Journal of Scientific and Engineering Research, 2021, 8(5):16-18

Research Article

ISSN: 2394-2630 CODEN(USA): JSERBR

An Extended Study of the Fourier Series Theorem

Liu Zhiwei

College of Science, Hezhou University, Hezhou 542899, Guangxi, China

Abstract This paper applies function Fourier series theorem to arbitrary interval by using transform method, which is called generalized Fourier series theorem.

Keywords Fourier series, generalized Fourier series theorem, arbitrary interval **Chinese library classification number:** 0174.2

Introduction

Up to now, most of the discussions about the Fourier function develop Fourier series theorem through function f(x) on interval $[-\pi, \pi]$ and then generalize to symmetric interval[-l, l]. This paper uses transform method to extend function Fourier series theorem to arbitrary interval[a, b], which f(x) is called generalized Fourier series theorem.

Generalized Fourier series theorem

Hypothesizing function f(x) on interval [a, b] satisfies the condition of convergence theorem, then function f(x) on interval [a, b] of generalized Fourier series:

1. When x is a point of discontinuity of function f(x) on interval [a, b],

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left\{ a_n \cos\left[\frac{2n\pi}{b-a} \left(x - \frac{a+b}{2}\right)\right] + b_n \sin\left[\frac{2n\pi}{b-a} \left(x - \frac{a+b}{2}\right)\right] \right\}$$
(1)

Coefficient

$$\begin{cases} a_n = \frac{2}{b-a} \int_a^b f(x) \cos\left[\frac{2n\pi}{b-a} \left(x - \frac{a+b}{2}\right)\right] dx & n = 0, 1, 2, \dots \\ b_n = \frac{2}{b-a} \int_a^b f(x) \sin\left[\frac{2n\pi}{b-a} \left(x - \frac{a+b}{2}\right)\right] dx & n = 0, 1, 2, \dots \end{cases}$$
(2)

In equation (1), when x is discontinuity point of the first kind of f(x) on interval [a, b] and x = a (or b), $\frac{f(x-0)+f(x+0)}{2}$ should substitute the left f(x) of equation.

Demonstration

Making a variable substitution firstly, and make $Z = \frac{2\pi}{b-a} \left(x - \frac{a+b}{2} \right)$, then $x = \frac{b-a}{2\pi} Z + \frac{a+b}{2}$, hence, interval $a \le x \le b$ is substituted into interval $-\pi \le Z \le \pi$.

Again
$$f(x) = f\left(\frac{b-a}{2\pi}Z + \frac{a+b}{2}\right) = F(Z).$$

Thus f(x) is defined as a b - a periodic function, then F(Z) is a periodic function cycles on 2π . In fact,

$$F(Z + 2\pi) = f\left[\frac{b-a}{2\pi}(Z + 2\pi) + \frac{a+b}{2}\right]$$

= $f\left[\frac{b-a}{2\pi}Z + \frac{a+b}{2} + (b-a)\right]$
= $f\left[\frac{b-a}{2\pi}Z + \frac{a+b}{2}\right] = F(Z).$

Through this transformation, function f(x) on interval [a, b] converged as Fourier series is changed into function F(Z) on interval $[-\pi, \pi]$.

Function F(Z) on interval $[-\pi, \pi]$ expand into a Fourier series is as follows.

When *Z* is a point of discontinuity of function
$$F(Z)$$
 on interval $[-\pi, \pi]$,

$$F(Z) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \{a_n \cos Z + b_n \sin Z\}.$$
 (3)

Coefficient

$$\begin{cases} a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} \pi F(Z) \cos nZ dZ & n = 0, 1, 2, \dots \\ b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} \pi F(Z) \sin nZ dZ & n = 0, 1, 2, \dots \end{cases}$$
(4)

In equation (3), when *Z* is a discontinuity point of the first kind of F(Z) on interval $[-\pi, \pi]$ or $Z = \pm \pi$, $\frac{F(Z-0)+F(Z+0)}{2}$ should substitute the left F(Z) of equation.

In equation (3) and (4), make $Z = \frac{2\pi}{b-a} \left(x - \frac{a+b}{2} \right)$ plug in, F(Z) = f(x), thus, equation (3) is converted to $f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left\{ a_n \cos \left[\frac{2n\pi}{b-a} \left(x - \frac{a+b}{2} \right) \right] + b_n \sin \left[\frac{2n\pi}{b-a} \left(x - \frac{a+b}{2} \right) \right] \right\}$, equation (4) is converted to

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} \pi F(Z) \cos nZ dZ$$

 $= \frac{2}{b-a} \int_a^b f(x) \cos\left[\frac{2n\pi}{b-a}\left(x - \frac{a+b}{2}\right)\right] dx \quad n = 0, 1, 2, \dots$ is equation (1).

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} \pi F(Z) \sin nZ dZ$$

$$= \frac{2}{b-a} \int_a^b f(x) \sin\left[\frac{2n\pi}{b-a}\left(x - \frac{a+b}{2}\right)\right] dx \quad n = 0, 1, 2, \dots$$

tion (2).

is equation (2).

Demonstration complete.

Exceptionally, make a = -l, b = l, thus,

Inference 1 Hypothesizing function f(x) on interval [-l, l] satisfies the condition of convergence theorem, then f(x) on

interval [-l, l]expands into Fourier series,

$$f(x) = \frac{a_0}{2} \sum_{n=1}^{\infty} \left[a_n \cos \frac{n\pi}{l} x + b_n \sin \frac{n\pi}{l} x \right] \quad n = 1, 2, \dots$$

Coefficient

$$\begin{cases} a_n = \frac{1}{l} \int_{-l}^{l} f(x) \cos n \frac{n\pi}{l} x dx & n = 0, 1, 2, \dots \\ b_n = \frac{1}{l} \int_{-l}^{l} f(x) \sin n \frac{n\pi}{l} x dx & n = 0, 1, 2, \dots \end{cases}$$

Another exception, make $b = a + \lambda$, thus,

Inference 2 Hypothesizing function f(x) on interval $[a, a + \lambda]$ satisfies the condition of convergence theorem, then f(x) on interval $[a, a + \lambda]$ expands into Fourier series,

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left\{ a_n \cos\left[\frac{2n\pi}{\lambda} \left(x - \frac{a+b}{2}\right)\right] + b_n \sin\left[\frac{2n\pi}{\lambda} \left(x - \frac{2a+\lambda}{2}\right)\right] \right\}$$

Coefficient

$$\begin{cases} a_n = \frac{2}{\lambda} \int_a^{a+\lambda} f(x) \cos\left[\frac{2n\pi}{\lambda} \left(x - \frac{2a+\lambda}{2}\right)\right] dx & n = 0, 1, 2, \dots \\ b_n = \frac{2}{\lambda} \int_a^{a+\lambda} f(x) \sin\left[\frac{2n\pi}{\lambda} \left(x - \frac{2a+\lambda}{2}\right)\right] dx & n = 0, 1, 2, \dots \end{cases}$$

Reference

- [1]. Liu Yulian, Fu Peiren. Lecture notes on mathematical analysis (the second volume) [M], Beijing: Higher Education Press, 1987.
- [2]. Department of Mathematics, Fudan University, Mathematical analysis (the second volume) [M], Shanghai: Shanghai Education Press, 1988.