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Abstract Using Lyapunov functions, G-Ito formula and some relevant definitions and lemmas, the uniformly
boundedness of non-autonomous stochastic differential systems driven by G-Brownian motion is analyzed. And
we obtained some sufficient conditions of ultimately boundedness. Meanwhile, an example is given to verify the
effectiveness of the obtained results.
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1. Introduction
Stochastic phenomena is ubiquitous and some inevitable stochastic factors even play a decisive role. Since
deterministic dynamic systems cannot describe phenomena with stochastic factors accurately, stochastic
dynamic systems have become an effective tool to make up for the deficiencies. Since 1990s, the Bremen
research group which led by Ludwig Arnold in Germany consummated the linear theorem of finite-dimensional
stochastic dynamic systems. And with Flandoli from Italy, who established the basic concept and framework of
stochastic infinite dimensional dynamical systems, the research on stochastic dynamical systems has been
developed rapidly. Correspondingly, in China, the research on stochastic dynamic systems has also achieved
some leading results in the world. At present, the results of stochastic differential equations, stochastic partial
differential equations and the generated stochastic dynamic systems involve Gaussian noise, Lévy noise,
impulse noise, fractional Brownian motion and other non-continuous driving noise, see [1,2]. Based on the
development of theory, a lot of significant results have been used in many fields, such as material mechanics,
biology, nervous system, power system, control engineering and social sciences.
Time-delay is an indispensable factor while studying stochastic differential systems. And it’s an extremely
common phenomenon in nature, whether the dynamic system under high-speed or low-speed motion, or under
human-computer interaction. Time-delay system, which has delays at one or several places in the control system
during the signal transmission, the evolution not only depends on the current condition, but the past. Some
results show that even tiny time-delay can lead to complex dynamics of the system. Therefore, the study of
time-delay systems has both theoretic and practical significance. In addition, time-delay systems often have
discrete delays and distributed delays at the same time. Thus, it is necessary to consider the two cases together,
which is called stochastic differential systems with mixed delays.
Boundedness is a quite important characteristic of stochastic differential systems. During the last decades, a lot
of results have been reported, like the ultimate boundedness of nonlinear switched systems, see [3], the
boundedness of non-autonomous delay stochastic differential systems in [4-6], the ultimate boundedness of
non-autonomous impulsive dynamical complex network in [7], and the boundedness for a class of impulsive

Journal of Scientific and Engineering Research

1

                                             Available online www.jsaer.com

                     Journal of Scientific and Engineering Research, 2021, 8(7):1-11



Zhu Y & He D Journal of Scientific and Engineering Research,  2021, 8(7)1-11

Caputo fractional differential systems, see [8-9], the boundedness of stochastic differential systems with or
without delays, see [10-12], and the boundedness of non-autonomous stochastic differential systems with Lévy
noise and mixed delays, see [13].
However, there are few studies about boundedness of non-autonomous stochastic differential systems driven by
G-Brownian motion with distributed delays. Therefore, based on above statement, this article aims to discuss the
ultimate boundedness theorem of non-autonomous stochastic differential systems with mixed delays driven by
G-Brownian motion. Using Lyapunov functions, G-Ito formula and some relevant definitions and lemmas,
taking expectations, some sufficient conditions of globally exponentially ultimately boundedness are obtained.

2. Preliminaries
Followings are some relevant notations, definitions and lemmas.

:the Euclidean norm of a vector . :

the smallest (largest) eigenvalue of a symmetric matrix. :the G-expectation of stochastic process.

:the family of bounded continuous functions from to with the norm

:the family of bounded -measurable,

-valued random variable , satisfying :the family of all nonnegative

functions from to , which once continuously differentiable in and twice in

In order to prove the boundedness theorem, giving the following definitions and lemmas.

Definition 2.1 ([13]). Model (3-1) is said to be pth moment globally asymptotically stable if there exist positive

constant ,such for ,

Definition 2.2 ([14]). Model (3-1) is said to be pth moment globally exponentially ultimately bounded if there

exist positive constant ,such for ,

Lemma 2.3 ([15]). For and ,
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Lemma 2.4 ([16]). For each , the Bochner integral and Ito integral are defined by

and , respectively.

Lemma 2.5 ([17]). For each , a map is defined by

Lemma 2.6 ([18]). Let borel measurable functions. Assumpt there is a constant ,

for all such that

3. Main Result
Consider the following stochastic differential systems driven by G-Brownian motion with mixed delays.

(3-1)

where denotes the quadratic variation process of the G-Brownian motion ,

; the initial value . Assume that for any

, there exists at least one solution of system (3-1).

Theorem 3.1. Suppose that there exist a function and constants

and with , such that

(i) For all

(ii) For all
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where is a positive integral function and satisfies

and Then system (3-1) is pth moment globally exponentially ultimately bounded

with the bound where the constant is determined by the following inequality

(3-2)

Proof. Applying the G-Ito formula to

Integral both sides from to ,

where
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According to [19], it’s easily to know that is a G-martingale and , where

is the filtration generated by the canonical process as .
Therefore, taking expectation on the two sides yields

(3-3)
Following from (ii) and (3-3),

(3-4)
On the other hand,

(3-5)
And
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(3-6)
Substituting (3-5) and (3-6) into (3-4), yields

Since , using the continuity, there is a positive constant such

that (3-2) holds. Letting one easily shows that
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Together with the condition (i), implies that

This completes the proof.

Theorem 3.2. Suppose that there exist a symmetric positive definite matrix P and constants satisfy

and

(i) For all

where is a positive integral function satisfying

and

(ii) For all

(iii)

where

Then system (3-1) is pth moment globally exponentially ultimately bounded with the bound

where the constant is determined by the following inequality
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(3-7)

Proof. Defined the Lyapunov function

(3-8)
Using the conditions (i) and (ii), yields

(3-9)
Using Lemma 2.3 and (3-9) produce,

By the condition,
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using the continuity, there exists a positive constant satisfying (3-7). Thus, it follows from (3-8) and
Theorem 3.1 that

where the positive constant is determined by (3-7).
That’s the completed proof.

From the above results, followings are Corollaries 3.1-3.5.
Corollary 3.1. The system will degenerate to (3-10) without distributed delays

(3-10)

while (3-10) satisfying the condition (i) in Theorem 3.1, and , the condition (ii) changes to

the system is pth moment globally exponentially ultimately bounded identically. For the detailed certification,
see [20].

Corollary 3.2. Suppose all the conditions in Theorem 3.1 are satisfied, if , the system (3-1) is
pth moment globally exponentially ultimately bounded.

Corollary 3.3. Suppose all the conditions in Theorem 3.2 are satisfied, if , the system (3-1) is
pth moment globally exponentially ultimately bounded.

Corollary 3.4. Suppose all the conditions in Theorem 3.1 are satisfied, if , the system (3-1) is pth
moment globally asymptotically stable.

Corollary 3.5. Suppose all the conditions in Theorem 3.2 are satisfied, if , the system (3-1)
is pth  moment globally asymptotically stable.

4. Illustrative example
Consider the following 1-D stochastic differential systems driven by G-Brownian motion with mixed delays:
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(4-1)

where is a one dimension G-Brownian motion and Taking Lyapunov function as

And,

Obviously, when taking

conditions (i) and
(ii) in Theorem 3.1 are satisfied. And

meanwhile, inequality (3-2) is satisfied by taking . According to Theorem 3.1, the system (4-1) is

pth moment globally exponentially ultimately bounded with the bound
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