
Available online www.jsaer.com

Journal of Scientific and Engineering Research

278

Journal of Scientific and Engineering Research, 2021, 8(2):278-282

Research Article

ISSN: 2394-2630

CODEN(USA): JSERBR

Database Efficiency Unleashed: Strategies for Cost Optimization

in SQL and NoSQL Deployments

Venkata Sasidhar (Sasi) Kanumuri

Email ID: sasinrt@gmail.com

Abstract Database costs can present a significant component of cloud infrastructure expenses. This blog offers

a comprehensive guide to database cost optimization techniques, addressing SQL (relational) and NoSQL (non-

relational) databases. Strategies for SQL databases include identifying underutilized resources, right-sizing

instances, optimizing storage, and strategically utilizing Reserved Instances. For NoSQL solutions, the focus

shifts to autoscaling, data archiving (TTL), caching, query optimization, start/stop scheduling, and data

compression. Proactive monitoring and alerts using CloudWatch (or equivalent) are emphasized for both

database types. The blog stresses that tailored approaches are crucial for success due to the distinct nature of

SQL and NoSQL technologies. By applying these principles, organizations can achieve cost savings, enhanced

performance, and maximized value from their database deployments.

Keywords Database Cost Optimization, SQL Databases, NoSQL Databases, Cloud Computing, AWS (Amazon

Web Services), CloudWatch, Reserved Instances, Autoscaling, Performance Tuning, Storage Optimization,

DocumentDB, Data Compression, Caching

1. Introduction

In the contemporary cloud-based landscape, databases are the foundational element for innumerable applications

and services. While cloud environments provide advantages in flexibility, scalability, and reduced infrastructure

overhead, they also adopt a pay-as-you-go cost structure. Database services, specifically, can significantly

contribute to your overall cloud expenditures. If not diligently managed, these costs have the potential to

escalate rapidly. Consequently, cost optimization emerges as a vital facet of cloud infrastructure governance,

ensuring you derive maximum value from your investment. Recognizing that comprehensive database

optimization transcends the conventional emphasis on performance tuning is imperative. Although ensuring

swift query execution and efficient resource utilization remains essential, it's equally crucial to factor in the

financial implications of your database selections. Optimizing your database for cost entails strategically

choosing instance types, storage solutions, and scaling approaches that harmonize with your workload demands

without sacrificing performance.

Databases are classified into SQL (relational) and NoSQL (non-relational) categories. Each type possesses its

strengths, application scenarios, and distinct cost considerations. A universal approach to database cost

optimization is unlikely to produce optimal results. Effective optimization necessitates a bespoke strategy

acknowledging your preferred database technology's particular traits and pricing models.

2. Relational (SQL) Database Optimization

A. Identifying Underutilized Resources

The first step towards optimizing costs within your relational database environment is gaining visibility into

how your resources are used. Cloud monitoring services like Amazon CloudWatch (or similar tools for other

cloud providers) are invaluable. These services allow you to monitor crucial metrics such as CPU utilization,

I/O operations, network traffic, and memory consumption. By tracking these metrics, you can pinpoint resources

that are consistently underutilized. It's essential to define clear policies for handling different database

components to systematize this process. Establish thresholds for unused instances (based on inactivity or low

usage metrics), read replicas, and primary instances. Set up automated alerts that trigger when these thresholds

are crossed and define escalation procedures to ensure timely action. Remember, you can often apply aggressive

thresholds and optimization strategies in non-production environments to maximize cost savings.

Kanumuri VS Journal of Scientific and Engineering Research, 2021, 8(2):278-282

Journal of Scientific and Engineering Research

279

Right-Sizing Instances: Right-sizing refers to selecting database instance types that offer the optimal balance

of compute (CPU) and memory resources to match your application's workload. Cloud providers offer various

instance types with varying vCPUs, memory, and network bandwidth combinations. Choosing the right instance

type is crucial for both performance and cost-efficiency. Overprovisioning leads to unnecessary costs for

underutilized resources, and under provisioning can result in performance bottlenecks that impact your

application.

The key to successful right-sizing is to analyze your database workload characteristics carefully. Consider

factors like the number of concurrent users, query complexity, data volume, and performance requirements. Use

cloud monitoring tools to establish a baseline understanding of your current resource usage patterns. If you

consistently observe low CPU and memory utilization, it might be a sign that you could downgrade to a smaller

instance type, potentially leading to significant cost savings.

Cautious Downgrading: A thorough performance impact analysis is essential before downgrading a database

instance, especially in a production environment. Consider replicating your production workload in a testing

environment with the smaller instance type and rigorously assess query performance and overall system

behavior. This proactive approach helps to minimize the risk of unexpected performance degradation after the

change is made in production.

B. Optimizing Storage
Storage is critical to your relational database's performance and associated costs. Cloud providers offer several

storage types, each with performance characteristics and pricing implications. Let's focus on two prevalent

options:

General Purpose SSD (GP2/GP3): These volumes balance cost and performance. They are ideal for database

workloads, especially development environments, testing, and databases with moderate or fluctuating I/O

demands. General Purpose SSDs leverage a burst performance model, providing temporary boosts in IOPS

(Input/Output Operations Per Second) to handle workload spikes.

Provisioned IOPS SSD (io1/io2): Designed for performance-critical workloads, these volumes ensure

consistent and predictable I/O throughput. You explicitly provision the IOPS you require, making them suitable

for databases demanding high transaction rates and low latency.

C. Performance vs. Cost Trade-offs

Selecting the optimal storage type involves carefully weighing the trade-offs between performance and cost:

Performance: Provisioned IOPS SSDs offer guaranteed IOPS, delivering the highest level of performance,

especially for I/O-bound workloads. If your application's performance is paramount and you can predict your

I/O requirements, Provisioned IOPS SSDs may be the way to go.

Cost: General-purpose SSDs are more cost-effective. Their burst performance model makes them adaptable to

many workloads without the higher price tag of Provisioned IOPS SSDs. If your database can tolerate some

variability and the cost is a major concern, start with General-Purpose SSDs.

D. Utilizing Reserved Instances

Understanding Reserved Instances (RIs): Reserved Instances (RIs) can save money on cloud resources you

know you'll need for an extended period. By committing to using a specific instance type for a year or three

years, you receive a significant discount compared to on-demand pricing. RIs are an excellent fit for relational

databases with predictable workloads running for the long term.

When to Use Ris: Consider using Reserved Instances (RIs) for your database if you clearly understand your

long-term requirements. If you can confidently project that your database will be operational for at least a year,

RIs become a compelling option for cost optimization. Additionally, analyze your historical resource usage

patterns – if your database consistently requires a similar amount of CPU, memory, and I/O resources over time,

RIs can be highly advantageous. RIs often offer the most significant savings when you commit to using

instances within a specific Availability Zone (AZ) for the duration of your contract. Before purchasing, evaluate

your application's resiliency requirements and ensure you're comfortable with less flexibility when moving

instances between AZs.

How to Use Ris: The first step in leveraging RIs is thoroughly analyzing your database's workload patterns.

Utilize your cloud provider's monitoring tools to gain a deep understanding of your database's long-term

resource requirements. Track CPU utilization, memory usage, and I/O patterns over a substantial period to

identify trends and consistency. Once you have this data, consider your confidence in future usage projections.

Choose between a one-year or three-year RI term, considering that longer terms often come with the steepest

discounts. Finally, to purchase your RIs, navigate to your cloud provider's marketplace or the dedicated section

within their console where Reserved Instances are managed.

E. Additional Considerations

Query Optimization: Inefficient SQL queries can lead to excessive resource consumption. Analyze slow-

running queries, identify performance bottlenecks, and optimize them using techniques like query rewriting or

adding appropriate indexes.

Kanumuri VS Journal of Scientific and Engineering Research, 2021, 8(2):278-282

Journal of Scientific and Engineering Research

280

Effective Indexing: Indexes are crucial for accelerating data retrieval in your database. The right indexing

strategy can significantly improve query performance and reduce the load on your database instances. However,

over-indexing can add storage overhead and update costs, so finding the proper balance is key.

Backup Policies: While essential for disaster recovery, backups consume storage and can impact costs.

Establish a backup policy that aligns with your recovery needs. Consider tiered storage (hot vs. cold storage),

automate deleting old backups, and investigate compression options to reduce backup storage footprint.

3. NoSQL Database Optimization

Let's focus on optimizing costs for NoSQL databases, using Amazon DocumentDB as our primary example.

DocumentDB is a fully managed, scalable, and highly available document database service from AWS. It offers

compatibility with MongoDB APIs, making it popular for developers familiar with these technologies. Despite

its advantages, managing DocumentDB usage strategically is crucial to avoid escalating costs. We'll discuss

optimization techniques tailored to this specific NoSQL service.

A. Instance Type Selection

Like relational databases, selecting the right DocumentDB instance type is crucial in performance and cost-

efficiency. Cloud providers offer a variety of instance types with different combinations of CPU, memory,

network performance, and I/O capacity. The optimal choice depends heavily on your application's workload

characteristics. If your application is read-heavy, prioritize instances with ample memory to maximize cache

usage. For write-intensive workloads, you might focus on instances with high I/O capabilities. Choosing an

underpowered instance will create performance bottlenecks, while overprovisioning will lead to unnecessary

expenses. To make an informed decision, carefully analyze your application's behavior, read/write patterns, and

the size of your working data set.

B. Storage Optimization

Optimizing storage utilization directly influences your DocumentDB costs. Here's what you need to know:

Storage Types: DocumentDB offers two primary storage types: general-purpose SSD (GP2) and Provisioned

IOPS SSD (io1). General-purpose SSD is suitable for many workloads and balances cost and performance.

Provisioned IOPS SSD becomes necessary when you have incredibly high I/O demands and require guaranteed,

predictable throughput for critical applications.

Monitoring Storage Usage: Use CloudWatch metrics to track DocumentDB storage consumption patterns.

Closely monitor allocated storage and actual data usage to identify potential over-provisioning.

Workload Analysis: Like instance type selection, choosing the appropriate storage type depends on

understanding your workload. Analyze your application's read/write ratio and I/O performance requirements.

Carefully matching storage specifications with your workload helps avoid unnecessary costs.

C. Autoscaling

Autoscaling is a potent tool in the NoSQL database world, especially for optimizing DocumentDB costs.

Autoscaling allows you to automatically adjust the instance count (and potentially instance type) of your

DocumentDB cluster based on real-time demand. With autoscaling, you avoid the cost of over-provisioning

resources to handle peak loads, as the system can dynamically add capacity when needed. Conversely, during

periods of low usage, autoscaling scales down your cluster, reducing costs associated with idle resources. This

pay-for-what-you-use model aligns well with the often-unpredictable nature of application workloads and is a

key strategy for optimizing your DocumentDB spending.

D. Data Archiving and TTL

Data Archiving for Lifecycle Management

As your DocumentDB database grows, storage costs can steadily increase. Implementing a data archiving

strategy is crucial for lifecycle management. Archiving means moving older, less frequently accessed data to

less expensive storage tiers or offline storage solutions. This approach frees up space on your primary

DocumentDB cluster, reducing costs without sacrificing important historical data.

Time-to-Live (TTL) for Automatic Deletion: DocumentDB offers a convenient feature called Time-to-Live

(TTL), allowing you to delete documents after a specified period automatically. TTL works by adding a

timestamp field to your documents. When that timestamp expires, DocumentDB automatically removes the

document. TTL is ideal for data with a defined lifespan, such as session data, logs, or other time-sensitive

records. TTL helps you streamline database maintenance and keep your storage costs in check by automating

data expiration.

E. Database Caching

Introducing Caching with Amazon ElastiCache: Amazon ElastiCache is a fully-managed caching service that

makes it easy to deploy and operate in-memory caches like Redis or Memcached. Integrating a caching layer

with your DocumentDB database brings significant performance and cost-related benefits.

Caching for Reduced Load and Optimized Costs: A cache is a fast, temporary data store closer to your

application than your primary database. When your application needs data, it first checks the cache. If the data

Kanumuri VS Journal of Scientific and Engineering Research, 2021, 8(2):278-282

Journal of Scientific and Engineering Research

281

is found in the cache (a "cache hit"), it's retrieved quickly without generating a load on your DocumentDB

instance. If the data isn't in the cache (a "cache miss"), it's fetched from DocumentDB and stored in the cache

for future requests. By serving frequently accessed data from the cache, you reduce read operations on your

DocumentDB cluster. This results in lower I/O costs, improved application response times, and enhanced

scalability as your database is freed to handle more complex workloads.

F. Query and Index Optimization

While NoSQL databases offer flexibility in data modeling, it's crucial to remember that query and index

optimization remain essential for performance and cost control, especially with services like DocumentDB.

Efficient Queries: Poorly written queries can consume excessive resources like in relational databases.

Analyze your application's most frequent and expensive queries. Leverage database profiling tools to identify

potential bottlenecks or unnecessary operations. Optimize your queries with rewriting, denormalization (where

appropriate), and efficient query patterns tailored to document databases. Properly optimized queries reduce the

workload on your DocumentDB instances, improving performance and lowering the need for costly instance

upgrades.

Importance of Indexing: Indexes are vital in accelerating data retrieval in NoSQL databases. Creating

appropriate indexes on frequently queried fields can dramatically improve query performance. However, over-

indexing can add overhead, increase storage costs, and impact write performance. Strategically design indexes

that balance read and write optimization based on your application's needs.

G. Scheduling Start/Stop

Non-production databases, such as those used for development, testing, or staging, often don't need to be

operational 24/7. Implementing automated start/stop schedules can yield substantial cost savings. Using cloud

automation tools or features built into database services, you can define schedules to shut down DocumentDB

instances during off-hours, weekends, or other periods of inactivity. When they're needed again, the instances

can be automatically started.

This approach ensures you only pay for compute resources when those non-production databases are actively

used. The savings can be particularly significant for environments that have predictable usage patterns. Cloud

providers often offer built-in scheduling mechanisms or integrate with automation tools for convenient setup

and management of database start/stop schedules.

H. Data Compression

Data compression can be valuable in your NoSQL optimization toolkit, particularly for services like

DocumentDB.

Data compression algorithms reduce the storage space required for your documents. This has several benefits

for your DocumentDB costs. Firstly, storing more data within your allocated storage can delay costly upgrades.

Secondly, smaller document sizes translate into reduced network bandwidth consumption when data is

transferred into or out of your cluster. Compression techniques like Snappy, gzip, or LZ4 are commonly used

for document databases.

It's important to note that data compression/decompression does add some computational overhead, so there's a

trade-off to be considered. The decision to implement compression should depend on whether your workload is

storage-bound or CPU-bound. Compression is a worthwhile strategy if storage costs are a major concern or

network transfer costs are significant.

I. Monitoring and Alerts

Proactive monitoring and timely alerts are essential for managing DocumentDB costs and preventing

unexpected expenses.

CloudWatch (or equivalent tools on other cloud platforms) is your best ally for tracking important metrics

related to your DocumentDB usage. Monitor metrics like CPU utilization, storage consumption, network

traffic, and estimated charges. By establishing cost and usage thresholds, you can configure alerts that notify

you when these thresholds are approaching or exceeded. These alerts can be delivered via email, SMS, or

integrated with your incident management tools.

Proactive monitoring and alerts empower you to take corrective actions before costs spiral out of control. For

instance, a spike in I/O or near-full storage utilization might prompt you to optimize queries, adjust your

instance type, or implement data archiving. Effective monitoring gives you the insights and time to optimize

your DocumentDB deployment and prevent budget overruns.

4. Additional NoSQL Optimization Techniques

Some additional optimization techniques specifically geared towards NoSQL databases:

A. Connection Pooling: Establishing and closing database connections introduce overhead. Connection pooling

maintains a pool of open connections that your application can reuse. This eliminates the need to create new

connections, reducing latency and improving performance repeatedly. Connection pooling is especially

beneficial for applications requiring frequent, short-lived database requests.

Kanumuri VS Journal of Scientific and Engineering Research, 2021, 8(2):278-282

Journal of Scientific and Engineering Research

282

B. Bulk Operations: Group multiple operations (reads, writes, updates) into a single bulk request whenever

possible. Bulk operations reduce the number of round trips between your application and the database,

minimizing network overhead and improving overall efficiency. Many NoSQL database services have

optimized APIs for performing bulk actions.

C. Reducing Data Transfer Costs: Data transfer costs can increase, especially those involving movement

across regions or between your cloud environment and the public internet. To minimize these costs, keep your

DocumentDB cluster and the applications interacting with it within the same AWS region. For extra security or

if you have hybrid cloud architectures, explore using AWS PrivateLink to establish private connections between

your DocumentDB cluster and other AWS services.

D. AWS Savings Plans: Like relational databases, Savings Plans can help you reduce your overall AWS costs,

including those associated with NoSQL databases. If you have predictable DocumentDB usage patterns,

consider purchasing a Compute Savings Plan to save on costs in exchange for a one or three-year commitment.

5. Conclusion

Throughout our exploration of database cost optimization, we've seen that a few fundamental principles hold

true regardless of whether you're using SQL or NoSQL databases. Choosing the right instance types and storage

options that align with your workload is paramount. Proactive resource usage monitoring using tools like

CloudWatch empowers you to make informed adjustments before costs escalate. Techniques like utilizing

Reserved Instances (for SQL), implementing autoscaling (NoSQL), and optimizing queries are potent tools in

your cost-saving arsenal.

Remember, cloud environments offer incredible flexibility but shift your cost management responsibility.

Proactive monitoring, continuous optimization, and thoughtful application of the strategies we've discussed will

enable you to maximize the value of your database deployments while keeping infrastructure costs in check.

These principles will ensure better resource utilization, improved application performance, and a healthier

bottom line for your cloud-based projects.

References

[1]. D. Obasanjo, "Building scalable Databases: Denormalization, the NoSQL movement and Digg," 2009.

[Online]. Available:

http://www.25hoursaday.com/weblog/2009/09/10/BuildingScalableDatabasesDenormalizationTheNoSQL

MovementAndDigg.aspx.

[2]. S. Mukherjee, "The Battle between NoSQL Databases and RDBMS," University of the Cumberlands,

Williamsburg, KY, USA, 2019. [Online]. Available:

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3393986.

[3]. W. Lang, R. V. Nehme, E. Robinson, and J. F. Naughton, "Partial Results in Database Systems," in

Proceedings of the ACM SIGMOD International Conference on Management of Data (SIGMOD), 2014.

[Online]. Available: https://pages.cs.wisc.edu/~wlang/mod347-langAemb.pdf.

[4]. I. Trummer and C. Koch, "Approximation Schemes for Many-objective Query Optimization," in

Proceedings of the ACM SIGMOD International Conference on Management of Data (SIGMOD), 2014.

[Online]. Available: https://dl.acm.org/doi/abs/10.1145/2588555.2610527..

[5]. W. Lang, R. V. Nehme, and I. Rae, "Database Optimization for the Cloud: Where Costs, Partial Results,

and Consumer Choice Meet," Microsoft Gray Systems Lab, 2015. [Online]. Available:

https://www.cidrdb.org/cidr2015/Papers/CIDR15_Paper17.pdf.

http://www.25hoursaday.com/weblog/2009/09/10/BuildingScalableDatabasesDenormalizationTheNoSQLMovementAndDigg.aspx
http://www.25hoursaday.com/weblog/2009/09/10/BuildingScalableDatabasesDenormalizationTheNoSQLMovementAndDigg.aspx
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3393986
https://pages.cs.wisc.edu/~wlang/mod347-langAemb.pdf
https://dl.acm.org/doi/abs/10.1145/2588555.2610527
https://www.cidrdb.org/cidr2015/Papers/CIDR15_Paper17.pdf

