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Abstract The huge economic losses caused by traffic congestions call for better approaches like Green Wave 

Traffic Control System (GWTCS) to reduce congestion especially at signalized intersections. The survey shows 

that good researches on optimizing GWTCS have been carried out but there are still traceable research gaps in 

the aspects of standardization of performance metrics, and also on combination of more promising Machine 

Learning types to obtain new optimums. 
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1. Introduction 

Automobile Traffic congestion, which occurs mostly at intersections, causes delay that leads to economic losses 

in the form of travel time, vehicle operation costs, and environmental pollution from vehicular emissions. 

Vehicles moving through several signalized traffic intersections mostly experience very high travel times as 

they have to stop at almost every intersection on the path to destinations [1]. Several traffic lights can be 

synchronized to allow continuous traffic flow over many intersections, which is called Green Wave. Any 

vehicle moving at the progression speed in the green wave network will not have to stop at intersections but 

experience a progressive cascade of green lights [2]. 

The optimization of green wave traffic control system is multiobjective in nature. In essence, multiobjective 

optimization problems (MOPs) have several conflicting objectives. Almost all optimization approaches of green 

wave traffic control system are done in layers, and at each layer, the objective function and the subjected 

constraints or variables vary [3]. The first layer is always the optimization of traffic controls of individual 

intersections, which by nature is multiobjective. The final layer is the optimization of entire road network that 

yields green wave, which is also multi-objective. In-between the first layer optimization and final layer 

optimization could be some sub-layers in the form of sub-networks. 

With advances in technology, especially in the area of Artificial Intelligence (AI) and powerful multiprocessing 

technologies, many complex problems with complicated tasks that require human-like intelligence and intuition 

could easily be solved within a short period of time [4]. Researchers now have different approaches that 

combine the AI technologies, especially Machine learning, with the Internet of Things (IoT) to seemingly 

handle the problems created by big data obtained from urban traffic networks and Global Positioning System 

(GPS) [5]. 

In search for understanding and keeping track of the efforts put in optimizing green wave traffic control 

systems, we focus on reviewing the use of evolutionary algorithms in the optimization of green wave in the light 

of prevailing technologies. 
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1.1. Multiobjective Optimization Approach 

In real life, most problems have multiobjective solutions [6]. In multiobjective optimization, the aim is to solve 

problems of the type: - 

Minimize f(x) = [ f1 (x) , f2 (x) , . . . , fk (x)]     (1) 

subject to   gi (x) ≤ 0 ;  i = 1, 2, . . . , m,    (2)  

hi (x) = 0;  i = 1, 2, . . . , p,    (3) 

where x = [ x1, x2, . . . ,xn ]
T
 is the vector of decision variables,  

fi : Rn → R, i = 1, . . . , k are the objective functions and gi, hj : Rn → R,  i = 1, . . . , m, j = 1, . . ., p are the 

constraint functions of the problem. A few additional definitions required to introduce the notion of optimality 

used in multiobjective optimization are: - 

Definition 1 

Given two vectors x, y ∈Rk, we say that x ≤ y if xi ≤ yi for i = 1,. ., k, and that x dominates y (denoted by x ≺ y ) 

if x ≤ y and x = y.  

Definition 2 

We say that a vector of decision variables x ∈ X ⊂ Rn is non-dominated with respect to X, if there does not 

exist another x′ ∈ X such that f(x′) ≺ f(x).   

The classical approaches to solving such multiobjective problems were primarily focused on scalarizing the 

multiple objective functions into a single objective function, whereas in more recent researches the evolutionary 

approaches have been used to solve multi-objective optimization problems to obtain a vector of optimal 

solutions called Pareto Optimal Solutions [7]. In the optimization of multiobjective problems, it is not possible 

to typically have feasible solution that minimizes all the objective functions simultaneously, and so we settle for 

solutions that can no longer be optimized further without degrading at least one of the other objectives. 

 

1.2. Multiobjective Optimization of Evolutionary Algorithms 

Problems are becoming very complex, and at the same time our world is making us to reflectively look into the 

nature and solve these natural problems [8]. These nature-inspired algorithms, known as evolutionary 

algorithms, hinge on these features: Self organization, self-learning, self-healing and self-processing. 

Evolutionary Algorithms (EAs) can be broadly subdivided into Genetic Algorithms, Genetic Programming, 

Evolutionary Strategies, and the family of hybrids. In the light of this survey, Genetic Algorithms and associated 

Hybrids are considered further in the optimization of green wave traffic control systems. 

 

Genetic Algorithms 

Genetic Algorithms (GAs) are stochastic search techniques based on the process of natural selection and natural 

genetics. By using genetic operators and increasing information, genetic algorithms prune the search space and 

generate a set of plausible solutions. These genetic algorithm operations include reproduction, crossover, and 

mutation. The selection of a participant in the operation of reproduction, crossover, and mutation on the basis of 

their fitness is an essential aspect of genetic algorithm. When a participant is selected into the next generation of 

the population, the new generation contains the characteristics it personifies [9].These evolutionary algorithmic 

operations, coupled with powerful computing environment, give genetic algorithms the potential capability to 

handle multiobjective optimization problems like green wave traffic control systems. 

 

2. Materials and Methods 

The ultimate goal of traffic control systems is to optimize space and time on our roads. At a cross intersection, 

for instance, there are about 32 possibilities of traffic conflicts of time and space between vehicles and 

pedestrians in a cross intersection [10] as indicated in fig. 1. It is worthwhile to mention here that the Right-

Hand Traffic is exactly the mirror image of the Left-Hand Traffic when it comes to the design and 

implementation of traffic controls. 
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2.1. Definitions of Traffic Control Terminologies 

 Cycle Length is defined as the time needed for a complete sequence of indications. 

 Green Split Distribution specifies the time allocation to the phases in one cycle. 

 Phase specifies the green interval, the change interval, and clearance interval in a cycle assigned to 

definite movement(s) of traffic. 

 Release Matrix is a vector which specifies the current traffic situation in any instance: the status of 

the current phase (i), the direction of movement (j), and the road-lane (k).  

 Offset is the green time lag between two adjacent traffic intersections.  

 

2.2. Traffic Control of Network of Intersections 

A network of intersections can be coordinated to enhance traffic flow in the network. This can be implemented 

statically by the use of timers, or dynamically by the use of sensors. A network of intersections can be 

represented as a directed graph G (V, E) where V denotes the intersections and E denotes the roads (edges) 

between the intersections [11]. Fig 2 depicts a road network of four intersections (JW, JX, JY, JZ). 

 

 

 

 

 

 

 

 

 

 

 

 

According to Lee [11], relationships between nodes (intersections in terms of road networks) can be modeled by 

Relationship Matrix. If i = {1,2, . . ., n} is used to represent nodes, then the Relationship Matrix can be 

formulated as: - 

P 
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 8 Left Turn-Through 

 4 Left Turn 

 4 Through traffic 

4 Merging traffic 

4 Diverging traffic 

8 Pedestrian traffic 

Total= 32 Traffic Conflicts 

P 

P P 

P P 

P 

P 

Figure 1: Vehicle-Pedestrian Intersection Conflicts in RHT [10] 
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Figure 2: Road Network of 4 Intersections 
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Where the element rij represents the relationship between node I and node j as given by 

   𝑅𝑖𝑗 =
𝑁(i⋂j)

𝑁(𝑖⋃𝑗 )
 

N(i⋂ j) considers common grounds, and N(iUj) considers uncommon grounds. Matrix partitions are then 

considered as subnetworks in traffic controls. It is pointed out that graph partitioning is an NP-hard problem 

with multiple conflicting objectives, and hence it is in the class of Multiobjective Optimization Problems 

(MOPs) [12].  
 

2.3. Components and Layout 

Traffic components vary in composition and layout depending on the road architectures and the technologies 

used in the implementation of the traffic controls. In a generic view, traffic control layout is composed of traffic 

lights on all inlets to intersections, controller, sensors if adaptive, communication hardware/channels when 

remotely controlled, Satellite communication devices when Global Positioning System (GPS) in involved. This 

is shown in fig. 3. 

 
Figure 3: A typical RHT control system layout 

2.4. Optimization of GWTCS 

The optimization of Green Wave Traffic Control System (GWTCS) involves both the optimization of traffic 

signals at intersections, and the optimization of the entire traffic interconnections. For many years, the 

optimization of intersection traffic signals has been revolving around the optimization of the Split, Cycle, Offset 

and phase sequence of the traffic. The basic optimizing techniques are SCOOT- Split Cycle Offset Optimization 

Technique, and SCATS- Sydney Coordinated Adaptive Traffic System. Although very complex, expensive and 

high rate of failure, SCATS is more efficient than SCOOT. According to Alsrehin, [13] and Oblakova[14], the 

complexity of road traffic signal optimization is exponential to the number of intersections. Hence, the need for 

intelligent heuristic techniques that can handle large and heterogeneous road networks. 

The most well-known and typical traffic signal cycle length models are the Transport and Road Research 

Laboratory (TRRL) model and the Australian Road Research Board (ARRB) model. The TRRL model is given 

as          
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where Co represents the optimal cycle length (sec); L represents the total lost time (sec); and Y represents the 

sum of the critical flow ratio of all phases. The ARRB model is given as: - 

 
where Co represents the optimal cycle length (sec); K represents the parking compensation coefficient; and Y 

represents sum of the critical flow ratio of all phases. 

At the network level of the intersections, there are coordination approaches that optimize the traffic flow in the 

entire road network which include the coordination of the network of intersection controllers, incorporation of 

sensors (adaptive) at intersections, and load balancing of vehicles at intersections using Global Positioning 

System (GPS) datasets. The starkest design consideration for implementing GWTCS is the specification of cycle 

lengths of the intersections to be the same or multiples so that there would not be phase-off. Another 

consideration is the progression speed, which is the determinant of the intersection offsets, should be carefully 

computed [15-16]. 

 

2.5. Implementation of GWTCS Optimization  

Heuristic techniques are simple and practical techniques that search for optimal solutions within costs but do not 

always guarantee optimality. These heuristic optimization algorithms include Mixed Integer Linear 

Programming (MILP), Hill Climbing Algorithm (HCA), Simultaneous Perturbation Stochastic Approximation 

& Neural Network (SPSA-NN), Simulated Annealing Algorithm (SAA), Genetic Algorithm (GA), Non-Linear 

Programming (NLP), Fuzzy Logic (FL), Ant Colony Algorithm (ACA), Particle Swarm Optimization (PSO), 

Cross Entropy Method (CEM), Maximum aposteriori Policy Optimization (MPO), Monte Carlo Problems 

(MCP), and Geometric Deep Learning (GDL). 

As indicated earlier, graphs can be computationally expressed as Non-Euclidean data with 3D or higher 

dimensions. According to Monti [12], it is a fact that Artificial Neural Networks (ANNs) are actually just 

graphs, and so most computational operations on graphs can be extended to ANN. Artificial Neural Networks 

and its extended families like Recurrent Neural Networks (RNNs), Convolution Neural Networks (CNNs) and 

Graph Neural Networks (GNNs) are types of Deep Learning Algorithms. Deep Learning is a type of Machine 

Learning Algorithm, which in turn is a subset of Artificial Intelligence. Geometric Deep Learning is an 

extension of Deep Learning with special applications to Graph Neural Networks. Geometric Deep Learning 

(GDL) builds neural networks that can learn from ubiquitous Non-Euclidean data structures like graphs and 

manifolds (Cao et al., 2020). In other words, GDL is a new field of machine learning that can learn from 

complex data like graphs and multi-dimensional points. It seeks to apply traditional Convolutional Neural 

Networks (CNNs) to 3D objects or even multidimensional data structures like graphs and manifolds [17].  

Wang Q. [18] used Mixed Integer Linear Programming on a framework of Model Predictive Control to 

dynamically optimize the coordination of traffic control networks. Kentaro[19] considered both MILP and 

Crossed Entropy Method (CEM) to optimize a coordinated traffic signal. Kinematic Wave (KW) model was 

also used for traffic dynamics as it has many intersections. Cell Transmission Model (CTM) was also 

incorporated for control problems based on Variation Technique (VT) of the KW model. The traffic scenarios of 

the research were under both deterministic and stochastic traffic demands. The main performance metric is the 

delay minimization control. 

Zhao [20] implemented Hill Climbing Algorithm (HCA) on a grid road network with route-choices model and 

was seen to remarkably improve green wave traffic. Based on the kinematic wave traffic flow model, solution 

algorithm hinged on SPSA scheme is developed to solve multiobjective optimization problem [21]. Experiments 

indicate that SPSA algorithm is better balanced between efficiency and solution quality compared to other 

heuristics like genetic algorithm (GA) and hill-climbing algorithm. Wang Y. [22] proposed an SPSA algorithm 

that dynamically optimizes multiple-ramp metering control by maximizing the total throughput in a grid road 

network. 

Chen D. [23] blended Genetic Algorithm with Sorting Algorithm to optimize the multiobjective problem of 

traffic controls. Traffic Delay and the number of stops at intersections were used to measure the efficiency, 
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which prove to improve. Static and Adaptive traffic environments were set up to enable comparison of their 

optimizations.  

Sabbani [5] integrated Ant Colony Algorithm, Internet of Things, and Genetic Algorithm to develop hybrid 

algorithm called Artificial Bee Colony (ABC). Experimentation with ABC indicated that it minimizes travel 

times. It follows the modeling of traffic road network as graph G (V, E). The result was validated in comparison 

with the tests made with Dijkstra’s Shortest Path Algorithm.  

Dong [24] separately applied Chaos Genetic Algorithm (C-GA), Chaos Particle Swarm Optimization Algorithm 

(C-PSO), Simulated Annealing-Particle Swarm Optimization Algorithm (Sa-PSO) and Catastrophe-particle 

swarm optimization (Ca-PSO) to traffic control network, and all of these intelligent algorithms improved the 

traffic conditions but that they have different scopes strengths. 

Cano [25] and Oblakova [14] focused on using Genetic Algorithm to optimize traffic at intersections and 

incorporating MAXBAND algorithm to coordinate the traffic network by optimizing the offset. A performance 

metric was introduced which measures the efficiency of green wave traffic control by the number of 

intersections passed without stopping.  

Karagiannis [26] investigated the networking of vehicles enables diverse applications that are linked to traffic 

efficiency, traffic safety, and infotainment. In traffic efficiency and management applications, applications 

requirements which include systems capability requirements, and economic requirements are considered first. 

Standards and architectures are made to foster interoperability. Vehicular networking is the empowering 

technology that will support applications ranging from Global Internet Services to active road safety 

applications. 

Peres [27] developed a combination of multi-objective evolutionary methods and simulation to simultaneously 

and dynamically optimize traffic flow and vehicular emissions. The integration of Non-dominated Sorting 

Genetic Algorithm version II from the family of MOEAs, and Generalized Differential Evolution, version 3 

(GDE3) which extends Differential Evolution to solve multiobjective optimization problems. The selection 

operator is based on Pareto-dominance. 

Zhou [28] applied the extended Particle swarm optimization (PSO) to multi-objective optimization of the traffic 

controls. Multiobjective algorithmic frameworks like decomposition-based MOEAs, memetic-based MOEAs, 

and Convolution-based MOEAs were implemented on the Multiobjective Optimization Problems (MOP). Unary 

quality indicators are used to specify the performance of the MOEAs. Farhangi, [29] used a class of MOPs 

called Multiobjective Combinatorial Optimization problems (MOCO) with a focus on multi-objective pure- and 

mixed-integer linear programming problems and their applications in System of Systems (SoS) architecting and 

Track Inspection Scheduling, and hence improving traffic coordination. 

Bronstein [30] discussed on geometric deep learning also indicated that Cross-Entropy Method (CEM) is used to 

find the global optimum solution in a MOP. CEM tolerates both deterministic and Monte Carlo problems. 

Unlike Hill Climbing methods, CEM handles combinatorial problems which have local optima. It is discovered 

that CEM fits in a Monte Carlo traffic assignment model to estimate route choices [31-32]. 

 

2.6. Design Considerations and Measurement of Efficiency 

In the design of efficient green wave traffic control systems, deliberate efforts should be made to consider the 

feasibility of the costs, scalability of the system, privacy & security, efficiency metrics, and communications 

latencies & effects. 

 

2.6.1. Cost Analysis 

The economic feasibility of the deployment is first computed. The design should capture the short-term and 

long-term benefits and constraints. These costs (capital expenditure of the system and recurrent expenditure) 

against the benefits (reduced delays, minimal vehicle operation costs and less environmental pollution) should 

be considered before embarking on the implementation phase. 

2.6.2. System Scalability 

The potential elasticity of the system scalability be checked by adding more resources and intersections to the 

network. This test of the elasticity of the green wave traffic control system will show its limits.  
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2.6.3. Communications Latencies and Effects 

Communications latencies between devices, and the prevailing error space of GPS accuracy (10 to 100m) is 

captured into the design. Communications between the intersection controllers and the central controller, 

between sensors and controllers, and between GPS devices and the central controller need to be considered.  

2.6.4. Efficiency Metrics 

The measurement of efficiency of the system could be in the delay at intersections, travel times between sources 

and destinations, number of intersections passed without stopping, and number of stops on the queue at 

intersections. 

2.6.5. Privacy and Security 

There are ethical issues pertaining to the privacy and security of unsuspecting road users that should be 

considered. Information generated by users on GPS and sensor devices should be protected and classified. 

 

3. Results & Discussion 

Table 1: Summary of related work on Design of GW traffic controls 

Cycle 

Length 

Split Green 

Wave 

GPS Model Efficiency Algorithm Ref 

Fixed Ad √ √  Not def Green Route [15] 

Fixed Ad √  Poisson 

Distr 

Not def REDV [25] 

Ad Ad    Not def  [2] 

Ad Ad   Poisson 

Distr 

Not def RHODES & 

DOGS 

[31] 

 Ad √   Not def  [3] 

Ad   √ Bayesian Not def SURTRAC [16] 

Ad  √    Fuzzy [22] 

Table 2: Summary of related work on algorithmic models used in GW traffic controls 

Fish 

Swarm 

MIP Fuzzy ML Genetic Markov Monte Carlo Ref 

 √      [15] 

       [25] 

   RL √ MDP  [2] 

 √     √ [31] 

√    √   [3] 

 √     √ [16] 

√ √ √ RL √   [22] 

Table 3: Summary of related work on Performance Metrics on GW traffic controls 

Ref Fuel 

Cost 

Number of 

Intersections 

crossed 

Delay Travel 

times 

Rate of 

Pollution 

Performan

ce Rate 

Number 

of stops 

[15] √   √  40%  

[25]   √ √ √   

[2]    √    

[31]   √   50%  

[3]   √    √ 

[16] √   √   √ 

[22]  √ √  √  √ 

 

4. Conclusion/ Recommendations 

Although quality researches have been conducted on the optimization of Green wave Traffic Control Systems, 

there are traceable research gaps in the standardization of the performance metrics, and also in the possibilities 

and capability of combining Machine Learning types to achieve optimality.  

 



Caleb NN et al                                               Journal of Scientific and Engineering Research, 2021, 8(7):27-35 

 

Journal of Scientific and Engineering Research 

34 

 

Acknowledgment 

We earnestly thank Dr. John Bush for his words of advice and guidance. 

References 

[1]. Chen, J., Yu, Y., & Guo, Q. (2019). Freeway traffic congestion reduction and environment regulation 

via model predictive control. Algorithms, 12(10), 220. doi:10.3390/a12100220  

[2]. Junchen, J. (2018).Advance Traffic Signal Control Systems with Emerging Technologies. (Doctoral 

Dissertation). KTH School of Architecture and Built Environment.  SE-100 44 Stockholm SWEDEN, 

Stockholm, Sweden 2018. 

[3]. Ma, C., & He, R. (2019). Green wave traffic control system optimization based on adaptive genetic-

artificial fish swarm algorithm. Neural Comput & Applic 31, 2073–2083. 

https://doi.org/10.1007/s00521-015-1931-y 

[4]. Al-Turjman, F. &Baali, L. (2019). Machine learning for wearable IoT-based applications: A survey. 

Trans Emerging Tel Tech. 2019; e3635. https://doi.org/10.1002/ett.3635 

[5]. Sabbani, I., Youssfi, M., &Bouattane, O. (2016). A multi-agent based on ant colony model for urban 

traffic management. 2016 5
th

 International Conference on Multimedia Computing and Systems 

(ICMCS). doi:10.1109/icmcs.2016.7905551  

[6]. Coello, C. A., González, B. S., Figueroa, G. J., Castillo, T. M. G., & Hernández, G. R. (2019). 

Evolutionary multiobjective optimization: open research areas and some challenges lying ahead. 

Complex & Intelligent Systems. doi:10.1007/s40747-019-0113-4 

[7]. Li, K., Wang, R., Zhang, T., &Ishibuchi, H. (2018). Evolutionary many-objective optimization: A 

comparative study of the state-of-the-art. IEEE Access, 6, 26194–26214. 

doi:10.1109/access.2018.2832181  

[8]. Jiang, M., Huang, Z., Qiu, L., Huang, W., & Yen, G. G. (2017). Transfer Learning based Dynamic 

Multiobjective Optimization Algorithms. IEEE Transactions on Evolutionary Computation, 1–1. 

doi:10.1109/tevc.2017.2771451  

[9]. Zang, W., Zhang, W., Wang, Z., Jiang, D., Liu, X., & Sun, M. (2019). A novel double-strand DNA 

genetic algorithm for multi-objective optimization. IEEE Access, vol. 7, pp. 18821-18839. 

[10]. Ahn, H., & Del Vecchio, D. (2018). Safety Verification and Control for Collision Avoidance at Road 

Intersections. IEEE Transactions on Automatic Control, 63(3), 630–642. 

doi:10.1109/tac.2017.2729661   

[11]. Lee, S., Younis, M., Murali, A., & Lee, M. (2019). Dynamic local vehicular flow optimization using 

real-time traffic conditions at multiple road intersections. IEEE Access, 7, 28137–28157. 

doi:10.1109/access.2019.2900360  

[12]. Monti, F., Boscaini, D., Masci, J., Rodol`a, E., Svoboda, J., & Bronstein, M. M. (2017). Geometric 

deep learning on graphs and manifolds using mixture model CNNs. 2017 IEEE Conference on 

Computer Vision and Pattern Recognition DOI 10.1109/CVPR.2017.576 

[13]. Alsrehin, N. O., Klaib, A. F., &Magableh, A. (2019). Intelligent transportation and control systems 

using data mining and machine learning techniques: A comprehensive study. IEEE Access,7, 2169-

3536.  

[14]. Oblakova, A., Al Hanbali, A., Boucherie, R. J., & van Ommeren, J.C.W. (2017). Green Wave Analysis 

in a Tandem of Traffic-Light Intersections. Memorandum 2062 (Aug 2017). ISSN 1874−4850. 

Available from: http://www.math.utwente.nl/publications Department of Applied Mathematics, 

University of Twente, Enschede, The Netherlands 

[15]. Antonio, M. R. A., Jose, L. A. L., Jose, A. F. M., &Javam, C. M. (2017). GPS2GR: Optimized urban 

green routes based on GPS trajectories. In Proceedings of 8th ACM SIGSPATIAL Workshop on 

GeoStreaming, Los Angeles Area, CA, USA, November 7–10, 2017 (IWGS’17). 

[16]. Khattak, Z. H., Magalotti, M. J., & Fontaine, M. D. (2019). Operational performance evaluation of 

adaptive traffic control systems: A Bayesian modeling approach using real-world GPS and private 

sector PROBE data. Journal of Intelligent Transportation Systems, 1–15. 

doi:10.1080/15472450.2019.1614445  

[17]. Cao, W., Yan, Z., He, Z., & He, Z. (2020). A Comprehensive Survey on Geometric Deep Learning. 

IEEE Access, 8, 35929–35949. Doi: 1109/access.2020.2975067 

[18]. Wang, Q., & Abbas, M. (2019). Optimal urban traffic model predictive control for NEMA standards. 

transportation research record: Journal of the Transportation Research Board, 036119811984185. 

doi:10.1177/0361198119841851  

https://doi.org/10.1007/s00521-015-1931-
https://doi.org/10.1002/ett.3635


Caleb NN et al                                               Journal of Scientific and Engineering Research, 2021, 8(7):27-35 

 

Journal of Scientific and Engineering Research 

35 

 

[19]. Kentaro, W., Kento, U., Tsubasa, T., & Masao, K. (2017). An optimization modeling of coordinated 

traffic signal control based on the variational theory and its stochastic extension. 22
nd

 International 

Symposium on Transportation and Traffic Theory Transportation Research Procedia 23 (2017) 624–64  

[20]. Zhao, N., Li, B., Wu, K., Yang, Y., Wu, X., & Huang, S. (2019). Turning Green Wave Signal Control 

Optimization Based on Route-Choice Model. CICTP 2019. doi:10.1061/9780784482292.226  

[21]. Alaeddini, A., & Klein, D. J. (2019). Parallel Simultaneous Perturbation Optimization. Asia-Pacific 

Journal of Operational Research. doi:10.1142/s021759591950009x  

[22]. Wang, Y., Yang, X., Liang, H., & Liu, Y. (2018). A Review of the Self-Adaptive Traffic Signal Control 

System Based on Future Traffic Environment. Journal of Advanced Transportation, 2018, 1–12. 

doi:10.1155/2018/1096123. 

[23]. Chen, D., Yan, X., Liu, F., Liu, X., Wang, L. & Zhang, J. (2019). Evaluating and diagnosing road 

intersection operation performance using floating car data. Sensors, 19(10), 2256. 

doi:10.3390/s19102256  

[24]. Dong, C., Huang, S., & Liu, X. (2011). Comparative study of several intelligent optimization 

algorithms for traffic control applications. 2011 International Conference on Electronics, 

Communications and Control (ICECC). doi:10.1109/icecc.2011.6066641  

[25]. Cano, M. D., Sanchez-Iborra, R., Freire-Viteri, B., Garcia-Sanchez, A. J., Garcia-Sanchez, F., & 

Garcia-Haro, J.(2017). A self-adaptive approach for traffic lights control in an urban network. 19
th

 

International Conference on Transparent Optical Networks (ICTON), Girona, pp. 1-4, 2017. DOI: 

10.1109/ICTON.2017.8025051 

[26]. Karagiannis, G., Altintas, O., Ekici, E., Heijenk, G., Jarupan, B., Lin, K., & Weil, T. (2011). Vehicular 

Networking: A Survey and Tutorial on Requirements, Architectures, Challenges, Standards and 

Solutions. IEEE Communications Surveys & Tutorials, 13(4), 584–616. 

doi:10.1109/surv.2011.061411.00019  

[27]. Péres, M., Ruiz, G., Nesmachnow, S., & Olivera, A. C. (2018). Multiobjective evolutionary 

optimization of traffic flow and pollution in Montevideo, Uruguay. Applied Soft Computing, 70, 472–

485.doi:10.1016/j.asoc.2018.05.044  

[28]. Zhou, A., Qu, B.-Y., Li, H., Zhao, S.Z., Suganthan, P. N., & Zhang, Q. (2011). Multiobjective 

evolutionary algorithms: A survey of the state of the art. Swarm and Evolutionary Computation. 1(1), 

32–49.doi:10.1016/j.swevo.2011.03.001  

[29]. Farhangi, H. (2017). Multi-objective combinatorial optimization problems in transportation and 

defense systems. Doctoral Dissertations. 2559. Missouri University of Science and Technology 

https://scholarsmine.mst.edu/doctoral_dissertations/2559 

[30]. Bronstein, M. M., Bruna, J., LeCun, Y., Szlam, A., and Vandergheynst, P. (2017). Geometric deep 

learning: going beyond euclidean data. IEEE Signal Processing Magazine, 34(4):18–42.  

[31]. Warberg, A., Larsen, J., & Jørgensen, R. M. (2008). Green Wave Traffic Optimization - A Survey. 

Informatics and Mathematical Modelling. D T U Compute. Technical Report, No. 2008-01. 

https://backend.orbit.dtu.dk/ws/portalfiles/portal/3050157/tr08_01.pdf 

[32]. Cao T. P., Duy, D. P., Phuong, M. N., & Hoang, V. T. (2018). Green Wave - based Solution for 

Intelligent Traffic Lights System Control in Vietnam Urban Areas 2018 4th International Conference 

on Green Technology and Sustainable Development (GTSD) 

https://doi.org/10.1109/ICTON.2017.8025051
https://scholarsmine.mst.edu/doctoral_dissertations/2559
https://backend.orbit.dtu.dk/ws/portalfiles/portal/3050157/tr08_01.pdf

