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Study of the thermal resistance of heat transfer in a transient dynamic
regime in a two-dimensional tow-plaster insulating material: influence of
the heat exchange coefficient
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University Cheikh Anta Diop, Dakar, Senegal

Abstract We present in this note a two-dimensional analytical approach for the thermal resistance calculation
based on the resolution of the Duhamel method leading to the development of a solution in the form of a rapidly
converging series. The objective of this study is to see the behavior of the thermal resistance of the material as a
function of the optimum insulation thickness. And the desired goal is to reduce the heat flow passing through
this material. To obtain the thermal resistance of the bead-plaster material, it is necessary to add the thermal
resistances of the various elements that compose it. After solving the heat equation by the two-dimensional
analytical method. We obtain the profiles of Thermal and Relative Resistance. Depending on the depth, the
Thermal Resistance has three phases. These are: the positive gradient, the zero gradient and the negative
gradient.
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1. Introduction

Thermal resistance [1-4] measures the resistance that a thickness of material opposes to the passage of heat. The
thermal resistance depends on the 4 (lambda) and the thickness of the material. The natural biodegradable
product such as tow [5] is used as a thermal insulator in association with plaster as a binder. Several methods in
static regime [6, 7] and in transient [8, 9] or established frequency dynamics [10] are proposed.

In this article we first show the solution of the heat equation [11-14] and then determine the expression of
thermal resistance. Then, we evaluate the behavior of the bead-plaster material from the thermal and relative
resistance curves under the influence of the depth and the exchange coefficient at the front face. Finally to draw
the depths for each maximum

2. Materials and Methods
The tow-plaster material is assumed to be homogeneous and of parallelepipedal shape. The depth of the material

is L =0,05m; the initial temperature of the material Ti =10°C and that of the external ambient environments
Tal=Ta2 =30°C . The heat exchange coefficients at the front and rear are and respectively h1 and hz. The

average thermal diffusivity is o = 2,07.10"m’s™ and the thermal conductivity is 4 — 0.15wW.m °C*.
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Figure 1: Sample tow-plaster
The thermal resistance Rth is given by the following expression:

Rth:1 l+£+i (D
S|h 4 h
With

R.,1 = —=: The thermal resistance of a flat wall at the front.

hS
Ry = % - appears as the thermal resistance of a flat wall of thickness L, thermal conductivity 4 and lateral

surface S.

R, = E : The thermal resistance of a flat wall at the back.
2

La surface S=1m? ;

Rth ={£+£+i} . The expression of the thermal resistance of a wall subjected to permanent external

h 2 h
climatic stresses.

Rth=R,, + Ry + Ry,:(2)

cvl

3. Theory
The unidirectional heat transfer in the yarn-plaster thermal insulation is governed by equation (1) below:

2T (X, y,h,,h,,hy, h, 1) N T (x, y,h,,h,,hy, h, 1) 1 oT(x,y,h,,h,,h;, h, 1)
ox’ oy? a ot
T=T(x,y,h,h,,hy;,h, 1) is the temperature inside the material; x the depth and t the time t. Equation (2)

gives the expression of the diffusivity a

=0;(3)
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a=2 ()
pC

« is the coefficient of thermal diffusivity (m?.s™)
A is the thermal conductivity (W.m2.c™?)

P is the density of the material ( kg.m‘z)
Boundary conditions

LT, hl,ahz LD/ R, R A 10
X x=0
LTy, hl,ahz LELIEY | R A 10
X x=L
/IaT(X’ y’ hl’h2’h3’h4’t) =h3[T(X’01t)_Ta]; (7)
oy y=0
A aT(X’ Y hl’h2’h3’h4’t) =_h4[T(X’ L’t) _Ta]; (8)
oy y=L
T(X,y,h;,h,,h;,h,, t=0)=T,(9)

Dimensionless heat equation
T(x,y,t)-T,
T -T

i a

o(u,v,7) = 1 (20)

with &(u,V, 7) : reduced temperature;

X
u= E ; is a space reduced variable
V= % ; is a space reduced variable

ot
and 7 = - F
F, : Reduced time variable or Fourier number
The heat equation (1) becomes:
0%0(u,v, 7) . 0°0(u,v,7) 96(u,v,7)
ou’ ov’? ot

, (1)

P
=
A
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The boundary conditions (5), (6), (7) and (8) become (12), (13), (14) and (15):
o6(u,v)] _hL

ot |, A
h, L
960, v) 2L 91,1319
or |, A

06(u,v) h, L _
or .= 2 6(0,7); (14)

06(u,v) h, L _
3. }t 6(1,7);(15)

0(0,7); (12)

u=1

Let us find the solution of equation (13) in the form of reduced variables separable in space and time given by
relation (16):

A(u,v,7) =U )V (V)W(7); (16)
Using the relations (13) and (16) we obtain that of (17)
1 82U(u)+ 1 aZV(v)+ 1 W(r)

-y (A7)
U(u) oau V(v) ov W(r) oOr
y is a positive constant.
From relation (17) we obtain two differential equations:
- The differential equation in time is given by (18):
1 oW(r
@ 09
W(r) or
- The differential equation in space (19) is written:
1 9°U(u
T LT
U(u) ou
The boundary conditions space:
000D _g.00,7:0)
u=0
LD __p00 @Y
ot |,
000D _g 00,022
u=0
LD __g,000):(29)
or |,
h.L h,.L h,.L h,.L
with B, = ; Bip, = 2/1 B;; = 1 et B, =—— respectively the Biot numbers on the

front face and on the back face.
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3.1. Temperature expression:
The general solution of the reduced temperature is in the form

o(u,v,7) = 3 "[(a, cos(8,u)+b, sin(B,u))Ic, cos(u,v) +d, sin(u, B (24)
T(x,y,h,,h,,hy,h, t)-T
Ti _Ta
706y, e, B =T =T, (T, T, )0(usv, 7(26)

The general solution of temperature:

o(u;v,7)= = (25)

thL hlyL
ot 5
X 1 . X y 1 . y -7
T=T. +(T, =T a.| cos — |[+—Z%—sin — ||c.| cos = |+—%=—sin =lie v (27
.+ a)Zn: . (ﬂn J+ 5 (ﬂn J . (un Lj+ " (un Lj (27)

3.2. Expression of the heat flux density:
We get the expression of the density of the heat flow (or surface heat flow)
Which is the heat flux per unit area (W.m) as follows:

®(x, y,h,,h,,h,, h,,t)=—AgradT(x, y,h,, h,, h,, h, t)(28)
®(x, y,h,,h,,hy, 0, ) =D (%, y,hy, by, hy, b, t)+ D (x,y, by, h,, by, by, t) (29)
From these two expressions we get, the final expression of the heat flux density

aT(x, y,h,,h,,h,, h, 1)

@x(x,y,h,,h,,hy, h,, t)=—1 e~ (30)

@y (%, y,h,h,,hy hy, t)=—2 T (x.y, hl’hZ'hS’h‘“t);(31)

oy

®(x, ¥, hy, h, 0y, hy 1) = (@, (x, y, by g,y by D) (@, (x, v, by by, by hy 1) 5 (32)
We obtain the expression of the temperature variation:

AT(x,y,h,,h,,h,, h,,t)=T(0,y,h,,h,,h,,h,,t)=T(x,y,h,h,,hy, h,,t)(33)

Thermal resistance expresses its resistance to the passage of a heat conduction flow (W.m™.°C%).

The greater the thermal resistance, the more insulating the material.

Thermal resistance depends on thickness and thermal conductivity.
The thermal resistance, which is the ratio between the change in temperature and the heat flux density, is given
by expression (34).

- R o

AT(x, y,h,,h,,h;, h,,t)being the temperature difference between the two sides of the material,

@(x, y,h,,h,,h,,h, 1) the heat flow that passes through the yarn-plaster material.

This expression allows us to draw the curves of the thermal resistance according to the various thermophysical
parameters.
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4. Results and Discussions

4.1. We are going to plot the evolution of the thermal resistance as a function of the depth under the
influence of the exchange coefficient at the front face hl.

For low values of depth the thermal resistance gradually increases until it reaches a maximum, i.e. the positive
gradient. This increase signifies the storage of heat within the tow-plaster material.

Then we have a maximum which corresponds to the zero gradient, that is to say the storage of heat. And finally
we natice a decrease in thermal resistance corresponds to the negative gradient. This decrease corresponds to the
dissipation or restriction of heat in the tow-plaster materiel

1+ 4

h1=3 W.m2.°C"
h1=2,5 W.m2.°C""
h1=2 W.m2.°c"
h1=1,5 W.m2.°C"
h1=1 W.m2.°¢C"

Thermal Resistance ("C/W.m?)

L 1
0 0.02 0.04

Material depth x(m)

Figure 2: Evolution of thermal resistance as a function of depth
h, = 0.005W.m?.°C* andt =10s

Table 1: Depth values for each maximum
hl(vv.m*Z .C*l) 1 15 2 25 3

Optimal insulation thickness x(m) 0.013 0019 0.025 0.028 0.033

4.2. Evolution of Relative Thermal Resistance as a function of depth under the influence of the exchange
coefficient on the front face.
We notice when the depth increases the maximum moves.

h1=3 W.m%.°C"!
h1=2,5 W.m2.°C"*
h1=2 W.m2.°c"
h1=1,5 W.m=°C"
h1=1 W.m%.°C"

Relative Thermal Resistance (°C/W.m?)

L
0 0.02 0.04
Material depth x(m)

Figure 3: Evolution of Relative Thermal Resistance as a function of depthh, = 0.005W.m?2°C* andt =10s
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Table 2: Depth values for each maximum

hl(\N.m_Z.C_l) 15 2 25 3
Optimal insulation thickness x(m) 0.019 0.024  0.029 0.033

4.3. Evolution of thermal resistance as a function of the exchange coefficient on the front face under the
influence of depth

We notice when the depth increases the maximum moves.

3 T T

- x=0.05m
—— y=0.04m
s x=0.02m

Thermal Resistance (°C/W.m™)

1 1
[) 5 10
Coefficient of exchange on the front h1 (W.m™.C")

Figure 4: Evolution of thermal resistance as a function of the exchange
coefficient on the front face h, =0.005W.m?2.°C*and t =10s

Table 3: Depth values for each maximum

Optimal insulation thickness 001 002 0.04 0.05
x(m)
hwmzct) 088 179 524 94

4.4. Evolution of Relative Thermal Resistance as a function of the exchange coefficient on the front face
under the influence of depth

s x=0.05m
- x=0.04m
s X=0.02m
w——— x=0.01m

i
T
L
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Figure 5: Evolution of the Relative Thermal Resistance as a function of the exchange
coefficient on the front face h, =0.005W.m?2.°C*and t=10s
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Table 4: Depth values for each maximum
Optimal insulation thickness x(m) 0.01 0.02 0.04 0.05
hl(VV.m*Z .C*l) 07 18 53 95
Conclusion

This work was devoted to the study of the behavior of thermal resistance of plaster tow material. By plotting the
thermal and relative resistance as a function of the depth and the exchange coefficient on the front face. And we
were able to determine the optimum insulation thickness for each curve. And we notice when the depth
increases the maximum moves. Also, we have shown that resistance depends on the thickness of the material.
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