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Abstract In this paper, the Schrödinger equation is analytically solved for the Hellmann potential with a novel angle 

dependent part. The Nikiforov-Uvarov method is used to obtain energy eigenvalues and corresponding 

eigenfunctions. It is worthy to note that by employing the Greene and Aldrich approximation, we have been able to 

get a better and more accurate result for the Yukawa angle dependent Potential proposed in earlier studies. 

Numerical results were obtained for the Ring shaped Hellmann potential and the Hellmann potential respectively. It 

was found out that our results agree with existing literature. 
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1 Introduction 

It is well known that the exact solutions of the Schrödinger equation contain all the necessary information for a 

quantum system. This is attributed to the fact that the wave functions associated with these problems contain all the 

necessary information regarding the quantum systems under consideration [1-9]. 

The analytical solution with  𝑙 = 0  and 𝑙 ≠ 0 for some potentials(central and non-central) has been addressed by 

many researchers in nonrelativistic quantum mechanics and relativistic quantum mechanics for bound  and 

scattering States.  These studies include the potentials include, Poschl-Teller potential [10-11], Coulomb ring-shaped 

potential [12], Yukawa-angle Dependent Potential [13], Hartman potential [14-15], non-central generalized inverse 

quadratic Yukawa potential [16], Pseudo-Coulomb Potential Plus a New Ring-Shaped Potential [17], 

Coulombicring-shaped potential [18] single ring-shaped oscillator potential [19] ring-shaped non-spherical harmonic 

oscillator potential [20-21] and spherically harmonic oscillatory ring-shaped potential [22-23] and Inversely 

Quadratic Hellmann Plus Ring-Shaped Potentials [24]. The methods which have been used to solve the differential 

equation arising from these considerations include; the asymptotic iteration method (AIM) [25-27], NUFA method 

[28-29], Nikiforov–Uvarov (NU) method [30–33], supersymmetric quantum mechanics (SUSYQM) [34], WKB 

[35] and the functional analysis approach (FAA) [36-37]. 

The Hellmann potential [38-41] is a superposition of Yukawa plus Coulomb potentials given thus 

𝑉 𝑟 =  − 
𝑉0

𝑟
 +  

𝑉1𝑒
−𝛼  𝑟

𝑟
          (1) 

where 𝑉0 and 𝑉1 the potential strength of Coulomb and Yukawa potentials respectively, 𝛼 is the screening parameter 

and r is the distance between the two particles. 

The Hellmann potential was first studied by Hellmann [38-40]. Thereafter, various authors worked on the potential, 

e.g.,[41] used the supersymmetric approach to study the approximate analytic solutions of the three-dimensional 
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Schrödinger equation with this potential by applying a suitable approximation scheme to the centrifugal term. Onate 

et al. [42] obtained approximate eigensolutions of the Duffin-Kemmer-Petiau and Klein-Gordon equations with the 

Hellmann potential. Hamzavi et al. [43] solved the approximate bound states solutions of the Hellmann potential 

using the generalized parametric Nikiforov-Uvarov method. Oluwadare and Oyewumi [44] investigated the 

scattering state solutions of the Klein–Gordon equation with equal scalar and vector Varshni, Hellmann and 

Varshni–Shukla potentials for any arbitrary angular momentum quantum number within the framework of the 

functional analytical method using a suitable approximation. Edet et al. [45] obtained the thermal and magnetic 

properties of the Hellmann potential. 

The Hellmann potential is applied in the field of atomic and condensed matter physics, e.g., electron-core [46,47], 

electron-ion [48] inner-shell ionization problem, alkali hydride molecules, solid state physics [49,50].  

The Ring shaped potential have a wide range of applications in quantum chemistry and nuclear physics [51]. They 

have very important role in describing ring-shaped molecules like benzene and the interactions between deformed 

pair of nuclei [52-53]. They have also been used in demonstrating some of the pseudospin symmetry in nuclei 

physics [23]. The exact results can be used in accounting for some axial symmetric system in quantum chemistry. 

[22] proposed a non-central potential as; 

𝑉 𝑟,𝜃 =
ℏ2

2𝜇𝑟2  
𝐶+𝐵 cos 2 𝜃+𝐴 cos 4 𝜃

sin 2 𝜃𝑐𝑜𝑠 2𝜃
          (2) 

Motivated by this potential, we attempt to propose a Ring shaped Hellmann potential by selecting 𝑉 (𝑟)as the 

Hellmann potential. The Ring shaped Hellmann potential is composed of Hellmann potential plus a Novel Angle 

Dependent (NAD) potential. It can be written as 

𝑉 𝑟,𝜃 = −
𝑉0

𝑟
+

𝑉1𝑒
−𝛼𝑟

𝑟
+

ℏ2

2𝜇𝑟2  
𝐶+𝐵 cos 2 𝜃+𝐴 cos 4 𝜃

sin 2 𝜃𝑐𝑜𝑠2𝜃
        (3) 

The primary purpose of the present work is to solve the Schrodinger equation for the Ring shaped Hellmann 

potential and to calculate the energy eigenvalues and the corresponding wave functions which are expressed in terms 

of the Jacobi polynomials for any orbital quantum number l. We computed the energy spectrum numerically, this 

will enable us assess the effect of angle dependence on the energy eigenvalue of the Hellmann Potential. The 

Nikiforov–Uvarov (NU) is used in present calculations 

The article is organized as follows: Section 2 gives a brief outline of the NU method used to solve the SE in the 

presence of the Ring shaped Hellmann potential. The separation of the radial and polar part of Schrodinger equation 

and analytical expressions for energy levels and corresponding wave functions are obtained for any n, m and l 

quantum numbers in Section 3. In Section 4, we shall discuss special cases of the potential under consideration. In 

Section 5, we discuss results and section 6, we give a brief concluding remark. 

 

2. Review of Nikiforov-Uvarov Method 

The Nikiforov-Uvarov (NU) method is based on solving the hypergeometric-type second-order differential 

equations by means of the special orthogonal functions [54]. The main equation which is closely associated with the 

method is given in the following form [55]; 

𝜓′′ 𝑧 +
𝜏  𝑧 

𝜍 𝑧 
𝜓′ 𝑧 + 

𝜍  𝑧 

𝜍2 𝑧 
𝜓 𝑧 = 0        (4) 

Where 𝜍 𝑧  and 𝜍  𝑧  are polynomials at most second-degree, 𝜏  𝑧  is a first-degree polynomial and  𝜓 𝑧  is a 

function of the hypergeometric-type. 

The exact solution of Eq. (4) can be obtained by using the transformation 

𝜓 𝑧 =  𝜙 𝑧 𝑦 𝑧           (5) 

This transformation reduces Eq. (4) into a hypergeometric-type equation of the form 

𝜍 𝑧 𝑦′′ 𝑧 + 𝜏 𝑧 𝑦′ 𝑧 + 𝜆𝑦 𝑧 = 0        (6) 

The function 𝜙 𝑠  can be defined as the logarithm derivative 

𝜙 ′ 𝑧 

𝜙 𝑧 
=   

𝜋 𝑧 

𝜍 𝑧 
           (7) 

where 𝜋 𝑧 =  
1

2
 𝜏 𝑧 −  𝜏  𝑧           (8) 
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with 𝜋 𝑧  being at most a first-degree polynomial. The second 𝜓 𝑧  being 𝑦𝑛 𝑧  in Eq. (5), is the hypergeometric 

function with its polynomial solution given by Rodrigues relation 

𝑦 𝑛  𝑧 =
𝐵𝑛

𝜌 𝑧 

𝑑𝑛

𝑑𝑠𝑛
 𝜍𝑛 𝑧 𝜌 𝑧           (9) 

Here, 𝐵𝑛  is the normalization constant and 𝜌 𝑧  is the weight function which must satisfy the condition 

 𝜍 𝑧 𝜌 𝑧  
′

= 𝜍 𝑧 𝜏 𝑧           (10) 

𝜏 𝑧 =  𝜏  𝑧 + 2𝜋 𝑧           (11) 

It should be noted that the derivative of ( )s  with respect to s  should be negative. The eigenfunctions and 

eigenvalues can be obtained using the definition of the following function ( )s  and parameter , respectively: 

𝜋 𝑧 =
𝜍 ′ 𝑧 −𝜏  𝑧 

2
±   

𝜍 ′ 𝑧 −𝜏  𝑧 

2
 

2

−  𝜍  𝑧 + 𝑘𝜍 𝑧        (12) 

where𝑘 = 𝜆 − 𝜋 ′ 𝑧           (13) 

The value of k  can be obtained by setting the discriminant of the square root in Eq. (12) equal to zero. As such, the 

new eigenvalue equation can be given as 

𝜆𝑛 = −𝑛𝜏 ′ 𝑧 −
𝑛 𝑛−1 

2
𝜍 ′′ 𝑧 , 𝑛 = 0,1,2,…        (14) 

 

3. Separation of Variables for the Schrodinger Equation 

In spherical coordinates (𝑟, 𝜃,𝜙), the Schrodinger equation with potentials 𝑉(𝑟,𝜃), respectively, can be written as 

follows [23]: 

−
ℏ2

2𝜇
∇2𝜓 𝑟,𝜃,𝜙 + 𝑉 𝑟,𝜃 𝜓 𝑟,𝜃,𝜙 = 𝐸𝜓 𝑟,𝜃,𝜙        (15) 

where 𝐸 is the non-relativistic energy of the system, 𝜇 denotes the rest mass of the particle and ℏ is the planck 

constant. The Schrodinger equation with potential is given by [56]; 

 −
ℏ2

2𝜇
 

1

𝑟2

𝜕

𝜕𝑟
𝑟2 𝜕

𝜕𝑟
+

1

𝑟2 sin 𝜃

𝜕

𝜕𝜃
 sin𝜃

𝜕

𝜕𝜃
 +

1

𝑟2 sin 2 𝜃

𝜕2

𝜕𝜙2 + 𝑉(𝑟,𝜃) − 𝐸 𝜓 𝑟,𝜃,𝜙 = 0   (16) 

𝜓 𝑟,𝜃,𝜙 = 𝑅 𝑟 Θ 𝜃 Φ 𝜙          (17) 

Substituting Eq. (3) into Eq (16), we have  

 −
ℏ2

2𝜇
 

1

𝑟2

𝜕

𝜕𝑟
𝑟2 𝜕

𝜕𝑟
+

1

𝑟2 sin 𝜃

𝜕

𝜕𝜃
 sin𝜃

𝜕

𝜕𝜃
 +

1

𝑟2 sin 2 𝜃

𝜕2

𝜕𝜙2 +  −
𝑉0

𝑟
+

𝑉1𝑒
−𝛼𝑟

𝑟
 +

ℏ2

2𝜇𝑟2  
𝐶+𝐵 cos 2 𝜃+𝐴 cos 4 𝜃

sin 2 𝜃𝑐𝑜𝑠2𝜃
  −

𝐸𝜓𝑟,𝜃,𝜙=0           (18) 

Substituting (17) into Eq. (18) and using the standard procedure of separating variables, we obtain the following 

differential equations: 

𝑑2𝑅𝑛𝑙

𝑑𝑟2 +  
2𝜇𝐸𝑛𝑙

ℏ2 −
2𝜇

ℏ2  −
𝑉0

𝑟
+

𝑉1𝑒
−𝛼𝑟

𝑟
 −

Λ

𝑟2 𝑅𝑛𝑙  𝑟 = 0       (19) 

𝑑2Θ 𝜃 

𝑑𝜃2 +
𝑐𝑜𝑠𝜃

𝑠𝑖𝑛𝜃

𝑑Θ 𝜃 

𝑑𝜃
+  Λ −  

ℏ2

2𝜇𝑟2  
𝐶+𝐵 cos 2 𝜃+𝐴 cos 4 𝜃

sin 2 𝜃𝑐𝑜𝑠2𝜃
  −

𝑚2

𝑠𝑖𝑛 2𝜃
 Θ 𝜃 = 0    (20) 

𝑑2Φ 𝜙 

𝑑𝜙2 + 𝑚2Φ 𝜙 = 0          (21) 

where 𝑚2 and Λ are separation constants, which are real and dimensionless. The solution of Eq. (21) is periodic and 

for bound state Φ 𝜙  satisfies the periodic boundary condition Φ 𝜙 + 2𝜋  and its solutions become, 

Φ 𝜙 =
1

 2𝜋
𝑒−𝑖𝑚𝜙 , 𝑚 = 0, ±1, ±2,…        (22) 
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3.1 Exact Solutions of Ring-shaped Hellman potential 

3.1.1 Solutions of the radial Schrodinger equation for ring-shaped Hellman potential 

𝑑2𝑅𝑛 ℓ(𝑟)

𝑑𝑟2 +  
2𝜇𝐸𝑛𝑙

ℏ2 +
2𝜇𝑉0

ℏ2  
1

𝑟
 −

2𝜇𝑉1

ℏ2  
𝑒−𝛼  𝑟

𝑟
 −

Λ

𝑟2 𝑅𝑛ℓ(𝑟) = 0      (23) 

The radial Schrödinger equation for this potential can be solved exactly for 𝑙 = 0   (s-wave) but cannot be solved for 

this potential for   𝑙 ≠ 0. To obtain the solution for 𝑙 ≠ 0, we employ the approximation scheme proposed by Greene 

and Aldrich [57] to deal with the centrifugal term, which is given as; 

1

𝑟2 ≈
𝛼2

(1−𝑒−𝛼  𝑟)2           (24)  

It is noted that for a short-range potential, the relation (eqs. 24) is a good approximation to 
1

𝑟2, as proposed by 

Greene and Aldrich [58,59]. The implies that eq. (24) is not a good approximation to the centrifugal barrier when the 

screening parameter 𝛼 becomes large. Thus, the approximation is valid when 𝛼 << 1. Substituting the 

approximation (eq. 24) into eq. (23), we obtain an equation of the form; 

𝑑2𝑅𝑛 ℓ(𝑟)

𝑑𝑟2 +  
2𝜇𝐸

ℏ2𝛼2 +
2𝜇𝑉0

ℏ2  
𝛼

1−𝑒−𝛼  𝑟 −
2𝜇𝑉1

ℏ2  
𝛼𝑒−𝛼  𝑟

1−𝑒−𝛼  𝑟 −
𝛼2Λ

(1−𝑒−𝛼  𝑟)2 𝑅𝑛ℓ(𝑟) = 0    (25) 

Eq. (25) can be simplified into the form and introducing the following dimensionless abbreviations 

 
 
 

 
 𝜀𝑛 = −

2𝜇𝐸

ℏ2𝛼2

𝜂 =
2𝜇𝑉1

ℏ2𝛼

𝛽 =
2𝜇𝑉0

ℏ2𝛼  
 
 

 
 

           (26) 

𝑑2𝑅𝑛 ℓ(𝑟)

𝑑𝑟2 +
1

(1−𝑒−𝛼  𝑟)2 [−𝜀𝑛 1 − 𝑒−𝛼  𝑟 2 + 𝛽 1 − 𝑒−𝛼  𝑟 − 𝜂 1 − 𝑒−𝛼  𝑟 − Λ]𝑅𝑛ℓ(𝑟) = 0   (27) 

Using a transformation𝑧 = 𝑒−𝛼  𝑟so as to enable us apply the NU method as a solution of the hypergeometric type  

𝑑2𝑅𝑛 ℓ(𝑟)

𝑑𝑟2 = 𝛼2𝑧2 𝑑2𝑅𝑛 ℓ(𝑧)

𝑑𝑧2 +  𝛼2𝑧
𝑑𝑅𝑛  ℓ 𝑧 

𝑑𝑧
        (28) 

We obtain the differential equation 

𝑑2𝑅𝑛  ℓ

𝑑𝑧2 +
(1−𝑧)

𝑧(1−𝑧)

𝑑𝑅𝑛  ℓ

𝑑𝑧
+

1

𝑧2(1−𝑧)2 [−(𝜀𝑛 − 𝜂)𝑧2 + (2𝜀𝑛 − 𝛽 − 𝜂)𝑧 − (𝜀𝑛 − 𝛽 + Λ)]𝑅𝑛  ℓ(𝑧) = 0  (29) 

Comparing Eq. (29) and Eq. (4), we have the following parameters 

 

𝜏 (𝑧) = 1 − 𝑧

𝜍(𝑧) = 𝑧(1 − 𝑧)

𝜍 (𝑠) = −(𝜀𝑛 − 𝜂)𝑧2 +  2𝜀𝑛 − 𝛽 − 𝜂 𝑧 − (𝜀𝑛 − 𝛽 + Λ)

       (30)  

Substituting these polynomials into Eq. (12), we get ( )s  to be 

𝜋(𝑧) = −
𝑧

2
±  (𝑎 − 𝑘)𝑧2 + (𝑏 + 𝑘)𝑧 + 𝑐         (31) 

where 

 

𝑎 =
1

4
+ (𝜀𝑛 − 𝜂)

𝑏 = − 2𝜀𝑛 − 𝛽 − 𝜂 

𝑐 = 𝜀𝑛 − 𝛽 + Λ

           (32)  

To find the constant ,k  the discriminant of the expression under the square root of Eq. (31) should be equal to zero. 

As such, we have that 

𝑘± = − 𝜂 − 𝛽 + 2Λ ± 2 𝜀𝑛 − 𝛽 + Λ 
1

4
+ Λ                    (33) 

Substituting Eq. (33) into Eq. (31) yields 

𝜋 = −
𝑧

2
±  

  𝑎1 −  𝑎3 𝑧 −  𝑎1;   𝑓𝑜𝑟  𝑘+ = − 𝑎2 + 2 𝑎1 𝑎3

  𝑎1 −  𝑎3 𝑧 +  𝑎1
,;     𝑓𝑜𝑟  𝑘− = − 𝑎2 − 2 𝑎1 𝑎3

      (34) 

where 
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𝑎1 = 𝜀𝑛 − 𝛽 + Λ

𝑎2 = 𝜂 − 𝛽 + 2Λ

𝑎3 =
1

4
+ Λ

        (35) 

From the knowledge of NU method, we choose the expression ( )s  which the function ( )s  has a negative 

derivative. This is given by 

𝑘− = − 𝜂 − 𝛽 + 2Λ ± 2 𝜀𝑛 − 𝛽 + Λ 
1

4
+ Λ       (36) 

with ( )s  being obtained as 

𝜏(𝑠) = 1 − 2𝑧 − 2  𝜀𝑛 − 𝛽 + Λ +  
1

4
+ Λ 𝑧 + 2 𝜀𝑛 − 𝛽 + Λ     (37) 

Referring to Eq. (13), we define the constant   as 

𝜆 = − 𝜂 − 𝛽 + 2Λ − 2 𝜀𝑛 − 𝛽 + Λ 
1

4
+ Λ −

1

2
−   𝜀𝑛 − 𝛽 + Λ −  

1

4
+ Λ     (38) 

Taking  the derivative of  𝜏(𝑠) from eq.(37), we have; 

𝜏 ′(𝑧) = −2 − 2  𝜀𝑛 − 𝛽 + Λ +  
1

4
+ Λ         (39) 

and𝜍(𝑧) from eq.(30), we have; 

𝜍 ′′ 𝑧 = −2           (40) 

Substituting Eqs (39) into Eq. (40), we have 

𝜆𝑛 = 𝑛2 + 𝑛 + 2𝑛 𝜀𝑛 − 𝛽 + Λ + 2𝑛 
1

4
+ Λ       (41) 

Comparing Eqs (38) and  (41),and carrying out  some algebraic manipulation. We have; 

𝜀𝑛 = −𝜆 + 𝛽 +
1

4
 
 𝑛+

1

2
+ 

1

4
+Λ 

2

+𝜂−𝛽+Λ

 𝑛+
1

2
+ 

1

4
+Λ 

 

2

        (42)  

Substituting Eqs. (17) and Eq. (32) into Eq. (31) yields the energy eigenvalue equation of the Hellman potential in 

the form 

𝐸𝑛  ℓ =
ℏ2𝛼2Λ

2𝜇
− 𝑉0𝛼 −

ℏ2𝛼2

8𝜇
 
 𝑛+

1

2
+ 

1

4
+Λ 

2

+
2𝜇𝑉1
ℏ2𝛼

−
2𝜇𝑉0
ℏ2𝛼

+Λ

 𝑛+
1

2
+ 

1

4
+Λ 

 

2

      (43) 

The corresponding wave functions can be evaluated by substituting ( ) ( )s and s   from Eq. (34) and Eq. (30) 

respectively into Eq. (7) and solving the first order differential equation. This gives 

Α(𝑧) = 𝑧 𝜀𝑛−𝛽+Λ(1 − 𝑧)
1

2
+ 

1

4
+Λ

         (44) 

The weight function ( )s  from Eq. (10) can be obtained as 

𝜌(𝑧) = 𝑧2 𝜀𝑛−𝛽+Λ(1 − 𝑧)
2 

1

4
+Λ

         (45) 

From the Rodrigues relation of Eq. (9), we obtain  

𝑦𝑛(𝑧) ≡ Ω𝑛 ,𝑙𝑃𝑛

 2 𝜀𝑛−𝛽+Λ,2 
1

4
+Λ 

 1 − 2𝑧          (46) 

where
 ,

nP
 

 is the Jacobi Polynomial. 

 Substituting Α(𝑠)  𝑎𝑛𝑑  𝑦𝑛(𝑠) from Eq. (44) and Eq. (46) respectively into Eq. (5), we obtain 

𝑅𝑛 𝑧 = Ω𝑛 ,𝑙𝑧
 𝜀𝑛−𝛽+Λ(1 − 𝑧)

1

2
+ 

1

4
+Λ
𝑃𝑛

 2 𝜀𝑛−𝛽+Λ,2 
1

4
+Λ 

 1 − 2𝑧      (47) 
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where Ω𝑛 ,𝑙  is a normalization constant. 

Using the normalization condition, we obtain the normalization constant as follows [60]: 

 𝑅𝑛 ,ℓ 𝑟 × 𝑅𝑛 ,ℓ 𝑟 
∗𝑑𝑟 = 1

∞

0
         (48) 

−
1

𝛼
  𝑅𝑛 ,ℓ 𝑧  

2 𝑑𝑧

𝑧
= 1

0

1
, 𝑧 = 𝑒−𝛼𝑟          (49) 

1

2𝛼
  𝑅𝑛 ,ℓ 𝑦  

2 2

1−𝑦
𝑑𝑦 = 1, 𝑦 = 1 − 2𝑧

1

−1
        (50) 

Substituting (47) into (50), we have 

Ω𝑛 ℓ
2

2𝛼
  

1−𝑦

2
 

2𝜎−1

 
1+𝑦

2
 

2𝜉

 𝑃𝑛
 2𝜎 ,2𝜉−1  𝑦  

2

𝑑𝑦 = 1
1

−1
,       (51) 

where 

𝜉 =
1

2
+  

1

4
+ Λ,           (52) 

𝜎 =  𝜀𝑛 − 𝛽 + Λ          (53) 

Comparing (51) with the integral of the form [60] 

  
1−𝑝

2
 
𝑥−1

1
 

1+𝑝

2
 
𝑦

 𝑃𝑛
 2𝑥 ,2𝑦−1  𝑝  

2

𝑑𝑝 =
2Γ 𝑥+𝑛+1 Γ 𝑦+𝑛+1 

n!xΓ 𝛼+𝛽+𝑛+1 
      (54)  

We have the normalization constant as 

Ω𝑛ℓ =  
n!2 𝜀𝑛−𝛽+Λ𝛼Γ 2 𝜀𝑛−𝛽+Λ+ 1+4Λ+𝑛+2 

Γ 2  𝜀𝑛−𝛽+Λ +𝑛+1 Γ 𝑛+2+ 1+4Λ 
        (55) 

 

3.2 Solutions of the angular Schrodinger equation for ring-shaped Hellman potential 

In order to get the solution of equation Eq. (20), we introduce a coordinate transformation of the form,  

𝑧 = 𝑐𝑜𝑠2𝜃 and Eq. (20) becomes 

𝑑2Θ 𝑧 

𝑑𝑧2 +
 1−3𝑧 

2𝑧 1−𝑧 

𝑑Θ 𝑧 

𝑑𝑧
+

1

 2𝑧 1−𝑧  
2  − Λ + 𝐵 𝑧2 +  Λ − A −𝑚2 𝑧 − 𝐶 Θ 𝑧 = 0   (56) 

Similarly, Comparing Eq. (56) and Eq. (4), we have the following parameters 

 

𝜏 (𝑠) =  1 − 3𝑧 

𝜍(𝑠) = 2𝑧 1 − 𝑧 

𝜍 (𝑠) = − Λ + 𝐵 𝑧2 +  Λ − A −𝑚2 𝑧 − 𝐶

        (57)  

Substituting these polynomials into Eq. (12), we get ( )s  to be 

𝜋(𝑧) = −
1−𝑧

2
±  (𝑎 − 𝑘)𝑧2 + (𝑏 + 𝑘)𝑧 + 𝑐        (58) 

where 

 
 
 

 
 𝑎 =

1

4
+ (Λ + 𝐵)

𝑏 = −
1

2
−  Λ − A −𝑚2 

𝑐 =
1

4
+ 𝐶

 
 
 

 
 

         (59) 

         

To find the constant ,k  the discriminant of the expression under the square root of Eq. (58) should be equal to zero. 

As such, we have that 

𝑘± = −
 Λ−A−𝑚2−𝐶 

2
±

1

2
 1 + 4𝐶 C + A + 𝑚2 + 𝐵        (60) 

Substituting Eq. (60) into Eq. (58) yields 

𝜋 = −
𝑧

2
±

1

2
  2 1 + 4𝐶 +  C + A + 𝑚2 + 𝐵 𝑧 − 2 1 + 4𝐶      (61)  

From the knowledge of NU method, we choose the expression ( )s  which the function ( )s has a negative 

derivative. This is given by 

𝑘− = −
 Λ−A−𝑚2−𝐶 

2
−

1

2
 1 + 4𝐶 C + A + 𝑚2 + 𝐵       (62) 
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with ( )s  being obtained as 

𝜏(𝑠) = 2 − 4𝑧 − 2  1 + 4𝐶 +  C + A + 𝑚2 + 𝐵 𝑧 + 2 1 + 4𝐶     (63) 

Referring to Eq. (13), we define the constant   as 

𝜆 = −
 Λ−A−𝑚2−𝐶 

2
−

1

2
 1 + 4𝐶 C + A + 𝑚2 + 𝐵 −

1

2
−

1

2
 2 1 + 4𝐶 +  C + A + 𝑚2 + 𝐵   (64) 

Taking the derivative of  𝜏(𝑠) from eq.(37), we have; 

𝜏 ′ 𝑧 = −4 − 2  1 + 4𝐶 +  C + A + 𝑚2 + 𝐵        (65) 

and𝜍(𝑧) from eq.(57), we have; 

𝜍 ′′ 𝑧 = −4           (66) 

Substituting Eqs (65) into Eq. (66), we have 

𝜆𝑛 = 2𝑛 2 + 2𝑛 + 𝑛  1 + 4𝐶 + 𝑛  C + A + 𝑚2 + 𝐵       (67) 

Comparing Eqs (67) and  (64) 𝜆 = 𝜆𝑛  ,and carrying out  some algebraic manipulation. We have;  

Λ =  2𝑛 + 1 +  C + A + 𝑚2 + 𝐵 
2

+  1 + 4𝐶 2𝑛 + 1 +  C + A + 𝑚2 + 𝐵 + 𝐶 − 𝐵   (68) 

or 

Λ =  2𝑛 + 1 +  C + A + 𝑚2 + 𝐵  2𝑛 + 1 +  C + A + 𝑚2 + 𝐵 +  1 + 4𝐶 + 𝐶 − 𝐵   (69) 

The corresponding wave functions can be evaluated by substituting ( ) ( )s and s   from Eq. (57) and Eq. (61) 

respectively into Eq. (7) and solving the first order differential equation. This gives 

Ε(𝑧) = 𝑧
1

4
+

1

2
 

1

4
+𝐶

(1 − 𝑧)
1

2
 C+A+𝑚2+𝐵

        (70) 

The weight function ( )s  from Eq. (10) can be obtained as 

𝜌(𝑧) = 𝑧
 

1

4
+𝐶

(1 − 𝑧) C+A+𝑚2+𝐵          (71) 

From the Rodrigues relation of Eq. (9), we obtain  

𝑦𝑛 (𝑧) ≡ 𝜒𝑛 ,𝑚𝑃𝑛 

  
1

4
+𝐶, C+A+𝑚2+𝐵 

 1 − 2𝑧         (72) 

where
 ,

nP
 

 is the Jacobi Polynomial. 

 Substituting Ε(𝑠)  𝑎𝑛𝑑  𝑦𝑛 (𝑠) from Eq. (70) and Eq. (72) respectively into Eq. (5), we obtain 

Θ𝑛 𝑚  𝑧 = 𝜒𝑛 ,𝑚𝑧
1

4
+

1

2
 

1

4
+𝐶

(1 − 𝑧)
1

2
 C+A+𝑚2+𝐵𝑃𝑛

  
1

4
+𝐶, C+A+𝑚2+𝐵 

 1 − 2𝑧     (73) 

Where 𝜒𝑛 ,𝑚 is a normalization constant. 

Now using Eq. (43), we obtain the discrete energy eigenvalues as 

𝐸𝑛  𝑛 ,𝑚 =
ℏ2𝛼2κ

2𝜇
− 𝑉0𝛼 −

ℏ2𝛼2

8𝜇
 
 𝑛+

1

2
+ 

1

4
+Λ 

2

+
2𝜇𝑉1
ℏ2𝛼

−
2𝜇𝑉0
ℏ2𝛼

+κ

 𝑛+
1

2
+ 

1

4
+κ 

 

2

      (74)  

κ =  2𝑛 + 1 +  C + A + 𝑚2 + 𝐵  2𝑛 + 1 +  C + A + 𝑚2 + 𝐵 +  1 + 4𝐶 + 𝐶 − 𝐵   (75) 

where 𝑛  is the number of nodes of the radial wave functions. The Λ is the contribution from the angle-dependent part 

of the potential and plays the role of centrifugal term.  

𝜓 𝑟,𝜃,𝜙 =

𝑁𝑛 𝑚

 2𝜋
𝑧 𝜀𝑛−𝛽+Λ(1 − 𝑧)

1

2
+ 

1

4
+Λ
𝑃𝑛

 2 𝜀𝑛−𝛽+Λ,2 
1

4
+Λ 

 1 −

2𝑧𝑐𝑜𝑠2𝜃14+1214+𝐶(𝑠𝑖𝑛2𝜃)12C+A+𝑚2+𝐵𝑃𝑛14+𝐶, C+A+𝑚2+𝐵−cos2𝜃𝑒−𝑖𝑚𝜙   

 (76)  

where N𝑛  𝑛 𝑚  is the new normalization constant 

 



Ushie PO                                                          Journal of Scientific and Engineering Research, 2021, 8(5):132-148 

 

 Journal of Scientific and Engineering Research   139 
 

 

4. Special Cases  

In this section, we take adjustments of some potential parameters in Eqs. (1) and (74) to have the following cases: 

 Yukawa-angle Dependent Potential 

𝑉0 = 0, Eq. (3) reduces to the Yukawa or modified coulomb potential 

𝑉 𝑟,𝜃 =
𝑉1𝑒

−𝛼𝑟

𝑟
+

ℏ2

2𝜇𝑟2  
𝐶+𝐵 cos 2 𝜃+𝐴 cos 4 𝜃

sin 2 𝜃𝑐𝑜𝑠2𝜃
         (77) 

and the energy equation(eq. 74)   becomes 

𝐸𝑛  𝑛 ,𝑚 =
ℏ2𝛼2Λ

2𝜇
−

ℏ2𝛼2

8𝜇
 
 𝑛+

1

2
+ 

1

4
+Λ 

2

+
2𝜇𝑉1
ℏ2𝛼

+Λ

 𝑛+
1

2
+ 

1

4
+Λ 

 

2

       (78) 

Λ =  2𝑛 + 1 +  C + A + 𝑚2 + 𝐵  2𝑛 + 1 +  C + A + 𝑚2 + 𝐵 +  1 + 4𝐶 + 𝐶 − 𝐵   (79) 

Comment; The Authors in ref. [62] used Taylor’s series expansion to deal with the exponential and didn’t use the 

Greene and Aldrich approximation [56]. By employing the Greene and Aldrich approximation, we have been able to 

get a better and more accurate result. 

 

 Novel Angle Dependent Coulomb Potential 

𝑉1 = 0 and 𝛼 → 0 Eq. (3) reduces to the NAD Coulomb potential(new Coulomb ring-shaped potential) [54] 

𝑉 𝑟,𝜃 = −
𝑉0

𝑟
+

ℏ2

2𝜇𝑟2  
𝐶+𝐵 cos 2 𝜃+𝐴 cos 4 𝜃

sin 2 𝜃𝑐𝑜𝑠2𝜃
        (80) 

and the energy equation(eq. 74) becomes 

𝐸𝑛  𝑛 ,𝑚 = −
𝜇  𝑉0

2

2ℏ2 𝑛+
1

2
+ 

1

4
+ 2𝑛 +1+ C+A+𝑚2+𝐵  2𝑛 +1+ C+A+𝑚2+𝐵+ 1+4𝐶 +𝐶−𝐵 

2    (81) 

After carrying out some algebraic manipulation, Eq.(81) agrees excellently with Eq. (28) of ref. [54] 

 

 Hartmann Potential 

𝑉1 = 0 𝐶 = 𝐴 = 0 and 𝛼 → 0 Eq. (3) reduces to the Hartmann Potential [54] 

𝑉 𝑟,𝜃 = −
𝑉0

𝑟
+

𝐵

𝑟2 sin 2 𝜃
          (82) 

and the energy equation (eq. 74)   becomes      

𝐸𝑛  𝑛 ,𝑚 = −
𝜇  𝑉0

2

2ℏ2 𝑛+
1

2
+ 

1

4
+ 2𝑛 +1+ 𝑚2+𝐵 

2
−𝐵 

2        (83) 

Eq. (83) agrees excellently with Eq. (29) of ref. [54] 

 Coulomb Potential Plus A New Ring-Shaped Potential 

𝑉1 = 0𝐶 = 𝐵 = 0 and 𝛼 → 0 reduces to the Coulomb potential plus a new ring-shaped potential proposed by [61]; 

𝑉 𝑟,𝜃 = −
𝑉0

𝑟
+

𝐴𝑐𝑜𝑠2𝜃

𝑟2 sin 2 𝜃
          (84) 

and the energy equation (eq. 74)   becomes 

𝐸𝑛  𝑛 ,𝑚 = −
𝜇𝑉0

2

2ℏ2 𝑛+
1

2
+ 

1

4
+ 2𝑛 +1+ A+𝑚2   2𝑛 +1 + A+𝑚2+1  

2      (85)  

Eq. (83) agrees excellently with Eq. (19) of ref. [61] 

 

5. Discussion 

In this paper, we consider the eigensolutions of the Schrodinger equation with Ring-shaped Hellmann Potential. For 

verification sake, we compute the numerical eigenvalue of the Hellmann Potential (Table 1) using Eq.(43), our 

results are in agreement with literature. In Fig.(1-2), we plot the variation of the  energy level for various 𝑛 as a 

function of the 𝑛  and 𝑚. From the graph, it is evident that the energy increases as the quantum numbers (𝑛, 𝑛  and 
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𝑚) increases. Fig. 3;, we plot the variation of the  energy level for various 𝑛 as a function of the 𝛼. It’s seen that the 

energy decreases as the screening parameter increases. Fig. (4-5), we plot the variation of the energy level for 

various 𝑛 as a function of the 𝑉0 and 𝑉1. Similarly, the energy also decreases as parameters 𝑉0 and 𝑉1 increases. 

Figure 6-8 shows the variation of the energy level for various 𝑛 as a function of the 𝐴,𝐵 and 𝐶. In these plots, it is 

clearly seen that as parameters 𝐴,𝐵 𝑎𝑛𝑑 𝐶 increases the eigenvalue also does same. 

 

Table 1: Comparison of energy spectrum from SUSY, Parametric Nikiforov-Uvarov (N.U) and Amplitude Phase 

method with ℎ =  𝑉1 =  2𝜇 = 1 𝑎𝑛𝑑 𝑉0  =  4𝜇 

State 𝜶 Present  SUSY[42] pNU[43] APM[43] 

1s 0.001 -0.25150025 -0.251 500 -0.251 500 -0.250 969 

 0.005 -0.25750625 -0.257 506 -0.257 506 -0.254 933 

 0.01 -0.26502500 -0.265 025 -0.265 025 -0.259 823 

2s 0.001 -0.64001000 -0.064 001 -0.064 001 -0.063 243 

 0.005 -0.07002500 -0.070 025 -0.070 025 -0.067 106 

 0.01 -0.07760000 -0.077 600 -0.077 600 -0.071 689 

2p 0.001 -0.06375025 -0.063 750 -0.064 000 -0.063 495 

 0.005 -0.06875625 -0.068 756 -0.070 000 -0.067 377 

 0.01 -0.07502500 -0.075 025 -0.077 500 -0.072 020 

3s 0.001 -0.02928003 -0.029 280 -0.029 280 -0.028 283 

 0.005 -0.03533403 -0.035 334 -0.035 334 -0.031 993 

 0.01 -0.04300278 -0.043 003 -0.043 003 -0.036 142 

3p 0.001 -0.02916803 -0.029 169 -0.029 279 -0.028 765 

 0.005 -0.03475625 -0.034 756 -0.035 309 -0.032 480 

 0.01 -0.04180278 -0.041 803 -0.042 903 -0.036 142 

3d 0.001 -0.02894469 -0.028 945 -0.029 388 -0.028 767 

 0.005 -0.03361736 -0.033 617 -0.035 817 -0.032 526 

 0.01 -0.03946944 -0.039 469 -0.043 825 -0.036 613 

4s 0.001 -0.01712900 -0.017 129 -0.029 280 -0.016 601 

 0.005 -0.02322500 -0.023 225 -0.035 334 -0.020 077 

 0.01 -0.03102500 -0.031 025 -0.043 003 -0.023 551 

4p 0.001 -0.01706556 -0.017 066 -0.017 128 -0.016 602 

 0.005 -0.02288906 -0.022 889 -0.023 200 -0.020 098 

 0.01 -0.03030625 -0.030 306 -0.030 925 -0.023 641 

4d 0.001 -0.01693906 -0.016 939 -0.017 189 -0.016 604 

 0.005 -0.02222656 -0.022 227 -0.023 464 -0.020 098 

 0.01 -0.02890625 -0.028 906 -0.031 356 -0.023 641 

4f 0.001 -0.01675025 -0.016 750 -0.017 311 -0.016 607 

 0.005 -0.02125625 -0.021 257 -0.024 024 -0.020 142 

 0.01 -0.02690000 -0.026 900 -0.032 356 -0.024 056 
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Figure 1: The variation of the energy level for various 𝑛 as a function of the 𝑚. We choose ℎ =  𝑉1 =  2𝜇 =

1,𝑉0  =  4𝜇,𝛼 = 0.001 , 𝑛 = 0 and  𝐴 = 𝐵 = 𝐶 = 1 

 

 

 
Figure 2: The variation of the energy level for various 𝑛 as a function of the 𝑛 . We choose ℎ =  𝑉1 =  2𝜇 = 1,𝑉0  =

 4𝜇,𝛼 = 0.001 , 𝑚 = 0 and  𝐴 = 𝐵 = 𝐶 = 1 
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Figure 3: The variation of the  energy level for various 𝑛 as a function of the 𝛼. We choose ℎ =  𝑉1 =  2𝜇 =

1,𝑉0  =  4𝜇,𝛼 = 0.001 ,𝑛 = 𝑚 = 0 and  𝐴 = 𝐵 = 𝐶 = 1 

 

 

 
Figure 4: The variation of the energy level for various 𝑛 as a function of the 𝑉0. We choose ℎ =  𝑉1 =  2𝜇 = 1,𝛼 =

0.001 ,𝑛 = 𝑚 = 0 and  𝐴 = 𝐵 = 𝐶 = 1 
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Figure 5: The variation of the energy level for various 𝑛 as a function of the 𝑉1. We choose ℎ =  2𝜇 = 1,𝑉0  =

 4𝜇,𝑛 = 𝑚 = 0 and  𝐴 = 𝐵 = 𝐶 = 1 

 

 

 

 
Figure 6: The variation of the energy level for various 𝑛 as a function of the 𝐴. We choose ℎ =  𝑉1 =  2𝜇 = 1,𝑉0  =

 4𝜇,𝛼 = 0.001 , 𝑛 = 𝑚 = 0 and  𝐵 = 𝐶 = 1 
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Figure 7: The variation of the energy level for various 𝑛 as a function of the 𝐵. We choose ℎ =  𝑉1 =  2𝜇 = 1,𝑉0  =

 4𝜇,𝛼 = 0.001 , 𝑛 = 𝑚 = 0 and  𝐴 = 𝐶 = 1 

 

 

 

 
Figure 8: The variation of the energy level for various 𝑛 as a function of the 𝐶. We choose ℎ =  𝑉1 =  2𝜇 = 1,𝑉0  =

 4𝜇,𝛼 = 0.001 , 𝑛 = 𝑚 = 0 and  𝐴 = 𝐵 = 1 

 

6. Conclusion and Remarks 

We have proposed a new approximate exactly solvable non-central potential, ring-shaped Hellmann potential and 

solved the Schrödinger equation with this potential by the NU method analytically. It is shown that in spherical 

coordinate, the Schrödinger equation with this non-central potential could be separated into the angular and radial 
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components. Our results may have interesting applications in the study of various quantum mechanical systems and 

atomic physics. We presented the effect of the angle-dependent part on radial solutions and some special cases are 

also discussed. Numerical results were obtained for the Ring shaped Hellmann potential and the Hellmann potential 

respectively. It was found out that our results agree with existing literature. The thermal and magnetic properties of 

this model should be considered as an extension [63]. 
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