An Estimate for Upper Bound of Maximum Modulus of Complex Polynomial

Roshan Lal Keshtwal

Department of Mathematics, V.S.K.C. Government Postgraduate College Dakpathar, Dehradun-248125, Uttarakhand, India.
E-mail: rlkeshtwal@gmail.com

Abstract

Let $p(z)$ be a polynomial of degree n. In this paper we have obtained an inequality for the maximum modulus of a polynomial involving the coefficients of polynomial having all its zeros outside a disk of prescribed radius. Our result not only improves upon some well known results but also gives generalizations of some well known earlier proved inequalities.

Keywords Polynomials; complex domain; Inequalities; Zeros
AMS Subject Classification: 30A10, 26A10

1. Introduction and Statement of Results

THEOREM 1.1 If $p(z)$ is a polynomial of degree n, then

$$
\begin{equation*}
\max _{|z|=1}\left|p^{\prime}(z)\right| \leq n \max _{|z|=1}|p(z)| . \tag{1.1}
\end{equation*}
$$

The result is best possible and equality holds for $p(z)=\lambda z^{n}, \lambda(\neq 0)$ being a complex number.
If we restrict ourselves to the class of polynomials having no zeros in $|z|<1$, then inequality (1.1) can be sharpened. In fact in this case the following result was conjectured by Erdös and later verified by Lax [7].

THEOREM 1.2.If $p(z)$ is a polynomial of degree n, having no zeros in $|z|<1$, then

$$
\begin{equation*}
\max _{|z|=1}\left|p^{\prime}(z)\right| \leq \frac{n}{2} \max _{|z|=1}|p(z)| \tag{1.2}
\end{equation*}
$$

The result is best possible and equality in (1.2) holds for $p(z)=\lambda+\mu z^{n}$ where $|\lambda|=|\mu|$.
Simple proofs of this theorem were given by de-Bruijn [4] and Aziz and Mohammad [2]. For other proofs see Boas [3] and Rahman [9].
Inequality (1.2) was further improved by Aziz and Dawood [1] under the same hypothesis by proving the following result.

THEOREM 1.3.If $p(z)$ is a polynomial of degree n, which does not vanish in $|z|<1$, then

$$
\begin{equation*}
\max _{|z|=1}\left|p^{\prime}(z)\right| \leq \frac{n}{2}\left\{\max _{|z|=1}|p(z)|-\min _{|z|=1}|p(z)|\right\} \tag{1.3}
\end{equation*}
$$

The result is best possible and equality holds for $p(z)=\lambda+\mu z^{n},|\lambda|=|\mu|$.
As a generalization of Theorem 1.2, Malik [8] proved the following

THEOREM 1.4.If $p(z)$ is a polynomial of degree n having no zeros in, $|z|<k, k \geq 1$, then

$$
\begin{equation*}
\max _{|z|=1}\left|p^{\prime}(z)\right| \leq \frac{n}{1+k} \max _{|z|=1}|p(z)| \tag{1.4}
\end{equation*}
$$

The result is sharp and extremal polynomial is $p(z)=(z+k)^{n}$.
Various other results in the same sphere could be seen in literature (for references see [10], [11], [12]).

In the present paper, we prove the following result which provides improvement of the Theorem 1.4 due to Malik [8]. The theorem is also of independent interest and could be generalized into many other results. This result paves the path to other results too.
THEOREM 1.5. If $p(z)=\sum_{v=0}^{n} a_{v} z^{v}$ is a polynomial of degree n, not vanishing in $|z|<k, k \geq 1$, then for $0 \leq r \leq \rho \leq k$, we have

$$
\begin{align*}
\max _{|z|=\rho}|p(z)| \leq & \left(\frac{\rho+k}{r+k}\right)^{n}\left[\begin{array}{r}
1-\frac{k(k-\rho)\left(n\left|a_{0}\right|-k\left|a_{1}\right|\right)}{\left(\rho^{2}+k^{2}\right) n\left|a_{0}\right|+2 k^{2} \rho\left|a_{1}\right|} \\
\times\left\{1-\left(\frac{k+r}{k+\rho}\right)^{n}\right\}
\end{array}\right] \max |p(z)| \tag{1.5}\\
& -\frac{\left(\rho^{n}-r^{n}\right)}{k^{n-2}}\left\{\frac{n\left|a_{0}\right|+\rho\left|a_{1}\right|}{\left(\rho^{2}+k^{2}\right) n\left|a_{0}\right|+2 k^{2} \rho\left|a_{1}\right|}\right\} \min _{|z|=k}|p(z)|
\end{align*}
$$

2. Lemmas

LEMMA 2.1. If $p(z)=\sum_{v=0}^{n} a_{v} z^{v}$ is a polynomial of degree n, having no zeros in, $|z|<k, k \geq 1$, then

$$
\begin{equation*}
\max _{|z|=1}\left|p^{\prime}(z)\right| \leq n \frac{n\left|a_{0}\right|+k^{2}\left|a_{1}\right|}{\left(1+k^{2}\right) n\left|a_{0}\right|+2 k^{2}\left|a_{1}\right||z|=1} \max |p(z)| \tag{2.1}
\end{equation*}
$$

The above lemma is due to Govil, Rahman and Schmeisser [5].
LEMMA 2.2. If $p(z)=\sum_{v=0}^{n} a_{v} z^{v}$ is a polynomial of degree n, having no zeros in, $|z|<k, k \geq 1$, then

$$
\begin{align*}
\max _{|z|=1}\left|p^{\prime}(z)\right| \leq n & \frac{\left.n\left|a_{0}\right|+k^{2}\left|a_{1}\right|\right)}{\left(1+k^{2}\right) n\left|a_{0}\right|+2 k^{2}\left|a_{1}\right|} \max _{|z|=1}|p(z)| \tag{2.2}\\
& \quad-\frac{n}{k^{n}}\left\{1-\frac{\left.n\left|a_{0}\right|+k^{2}\left|a_{1}\right|\right)}{\left(1+k^{2}\right) n\left|a_{0}\right|+2 k^{2}\left|a_{1}\right|}\right\} \min _{|z|=k}|p(z)|
\end{align*}
$$

PROOF OF LEMMA 2.2. The lemma can be easily proved by replacing $p(z)$ by $F(z)=p(z)+\lambda m \frac{z^{n}}{k^{n}}$ in Lemma 2.1 and applying Rouche's theorem.
LEMMA 2.3. If $p(z)=\sum_{v=0}^{n} a_{v} z^{v}$ is a polynomial of degree n, not vanishing in $|z|<k, k>0$, then for $0 \leq r \leq \rho \leq k$,

$$
\begin{equation*}
\max _{|z|=\rho}|p(z)| \leq\left(\frac{\rho+k}{r+k}\right)^{n} \max _{|z|=1}|p(z)| \tag{2.3}
\end{equation*}
$$

The result is best possible and equality occurs for $p(z)=(z+k)^{n}$.
The above result is due to Jain [6].

3. Proof of the Main Theorem

PROOF OF THEOREM 1.5. Since $p(z)$ has no zeros in $|z|<k, k \geq 1$, therefore the polynomial $F(z)=p(t z)$, where $0 \leq t \leq k$, has no zeros in $|z|<k / t$, where $k / t \geq 1$. Applying Lemma 2.2 to the polynomial $F(z)$, we get

$$
\begin{aligned}
\max _{|z|=1}\left|F^{\prime}(z)\right| \leq n & \left\{\frac{n\left|a_{0}\right|+\frac{k^{2}}{t^{2}} t\left|a_{1}\right|}{\left(1+\frac{k^{2}}{t^{2}}\right) n\left|a_{0}\right|+2 \frac{k^{2}}{t^{2}} t\left|a_{1}\right|}\right\} \max _{|z|=1}|F(z)| \\
& -\frac{n}{k^{n} / t^{n}}\left\{1-\frac{n\left|a_{0}\right|+\frac{k^{2}}{t^{2}} t\left|a_{1}\right|}{\left(1+\frac{k^{2}}{t^{2}}\right) n\left|a_{0}\right|+2 \frac{k^{2}}{t^{2}} t\left|a_{1}\right|}\right\} \min _{|z|=\frac{k}{t}}^{t}|F(z)| \\
\max _{|z|=1}\left|p^{\prime}(t z)\right| t \leq n t & \left\{\frac{n\left|a_{0}\right| t+k^{2}\left|a_{1}\right|}{\left.\left(t^{2}+k^{2}\right) n\left|a_{0}\right|+2 k^{2} t\left|a_{1}\right|\right\}}\right\} \max _{|z|=1}|p(t z)| \\
& -\frac{n t^{n}}{k^{n}}\left\{1-\frac{n\left|a_{0}\right| t^{2}+k^{2} t\left|a_{1}\right|}{\left(t^{2}+k^{2}\right) n\left|a_{0}\right|+2 k^{2} t\left|a_{1}\right|}\right\} \min _{|z|=k}|p(z)|
\end{aligned}
$$

which implies

$$
\begin{aligned}
\max _{|z|=t}\left|p^{\prime}(z)\right| \leq & n\left\{\frac{n\left|a_{0}\right| t+k^{2}\left|a_{1}\right|}{\left(t^{2}+k^{2}\right) n\left|a_{0}\right|+2 k^{2} t\left|a_{1}\right|}\right\} \max _{|z|=t}|p(z)| \\
& -\frac{n t^{n-1}}{k^{n}}\left\{1-\frac{n\left|a_{0}\right| t^{2}+k^{2} t\left|a_{1}\right|}{\left(t^{2}+k^{2}\right) n\left|a_{0}\right|+2 k^{2} t\left|a_{1}\right|}\right\} \min _{|z|=k}|p(z)|
\end{aligned}
$$

Now, for $0 \leq r \leq \rho \leq k$ and $0 \leq \theta<2 \pi$, we have

$$
\left|p\left(\rho e^{i \theta}\right)-p\left(r e^{i \theta}\right)\right| \leq \int_{r}^{\rho}\left|p^{\prime}\left(t e^{i \theta}\right)\right| d t
$$

which implies

$$
\begin{array}{r}
\left.\left|p\left(\rho e^{i \theta}\right)-p\left(r e^{i \theta}\right)\right| \leq \int_{r}^{\rho} n\left\{\frac{n\left|a_{0}\right| t+k^{2}\left|a_{1}\right|}{\left(t^{2}+k^{2}\right) n\left|a_{0}\right|+2 k^{2} t\left|a_{1}\right|}\right\} \max _{|z|=t} \right\rvert\, p(z) d t \\
\quad-\int_{r}^{\rho} \frac{n t^{n-1}}{k^{n}}\left\{1-\frac{n\left|a_{0}\right| t^{2}+k^{2} t\left|a_{1}\right|}{\left(t^{2}+k^{2}\right) n\left|a_{0}\right|+2 k^{2} t\left|a_{1}\right|}\right\} m d t \\
\leq \int_{r}^{\rho} n\left\{\frac{n\left|a_{0}\right| t+k^{2}\left|a_{1}\right|}{\left(t^{2}+k^{2}\right) n\left|a_{0}\right|+2 k^{2} t\left|a_{1}\right|}\right\}\left(\frac{k+t}{k+r}\right)^{n} \max _{|z|=r}|p(z)| d t \\
-\int_{r}^{\rho} \frac{n t^{n-1}}{k^{n}}\left\{1-\frac{n\left|a_{0}\right| t^{2}+k^{2} t\left|a_{1}\right|}{\left(t^{2}+k^{2}\right) n\left|a_{0}\right|+2 k^{2} t\left|a_{1}\right|}\right\} m d t,
\end{array}
$$

by Lemma 2.3, and $m=\min _{|z|=k}|p(z)|$.
The above inequality, for $0 \leq r \leq \rho \leq k$, gives

$$
\begin{aligned}
& M(p, \rho) \leq\left[1+\frac{n}{(k+r)^{n}} \int_{r}^{\rho} \frac{n\left|a_{0}\right| t+k^{2}\left|a_{1}\right|}{\left(t^{2}+k^{2}\right) n\left|a_{0}\right|+2 k^{2} t\left|a_{1}\right|}(k+t)^{n} d t\right] M(p, r) \\
& -\frac{m n}{k^{n}} \int_{r}^{\rho}\left[t^{n-1}-\frac{n\left|a_{0}\right| t^{2}+k^{2} t\left|a_{1}\right|}{\left(t^{2}+k^{2}\right) n\left|a_{0}\right|+2 k^{2} t\left|a_{1}\right|} t^{n-1}\right] d t \\
& -\frac{m n}{k^{n}}\left[\frac{\rho^{n}-r^{n}}{n}-\frac{n\left|a_{0}\right| \rho^{2}+k^{2} \rho\left|a_{1}\right|}{\left(\rho^{2}+k^{2}\right) n\left|a_{0}\right|+2 k^{2} \rho\left|a_{1}\right|}\left(\frac{\rho^{n}-r^{n}}{n}\right)\right] \\
& \leq\left[1+\frac{(k+\rho)}{(k+r)^{n}}\left\{\frac{n\left|a_{0}\right| \rho+k^{2}\left|a_{1}\right|}{\left(\rho^{2}+k^{2}\right) n\left|a_{0}\right|+2 k^{2} \rho\left|a_{1}\right|}\right\}\left\{(k+\rho)^{n}-(k+r)^{n}\right\}\right] M(p, r) \\
& -\frac{\left(\rho^{n}-r^{n}\right)}{k^{n}}\left[1-\frac{n\left|a_{0}\right| \rho^{2}+k^{2} \rho\left|a_{1}\right|}{\left(\rho^{2}+k^{2}\right) n\left|a_{0}\right|+2 k^{2} \rho\left|a_{1}\right|}\right] m
\end{aligned}
$$

$$
\begin{aligned}
& \leq\left[1+\frac{(k+\rho)\left(n\left|a_{0}\right| \rho+k^{2}\left|a_{1}\right|\right)}{\left(\rho^{2}+k^{2}\right) n\left|a_{0}\right|+2 k^{2} \rho\left|a_{1}\right|}+\frac{(k+\rho)\left(n\left|a_{0}\right| \rho+k^{2}\left|a_{1}\right|\right)}{\left(\rho^{2}+k^{2}\right) n\left|a_{0}\right|+2 k^{2} \rho\left|a_{1}\right|}\left(\frac{k+\rho}{k+r}\right)^{n}\right] M \\
& -\quad-\frac{\left(\rho^{n}-r^{n}\right)}{k^{n}}\left[\frac{k^{2} n\left|a_{0}\right|+k^{2} \rho\left|a_{1}\right|}{\left(\rho^{2}+k^{2}\right) n\left|a_{0}\right|+2 k^{2} \rho\left|a_{1}\right|}\right] m \\
& \leq\left[\frac{(k-\rho) k\left(n\left|a_{0}\right|+k\left|a_{1}\right|\right)}{\left(\rho^{2}+k^{2}\right) n\left|a_{0}\right|+2 k^{2} \rho\left|a_{1}\right|}+\left\{1-\frac{k(k-\rho)\left(n\left|a_{0}\right|-k\left|a_{1}\right|\right)}{\left(\rho^{2}+k^{2}\right) n\left|a_{0}\right|+2 k^{2} \rho\left|a_{1}\right|}\right\}\left(\frac{k+\rho}{k+r}\right)^{n}\right] M \\
& -\frac{\left(\rho^{n}-r^{n}\right)}{k^{n-2}}\left[\frac{n\left|a_{0}\right|+\rho\left|a_{1}\right|}{\left(\rho^{2}+k^{2}\right) n\left|a_{0}\right|+2 k^{2} \rho\left|a_{1}\right|}\right] m \\
& \left.=\left(\frac{k+\rho}{k+r}\right)^{n}\left[\left.1-\frac{k(k-\rho)\left(n\left|a_{0}\right|\right.}{\left(\rho^{2}+k^{2}\right) n\left|a_{0}\right|+2 k^{2} \rho\left|a_{1}\right|} \right\rvert\, 1-\left(\frac{k+\rho}{k+r}\right)^{n}\right\}\right] M(p, r) \\
& -\frac{\left(\rho^{n}-r^{n}\right)}{k^{n-2}}\left[\frac{n\left|a_{0}\right|+\rho\left|a_{1}\right|}{\left(\rho^{2}+k^{2}\right) n\left|a_{0}\right|+2 k^{2} \rho\left|a_{1}\right|}\right] m
\end{aligned}
$$

from which the proof the THEOREM 1.5 follows.

Acknowledgements

The author of the paper wishes to thanks the editor and anonymous referees for the constructive suggestions to make paper up to the mark.

References

[1]. A. Aziz and Q.M. Dawood, Inequalities for a polynomial and its derivative, J. Approx. Theory, 54 (1988), 306-313.
[2]. A. Aziz and Q.G. Mohammad, Simple proofs of a Theorem of Erdös and Lax, Proc. Amer. Math. Soc., 80 (1980), 119-122.
[3]. R.P. Boas Jr. Inequalities for asymmetric entire functions, Illinois J. Math., 1 (1957), 94-97.
[4]. N.G. de-Bruijn, Inequalities concerning polynomial in the complex domain, Nederl. Akad. Wetench. Proc. Ser. A, 50 (1947), 1265-1272; Indag. Math., 9 (1947), 591-598.
[5]. N. K. Govil, Q. I. Rahman and G. Schmeisser, On the derivative of a polynomial, Illinois J. Math., 23 (1979), 319-329.
[6]. V. K. Jain, Converse of an extremal problem in polynomials II, J. Indian Math. Soc., 60(1994), 41-47.
[7]. P. D. Lax, Proof of a conjecture of P. Erdös on the derivative of a polynomial, Bul. Amer. Math. Soc., 50 (1944), 509-513.
[8]. M. A. Malik, On the derivative of polynomial, J. London Math. Soc., 1 (1969), 57-60.
[9]. Q. I. Rahman, Functions of exponential type, Trans. Amer. Math. Soc., 135 (1969), 295-309.
[10]. Roshan Lal Keshtwal, A Generalized Symmetric Result for Polynomial Function, Journal of Scientific and Engineering Research, 2020, 7(9):193-198.
[11]. Roshan Lal, Generalizations of a Theorem of Ankeny and Rivlin, Ganita, Vol. 70 (2), 2020,167-173.
[12]. Roshan Lal, Bounds for The Maximum Modulus of Polynomial Not Vanishing in A Disk, Jnanabha, Vol. 50(1) (2020), 72-78.

