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Abstract: Interest in "Smart Cities" is growing due to the potential improvements in residents' quality of life. 

The concept encompasses various areas, including smart communities, smart transportation, and smart 

healthcare. For Smart City services, particularly Smart healthcare, to make intelligent decisions, it is essential to 

share and analyze Big Healthcare Data in real-time. Seamless connectivity and access to Smart healthcare 

services, people, and sensors are vital, achievable only with a robust mobile and wireless communication 

network. Mobile Cloud Computing (MCC) offers an effective solution for meeting end users' Quality of Service 

(QoS) requirements by offloading the processing, sharing, and analysis of Big Healthcare Data from mobile 

devices to cloud resources. Resource migration, or virtual machine (VM) migration, plays a significant role in 

smart city healthcare. This paper presents a methodology for the collaborative migration of virtual machines in 

smart city environments, supporting heterogeneous MCC-based smart healthcare systems. The methodology is 

grounded in Ant Colony Optimization (ACO), addressing the VM migration challenge by leveraging user 

mobility alongside cloud-provisioned virtual machine resources. Additionally, we provide a thorough 

performance evaluation to compare our proposed approach with current best practices. 
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1. Introduction 

The "Smart City" concept, fueled by advancements in ICT, has unlocked new possibilities for enhancing urban 

living standards. By connecting "smart" objects, people, and sensors, a wide range of services, including smart 

healthcare, transportation, and communities, can be delivered. Many Smart City services, especially new smart 

healthcare services, require real-time computation accessible from any location. Key applications in this area 

include telemedicine, critical patient monitoring, data collection, and personalized healthcare. Given that these 

healthcare applications generate vast amounts of Big Healthcare Data in real-time, it is crucial to have nearby 

computational resources readily available. Connecting and accessing these resources with minimal latency is 

challenging without a robust mobile and wireless communication infrastructure. Mobile Cloud Computing 

(MCC) addresses this by reducing task execution times and real-time communication latency in Smart City 

environments. MCC efficiently leverages the processing power, memory, and network resources of distributed 

cloud servers to run smart healthcare applications on mobile devices. By offloading tasks to powerful cloud 

servers, MCC accelerates the execution of these applications. Additionally, MCC enables real-time query 

processing in smart healthcare apps, which is critical for patient care. However, the physical distance between 

cloud servers and mobile devices can impact the execution time of interactive applications, potentially 

increasing response times. To mitigate this, cloudlets—local clouds that bring cloud resources closer to the 

user—have been proposed. By offloading tasks to the nearest cloudlet, users can reduce overall execution time. 

Virtualization technology allows cloudlet hardware resources to be shared via virtual machines (VMs), which 
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provide resources such as CPU, RAM, and network bandwidth. Although cloud computing resource 

provisioning has been extensively studied, maintaining Quality of Service (QoS) in MCC remains challenging 

due to user mobility. As users move between different Access Points (APs), the distance to the cloudlet may 

increase, leading to longer task execution times. 

To address this issue, we propose a virtual machine migration method for a mixed-mode mobile computing 

cluster that accounts for user movement patterns. When a user moves to a different cloudlet, the resource or VM 

should be transferred to the cloudlet nearest to their current location. For instance, consider a visually impaired 

person using an app that captures and processes images of their environment through a cloudlet. If the user 

moves away from the current cloudlet, the app's performance may degrade due to slower response times. 

Integrating a virtual machine migration method into the system can ensure that the cloudlet closest to the user is 

selected, preventing performance loss. 

High levels of human activity, stemming from widespread urbanization, have negatively impacted cities' 

resilience—their ability to absorb, recover from, and prepare for future economic, institutional, environmental, 

and social shocks. These challenges have significant environmental and societal implications. The definitions of 

sustainability and resilience are debated among scholars; some view them as synonymous, while others believe 

resilience is the foundation of sustainability. Despite these differing perspectives, both sustainability and 

resilience are critical systemic issues affecting our built environment. To improve urban living conditions, we 

need smart innovations and new approaches to public health, education, security, and the optimization of 

energy, waste, and traffic management. The importance of urban resilience in sustainable and smart city 

planning is greater than ever. A study in Ref. [10] assessed and ranked 187 smart cities in China using a Multi-

Criteria Decision-Making (MCDM) method, revealing a lack of resilience. Further research identified a positive 

correlation between smart cities and urban resilience, suggesting that enhancing city intelligence can improve 

resilience. Addressing complex sustainability and resilience challenges in smart cities requires integrating 

multiple technologies, including the Internet of Things (IoT), software, user interfaces, and communication 

networks. The IoT enables everyday objects like vehicles, sensors, and appliances to communicate and 

exchange data. Recent developments in industrial applications have embraced the IoT infrastructure, with 

Cyber-Physical Systems playing a crucial role. 

Smart manufacturing and industries are advancing towards creating sustainable smart cities and societies. Data 

collected by IoT sensors and devices are stored on cloud servers, enabling seamless integration of physical and 

digital elements in urban settings through data analytics and interconnected devices. This integration fosters 

more effective collaboration between businesses and governments, benefiting the economy and the city's 

residents. Smart City software, leveraging data, connectivity, and automation, enhances city operations, 

services, and residents' quality of life. It typically includes features such as data analytics, IoT, urban mobility, 

energy management, and citizen engagement platforms. 

 

2. Literature Review 

The health industry has recently come to recognize the Internet's potential as a vital tool in the quest for 

improved patient care and overall quality of life. The ability to analyze and analyze data in real-time through 

distant servers is one of the many benefits of utilizing the Internet in the health industry. In theory, the idea of 

"the cloud" may efficiently store and run applications over the Internet [13]. Big data centers provide a service 

under this model by making available to private enterprises and people as well as government agencies a portion 

of their hardware and software infrastructure. Without spending a fortune on purchasing, maintaining, and 

managing them, these clients will get access to computing resources with rising capacity as soon as they pay for 

the service. The main backbone that enables IoT applications is cloud computing. Hundreds or thousands of 

devices make up an IoT ecosystem, and they are always sending out requests to have their data analyzed. The 

IoHT stands for the proliferation of IoT devices utilized for e-health applications within the framework of 

Healthcare 4.0 [14]. As anticipated, this approach floods a central processing server with requests, which can 

strain the server's network and need more processing power than a single computer typically has. This is where 

cloud computing's scalability and pay-as-you-go features come into play as a means of processing data for 

Internet of Things applications. The increased network latency that occurs when an IoT device sends a query to 

a cloud server, however, can be intolerable in some cases.  
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In certain e-health cases, such those involving remote electrocardiograms (ECGs), the timing of data collection 

and processing is crucial to the proper operation of the system. Our inability to wait for a message to be 

received, processed, and returned from the cloud is a common occurrence, especially in time-critical 

applications [15]. In addition, increasing the cloud's capacity to handle a high volume of requests will increase 

power usage, even in a highly scalable setting. 

 
Fig. 1: Typical methods of health monitoring (a) and VitalSense (b) in comparison. Health services can be 

accessed from any location via applications. 

 

It is essential to develop innovative designs and solutions that can manage several devices and requests 

concurrently while preserving Quality of Service (QoS) in order to make IoT systems more scalable [16]. In line 

with this statement, fog computing brings data generators closer to the services provided by the conventional 

cloud model [17]. However, edge computing steps in to help with processing and decision assistance at the 

network's boundary, close to the IoT device. 

The key features of computing in the fog or at the network's edge include low latency, improved support for 

collecting data from a distributed geographic location, and mobility across a large number of nodes. As a result, 

applications may run in real-time and device heterogeneity can be better supported with mostly wireless 

connectivity. In order to prevent network traffic from being delayed due to round-trip delays, the data that the 

sensors read is first stored in a temporary database before being processed and sent to the cloud. To address 

cases like Coronavirus disease (COVID-19), it is relevant for healthcare and pandemic research to use an 

architecture that combines cloud, fog, and the edge [18]. The most critical point is that studies including long-

COVID-19 durations are now the standard. The objective is to continuously monitor the vital signs of sick 

persons before to exposure [19]. Remote health monitoring systems often use a three-tier design to monitor vital 

signs, as shown in Figure 1(a). Messaging nodes, gateways to the fog, and the cloud make up this design [20]. 

According to their review of existing efforts in the field, the following problems are not solved all at once:  

(i) the ability to track and protect an individual's vital signs and the locations they've been to in a 

smart city. 

(ii) AI to proactively provide health services, benefiting not only hospitals and the public sector but 

also end-users.  

(iii) cutting-edge methods to handle quality of service issues, elastic processing capacity, and a scalable 

and efficient messenger notification system. 

 

3. Methodology 

A. System Architecture 

According to our assumptions, the Mobile Cloud Computing (MCC) environment is composed of three tiers, 

and the backbone network is comprised of a collection of M access points (APs). The first level of the 

computing infrastructure, known as the master cloud, includes a number of public cloud providers. These 

providers include Amazon Elastic Compute Cloud (EC2), Google App Engine, and Microsoft Azure. In the 
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mobile cloud architecture, a group of interconnected cloudlets make up the second layer, often called the 

backbone layer. The third level, or user layer, encompasses all mobile devices, including smartphones, 

wearables, and others. Cloud resources that are geographically close to a user are accessible through devices in 

the third tier. Each access point is associated with a single cloudlet, denoted as C = {C1,C2,C3.....,CL}. Here is 

a sample network scenario that we have prepared, as shown in Figure 1. The backhaul network connects these 

cloudlets, and the notation Bi,j represents the bandwidth between cloudlets i and j. 

 
Figure 2. The architecture of mobile clouds. 

 

Control and monitoring of a collection of cloudlets is the responsibility of the master cloud (MC). Each cloudlet 

has a high-speed network connection to the master cloud, and it transmits data created by its hypervisor to the 

master clouds. There is a predetermined amount of RAM (Mk) and CPU (S p k) available to a cloudlet server i. 

The variable V = {V1, V2, V3....., VN} represents the number of virtual machines (VMs) that each cloudlet is 

obligated to provide. Virtual machines (VMs) allow users to offload tasks to other computers. Furthermore, we 

take it as read that all users are on the go and that they switch between multiple virtual machines while working 

on a single task. Our assumption is that there are no interdependencies between those virtual machines (VMs). A 

task and a virtual machine (VM) will be used interchangeably throughout the rest of this work. 

 
Figure 3. System for migrating virtual machines. 

 

B. Virtual Machine Migration System  

Two crucial functions of a computation migration system are shown in Fig. (3). Transferring computations from 

resource-constrained mobile devices to cloudlets is the first step towards reducing task execution time and over-

provisioning of resources. Next, we need to transfer VMs between two cloudlets. The application offloading 

manager supposedly helps a mobile device figure out which sections of the app can be offloaded and where. The 

client-request handler of a cloudlet is in charge of receiving requests from mobile devices and sending them on 

to the virtual machine scheduler so that tasks can be planned for execution. In order for the VM scheduler to 
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start scheduling virtual machines, the hypervisor supplies it with the required data. The virtual machine 

migration manager also coordinates with the virtual machine scheduler at regular intervals to migrate and select 

tasks in an effort to reduce execution times after a specified time epoch. Our primary goal in this project is to 

provide the VM migration manager with an algorithm that can efficiently remap jobs, choose a group of 

cloudlets, and reduce execution time. The VM Migration Initiator, Joint VM Migration Engine, and VM 

Selection are the three primary parts of the VM Migration Manager that work together to make the best 

migration decisions. In addition, the user mobility manager determines a user's likely cloudlets by combining 

data from the global mobility prediction manager with data from the user's local mobility management. At last, a 

group of jobs that need to be executed faster have their migration process started by the VM migration manager.  

 

4. Meta-Heuristic ANT Colony-Based VM Migration Algorithm 

We propose a method for migrating virtual machines (VMs) that involves transferring multiple VMs to multiple 

cloudlets simultaneously. Specifically, a cloudlet can reroute virtual machines to a group of cloudlets. In this 

scenario, the virtual machines act as bins, while the cloudlets serve as packs. Optimally packing these virtual 

machines into the fewest possible cloudlets minimizes overall job execution time while conserving resources. 

This problem is classified as NP-hard, indicating that no algorithm can guarantee an optimal solution in 

polynomial time. To address the VM migration challenge, we introduce a metaheuristic approach based on Ant 

Colony Optimization (ACO). This metaheuristic is employed because it is not problem-specific and can be 

adapted to various scenarios. In selecting the optimal virtual machine and cloudlet pair, we leverage ACO to 

navigate the dynamic cloud computing environment, as swarm optimization models are particularly effective in 

generating optimal solutions in such settings. ACO enhances the decision-making process for VM migration in 

distributed environments by accelerating computations. Cloudlets utilize data from mobile devices, the master 

cloud, and neighboring cloudlets to make informed decisions about VM migrations. Moreover, ACO's ability to 

learn and identify the characteristics of good solutions significantly increases the likelihood of finding the best 

solution while reducing the risk of poor decisions. The ACO metaheuristic algorithm mimics the behavior of 

virtual ants to construct a heuristic solution. We begin by creating a colony of ants, each of which applies a 

unique set of heuristics to solve smaller subproblems, eventually leading to a complete solution. Ants 

communicate through pheromones, refining their solutions as they go. Each ant develops its local optimal 

solution based on this pheromone trail and its heuristics. Ultimately, an optimal solution emerges when all ant 

colonies combine their best local solutions. 

 

5. Cloudlet Selection: Pseudo-Random Proportional Rule 

Ants select a cloudlet for each virtual machine according to a pseudo-random proportional rule (described 

below) when constructing the solution. 

 
Local Pheromone Update  

By selecting a VM pair to build a solution, an ant quickly updates the local pheromone value relative to the 

original pheromone value. Each ant uses the following relation to update its local pheromones: 

 

Global Pheromone Update  

Each pair of cloudlets and virtual machines has their pheromone values updated as soon as all the ants have 

constructed their local optimum solutions and updated the global optimal solution. The global pheromone values 

are updated using the following relation: 

 
Algorithm 1: Cloudlet-Based Ant Colony-Based Virtual Machine Migration. 

Steps: 

 Initialize:  
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 Set the System tuning parameter α. 

 Configure the migration parameters γ_1  and γ_8. 

 Calculate the initial pheromone value γ_1. 

 Set the maximum iteration count MAX_IT. 

 Select Candidate VMs: 

 Use the pre-processing step to identify the candidate virtual machine set V^s. 

 Deploy Ants: 

 Begin adding ants to the ant colony A. 

 Iteration Loop: 

 While iteration ≤MAX_IT: 

1. For Each Ant α∈ A: 

 Set k =0. 

 Repeat: 

 Select a VM  in cloudlet j for VM u_k∈V^susing the pseudo-random proportional Formula (1).  

 Increment k= k + 1. 

 Until every VM is assigned to a cloudlet. 

2. For Each VM k∈V^s : 

 Update the local pheromone using Formula (2). 

 Update the global pheromone using Formula (3). 

 Increment iteration = iteration+1. 

 Return:  

 The optimized VM-cloudlet pairs. 

VM Migration Initiator  

The best cloudlet for a virtual machine can be chosen using ant colony optimization. The PRIMIO method 

selects the currently active cloudlet as the target cloudlet after all virtual machines (VMs) have been assigned to 

it. The decision is made by calling the migration initiator for virtual machines. If the VM's destination and 

current cloudlets are different, the VM migration management will launch a virtual machine migration event. In 

every other case, the virtual machine is provided to the existing cloudlet without the need to initiate a VM 

migration event. 

 

6. Results And Study 

 

 
Figure 4. Impacts of mobility speed. (a) Time required to complete a task on average. (b) Accumulated an 

excessive amount of resources. c) The work was completed successfully. (d) The load on virtual machines 

during migration. 
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Since higher mobility speeds need more frequent migration of virtual machines, which in turn increases service 

downtime, as shown in Figure 4 (a), the average task lifetime grows as mobility speeds up. Additionally, there is 

an increase in the communication latency between the cloudlet and the user. Based on the graph, it can be shown 

that the No Migration policy results in longer average task execution times. The proportion of resources that are 

over-provisioned grows as the mobility speeds rise, as seen in Figure 4 (b). Tasks in the cloudlets migrate more 

frequently as user mobility speed increases, causing virtual machines (VMs) with more capacity than needed to 

be used. As the user's mobility speed increases, the percentage of tasks that are successfully executed within the 

deadline decreases, as shown in Figure 4 (c). One probable cause is that the task execution deadline is missed 

because the user's mobility causes an increase in communication delay with the virtual machine (VM) that is 

deployed in the cloudlet. This, in turn, causes the task lifetime to increase. This explains why fewer tasks are 

completed by the due date while using the No VM migration strategy. Increasing the speed of user mobility also 

increases the overhead of VM migration, as seen in Figure 4 (d). Since this method does not migrate any virtual 

machines (VMs), it does not create any migration overhead, which is why we will not be studying it. Although 

the VM migration overhead does increase with increasing user mobility speed, our suggested PRIMIO method 

claims that it does not significantly increase compared to existing ways. This is due to two primary causes. 

 
Figure 5. Impacts of average job completion time. (a) Resources were allocated in excess. (b) Vagrant 

migration effort. 

 

The proportion of resources that are over-provisioned grows as the average lifetime of a job increases, as seen in 

Figure 5 (a). Nevertheless, PRIMIO's utilization of a shared VM migration approach guarantees appropriate 

utilization of system resources, preventing over-provisioned resources from seeing a significant increase. 

Unfortunately, overprovisioning of resources occurs rapidly with the greedy VM migration strategy due to its 

disregard for cloudlet resources in favor of user mobility. In contrast, virtual machine migration using a task-

centric method is all-encompassing and wastes cloudlet resources. Finally, there's the No VM migration option, 

which doesn't increase the over-provisioned resources but has other negative effects. As the task execution 

lifespan in the cloudlets rises, the VM migration overhead develops, as seen in Figure 5 (b). The more time it 

takes to execute an action, the more work is involved in migrating virtual machines. When comparing the 

migration speed to the job lifespan, the system performance and the quality of service provided by user 

applications are both significantly impacted. Other approaches significantly increase VM migration overhead, as 

shown in this graph, when contrasted with our suggested PRIMIO VM migration solution. Additionally, at task 

execution lifetimes close to 10 minutes, the PRIMIO approach's virtual machine migration overhead hits a 

steady state. The reason behind this is that PRIMIO uses user mobility in conjunction with the joint-VM 

migration technique to start VM migration decisions. 

 

7. Conclusion And Future Work 

This work presents a paradigm for heterogeneous mobile cloud computing systems that takes mobility and 

resource awareness into account while migrating virtual machines. Improving the functionality of mobile health 

care applications in smart cities is the main objective. In this work, we tackle research issues related to 

shortening task-completion times and decreasing resource over-provisioning in healthcare applications that run 

on mobile cloud computing and are computationally and Big Data heavy. The suggested PRIMIO approach 
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starts virtual machine migration by taking cloudlet computational load and user mobility into account. With 

PRIMIO, users can take use of their mobility to choose the best solution, which means cloud resources are 

closer to them. During the entire task-execution time, PRIMIO reduces the total number of migrations by 

considering the load of the cloudlet to which the system intends to migrate the VM. In addition, we took 

resource over-provisioning rates into account while migrating virtual machines, which made the system make 

the most efficient use of its computing resources. We still have unfinished business in terms of optimizing task-

computation time and data-access latency while taking fog clouds and crowd sourcing into account. With 

mobility and context awareness in mind, we will investigate new edge computing technologies to further 

optimize the time it takes to execute tasks. 
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