

_:0, ¢:1, 0:1, l//:1+me

oy onY=5(x) (29)

Due to the nonlinear nature of the equations, it is convenient to adopt a power series expansion with the
effective flow Reynolds number (Re) as follows:

1//=Z:Rej(t//js +me"l//j), Q)=ZRej(COJ-S +meita)j)
j=0 j=0

0= ZRej (0, +me"6,), ¢ = ZRej (9 +me"gp,)
]=0 j=0

(30)

LW o, o 0., 0., ¢ and @ .
where Vie Vir @i @, Tisr Y] ¢J$ ¢‘ are functions of S(x) and y. it is important to note that the
real part of the equation (30) forms the solution of the problem which is physically meaningful. Substituting

it
equation (30) into equations (25-27) and collecting terms of like order of Re and M€ | gives zero order:

ZRe( (ZRe( ® +mie" j)j:

v 0%y O’y 0y

0+Q>'R By met T 1y Fg(E ymet Tk

N +,Z(;e(ay +me 6y2) s(ay2+me ayz)
00, .0 0,
+Gr(—= +me" —1) - Gc( me" —1)
oy oy 5)/ oy

(31)

iRej(aafzjs & 9‘) aPr(ZRe (—2= + mie"o, )j
j=0

i %y onvg ®© ) .
Re P{O—QEc (Z Re’ (ﬁ +me" %)J—Grz Re' (60, + me”ej)}
J=0

j=0

P
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o . . x 1// 821//- ?
~GcY Re! (¢, +me'g)—E, Pr L j
C,Z ¢t me'g) -k, [Zo oy* 8y2 )J

ji;Re" (¢, +mie"p,)+ Reé(o) = Sc(]i; Re! (%+ me" %)]

+Scl(ZRe( O aaye;)} Kl(iRej(¢js+me“¢j)}

j=0

it
when j = 0, and collecting terms of like order of me' , lead to Zero order (31), (32) and (33) yields
o’w

é3’2():/1126‘70’

oy

o

2 2

O _ )20, = 2E, Pra"’oa'”zos
oy oy

2 2

a¢zoJri[Kl_i]qjo:_S_Cla62)0

oy- Sc Sc oy

Considering the term js in (31), (32) and (33) the following set of equations were obtained.

2
a 905 E Pr(al//OSj
oy

ay°?
826005 0
oy
Oy,
Wzo = Wy
The boundary conditions are
2 2
—al,ioza‘,yos O WO l//OSZO’ 69 aeoszo, %:%:0, on y:o
oy oy’ ERE o o

Oy _ OV,
ayo ayo =0, yy=v,=1 6,=0 6, =1 ¢ =0 ¢_=1 on y=S(x)
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(32)

(33)

(34)

(35)

(36)

(37)

(38)

(39)

(40)

(41)

(42)

(43)

(44)

(45)
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o4 1. . sc, 6%4
sl

Considering the term js in (31), (32) and (33) the following set of equations were obtained.

2
a2005 E P (aV/Os)
oy

ay*
825005 0
oy
Wy,
8y20 = —Wy,
a2¢os _ﬁ¢ SC 6 603
o> Sc ™ Sc oy’
The boundary conditions are
2 2
al/zo:a‘//m 0, w,=y, =0, % 5905_0, %Z%ZO, on y=0
oy oy’ ay oy o o
Yy _ Oy
EO: 6y0 =0, y,=yw, =1 6,=0 6,,=1 ¢=0 ¢.=1 on y=S(x)
When j = 1 order 1 gives:
82
Ele
azwl 20 (a)o’WOs)+§(a)05’V/0)+Qazl//0 +Fs o° l/fo o6

w = . —6r%% g
oy* o (y,x) 0 (¥,% oy oy oy

0 , 20 52
8‘9 aPro, = pr(a('//o 0s)+§(‘//03 wO)+ZQECal//2°aW2°5J
o () o (¥ EYINEY

2 2 2 2
_GrPrHO—GcPr¢O_gECpr[0 vy Oy, O 0 !//20]
oy oy oy oy

o4 [1+K]¢ Sc, 8°4,
o>  Sc 't Sc ooy

Considering the term js the following set of equations were obtained.

aza)ls = Q (WOS ,(005) o) 82l//OS +Fs azl/IOS —Gr 6005 ~Gc a¢05

o 9 (yx) oy* oy* oy

2 0 2 2
0 %s — Prg(l/IOs Os) _QEC(él//Osj _Gre Gc¢os —2E Pra WOS 0 lﬂzls
oy o (¥.%) oy

’@W Journal of Scientific and Engineering Research

(46)

(47)

(48)

(49)

(50)

(51)

(52)

(53)

(54)

(56)

(57)

(58)

(59)

(60)
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Phy by S0 06

oy> 'S¢’ Sc oy’ (61)
We now solving the following equations: (43), (44), (45), (46), (47), (48), (49), (50), (53), (54), (55), (56) (57),
(58), (59), (60) and (61) and the stream function ¥, vorticity @ , temperature distribution ¢ and volume fraction
¢ were obtained thus
The solution gives:

W, = ﬂ cosh 4,y

°" sinh As(x) ©2)

(63)

_(@+me")| (A7 +Dy sinhAay
o R S(x)  sinhA(x) ()

Sy y?
Vo772 Tes(x) )
g 2E_ Pr(1+me")
° (A =23)S(x)sinh 4,S(x)

24, cosh A,S(x) + S(x)sinh 4,S(x)
cosh 4,S(x)

1, EPIY -5(9°)

o 125(x)? 67)
p _[ZSclEC Pr(1+ me“)]
° L se(” —A9)s(0)
S(x)sinh 4,S(x) ,»
cosh 4,S(x) Az €0sh 4,5 (%) cosd,y
| —yA7sinh 4,S(x) — 24, cosh 4,S(X) |
cosh d,;S(x)sinh 4,S(x)

cosh 4,y —ysinh ﬂly}
(66)

21,Sc B 20 _ |cosh 4y
sinh %S(X)[/li +Slc(K1—i)j sinh 215(x)[/1.§ +Slc(K1—i)j
3 A7 cosh A,y N A2ysinh A,y (68)
cosh Z,ZS(X)[AZZ +SlC(K1—i)j (z; +81C(K1—i)jsinh A4S (X)

4 —— Sc, PrEc cosh| + /ﬁ Yo EcPrSc, 2
k Sc S°(x)(25c-K,)
cosh| + S—l S(x)(Sc—K,)
‘ (69)
rr‘f{%

& Journal of Scientific and Engineering Research

184



Areo AO et al Journal of Scientific and Engineering Research, 2021, 8(9):176-198

@, = 8, SINh Ay + 8,4 COSh 4,y + 8, + &, Sinh A4y + a,, cosh 4y +a,, sinh A,y
+a,,cosh 4,y +a,ysinh 4y +a,ycosh 4y +a,y’ +agsinhd,y (70)

_ (@+me")( (A +1)y  sinh Ay \met @+me")( (A°+1)y sinhAy
Y S(x)  sinh 4(X) 22 S(x)  sinh 4(X)

' 4 6 2 5 2 7
S'(X)y +y_+Q(S(x)y Ly ]+Gr(y—+ EcPry j

R 48 720 12 120S(x) 2 3240S(x)*
+ Re
+Ge Cydy, sinhd,,y n CooY” _ 5% _ CaY” —¢,y—¢
d2 60 6 2 v

- 2 -
smzzﬂiy e, cos:fﬂly e, y7+Cdﬂ szjiy
cos:lz/lly e, smzzﬂ?y e, cos?;zy e, ( yco;? Ay 23|2;/11yJ

2

. s :
e, ( ysinh 4y  2cosh Aly}rc y sinhd,,y FCLy+Cy (3.417)

(CS4 + 2C36 + C38d11)

it
+Reme” | +c,,

2 3 3777 TCs (7

it

1 it +me i
a)=Wy+me {Wsmhﬂly}t

Ec Pr(y;— S(x)“j
125(x)°

S'(x)yZ_y_“_Q[Mx)y_ y’ ]_Gr s

4 24 2 6S(x
Re (X)

(72)

3
- Gc[cmd12 sinhd,,y+ CZF’By j+ CaeY +Cyo

Cyg SINN A Y + Cpg COSh A,y +Cyy +Cy SINN A Y +

+Reme"| ¢, cosh 4,y +C, sinh A,y +¢,, cosh A,y +c, ysinh 4y

+C, Y COSh A4 Y +Cy Y2 +Cyg Sinh dy, Y

2

P
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E, Pr(y* -S(x)°)

=1+ 5
125(x)

22, cosh 4,S(x) + S(x)sinh 4,S(x)
cosh 4,S(x)
cosh A,y—ysinh 4y

" 2E_ Pr(1+me")
(4° = 23)S(x)sinh £,S(x)

prl 6S?(x)S'(X)y? + y*S’(x) LEPr y°S'(x)
24 S?(x) 30S(x)*

y° 4.2
4 6 2 E.Pr(:_-S(x)"y?)
9 S(X)ZsryZ_y_+ y - _ y_+ 15 >

8 3 155(x) 2 2452 (x)

+Re

4 1+ me")sinh
-Gc CMMCosh d12y+026y_ —2E_Pr ( — ) AY
12 A7 sinh 4,S(x)

12

24 6S(x) 2405 ()2
Cg, Sinhd,,y +c¢,, coshd,,y +cg,sinhd,,y +cg coshd,,y +

Reme" : :
rReme Ce, SINh A,y +C cosh Ay +Cg Sinh A,y +C,, cosh A,y +

i 5 4 3 2
Cog COSN Ay, Y +Ceg Y SINNAY +Croy” +Crpy” +Cry” +CrgY" +Crgy +Cp

o

ﬁan’;ﬁ
"‘)& Journal of Scientific and Engineering Research

|

4 3 5 3
(y oY +Gr[mj+6c(cz4sinhd12y+CZBTyD+C43Y+C44

(73)
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¢ =Cyy cosh d12y +Cy y2

2Sc,E, Pr(1+me")
Sc(4' = 4;)S(X)
S(x)sinh 4,S(x) 22 cosh 4,5 (X) 1
cosh 4,S(x) cosd,,y
—yA7Zsinh 4,S(x) — 24, cosh 4,S(x)
cosh d;,S(x)sinh 4,S(x)
+me' ,
22,5¢ : B 2, oosh zy—
sinh &S(X)(ﬂf +§(K1 —i)) sinh ,115(x)(z,§ +Slc(r<l —i))
A% cosh 4,y . A2ysinh A4y
cosh AZS(X)(A; +;C(K1 - i)j (z,j +Slc(|<1 - i)jsinh AS(x)
i |
+ Re(c76 sinhd, Y +C,, coshd, Yy +C,COShd,, Y +Cgy* +Cgyy> +Coey + C87j
Ceo SiNh dy,y + ¢, coshd,,y +c,,sinhd,,y +c, coshd,,y +
+Reme" | ¢, sinh 4,y +C,; cosh 4,y +Cy, Sinh A,y +¢,, cosh 4,y + (74)
Cag COSN Y +Cog Y SINN Ay +Crp Y +C Y +Cpp Y + Gy +CrpY + Gy
where:
6=0 (75)
o o 1+ mie"
* sinh 4,S(x) )
c = 1
=
s(x) -
¢, =0 (78)
g, 1
1+me"(1+ )
Cs = 4
S(x) (79)

A
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C =0 (80)
2 (81)
c, =0 (82)
c, =0 (83)
. 2E, Pr(1+me")sinh 4,S(x)
0 =T 222 22)S (x)sinh 4,5 (x) cosh 4,5 (X) (84)
c,=0 (85)
Cp = (86)
2E_Pr(1+me")y .
C=— c - sinh 4,y
(A2 =22)S(x)sinh A,5(x) (87)
c,=0 (88)
E_PrS?(x
C15 :1_CT()
(89)
Ce=0 (90)
_ S(x)sinh 4,S(x
. 2S,E. Pr(L+me') (Cgsh %?(Xg ) 22 cosh 2,5
17 2 92 h d S H h S
S()Se(4’ — 4 ) cosh dy,S(x)sinh 4S (x) —yA?Zsinh 4,S(x) — 24, cosh 4,S(x) (@)
Cg=0 (92)
. 42,Sc,E_Pr(1+me") 28,4
. _
SeS(0sin A4S0 )74+ & (K| (440 (1)
Sc Sc (93)
Cyo =0 (94)
. - 2SC,E, Pr(1+me")A?
217
Sccosh @S(x)(ﬂﬂf +i(Kl —i)j(ﬂf ~)
Sc (95)
. 2Sc,E_ Pr(1+me") A’
22
Sc(ﬂ; Lk, —i)j(ﬂf —22)S(x)sinh A4S (X
Sc (96)
Cyp = 0 97)
o Sc, PrEc
* coshd,S(x)(Sc—K,) (98)
Cy =0 (99)
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EcPrSc,
C6 = 2
S?(x)(25c— K,) (100
c,=0 (101)
Cpg = —Cas — 2055 — Cagllyy (102)
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Method of Solution
The problems of consideration are solved analytically which resulted into the graphical results under results and
discussion.
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Figure 1: Velocity profile for different value of magnetic field intensity parameters
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Figure 2: Velocity profile for different value of thermal Grashof numbers
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Figure 3: Velocity profile for different value of Reynolds numbers
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Figure 4: Temperature profile for different value of magnetic field intensity parameters
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Figure 5: Temperature profile for different value of thermal Grashof numbers
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Figure 6: Temperature profile for different value of Mass Grashof numbers
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Figure 7: Temperature profile for different value of Eckert numbers
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Results and Discussion

In order to study the behaviour of velocity, temperature and concentration profile, a comprehensive numerical
computation using mathematical software Maple 12 was carried out for various values of the parameters that
describe the flow characteristics, and the results were reported in terms of graphs as shown in figures (1)- (7).
When the viscosity was considered, figure 1 shows that Velocity decreases with increase in Magnetic field
intensity parameter (omega) numbers and pushed the flow to the wall of the channel which leads to increase in
heat along the wall of the channel thereby increasing the velocity in the boundary layer. This is depicted in
Figure 2 with increase in thermal Grashof numbers the velocity increase and the flow were pushed away from
the wall. This suggests that unsteadiness has the effect of cooling the fluid. For increase in Reynolds number
velocity decreases as shown in figure 3. This suggests that in this model, increasing Reynolds number enhances
unsteadiness. The pressure gradient, which is trying to accelerate the fluid, is counteracted by the magnetic drag.
Figure 4 shows that there is slight decrease in temperature as Magnetic field intensity parameter (omega)
increases. The effect of thermal Grashof number and mass Grashof number in figure 5 but not well felt on
temperature in figure 6 there is a slight increase in temperature as Eckert number increase in figure 7

Conclusion
A model was formulated with the inclusion of concentration equation. The study added viscosity parameter to
explain viscous dissipation in a porous vertical channel. Approximate numerical solutions were found using
regular perturbation technique together with their boundary condition. The outcome of study showed that
increase in viscous dissipation led to decrease in Temperature and velocity profile but not in concentration. The
viscosity effect on heat and mass transfer were clearly exposed with the significance of the parameters
introduced.
Overall observations based on the problem formulated and analysed upon which conclusions were drawn and
listed as:
i evaluated the effect of viscosity on heat and mass transfer of natural convection fluid flow in
porous media;
ii. assessed the impacts of viscosity on heat and mass transfer of
MHD fluid flow in porous media;
iii. established the influence of MHD fluid flow on vertically porous channel; and
iv. determined the effects of viscosity on heat and mass transfer of MHD fluid flow in a vertically
porous channel. Limitation exhibited by the methods used was that: The viscosity effect on heat
and mass transfer over a vertical porous channel was considered. The resulting governing
equations were simplified and solved using perturbation technique. The results are presented in
graphical forms.
The impact of variations of velocity, temperature and concentration parameters on non-dimensional variables of
the heat and mass transfer was established to explain viscosity heat and mass transfer of MHD fluid flow in
porous vertical channel. The influence of viscosity effects were also noticed along with other listed parameters
and these contributed chronologically to MHD fluid flow thereby explaining heat and mass transfer over porous
vertical channel.
The study concluded that increase in mass Grashof, thermal Grashof, magnetic parameter; womersley
parameters, Reynolds, Eckert, Schmidt and chemical reaction numbers had significant effects on the MHD fluid
flow in porous vertical channel.
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