
Available online www.jsaer.com

Journal of Scientific and Engineering Research

233

Journal of Scientific and Engineering Research, 2021, 8(12):233-238

Research Article

ISSN: 2394-2630

CODEN(USA): JSERBR

Encryption and Decryption Strategies in Salesforce Apex

Raja Patnaik

Email id: raja.patnaik@gmail.com

Abstract This article provides a comprehensive guide on using the Crypto class to implement encryption and

decryption techniques within Salesforce applications. It outlines best practices for data security, emphasizing

robust encryption algorithms, secure key management, and data integrity verification. By exploring the use of

supported algorithms (AES128, AES192, AES256) and addressing the safe management of encryption keys via

Salesforce's secure storage options, the article equips developers with the necessary skills to safeguard sensitive

data effectively. Additionally, it discusses the importance of maintaining robust decryption processes, handling

initialization vectors correctly, and preparing for potential exceptions and Salesforce's encryption limits. The use

of detailed Salesforce Apex code examples gives developers practical insights into the application of these

security practices. Following the outlined principles ensures the development of secure and trustworthy

Salesforce applications, thereby enhancing overall data security in the cloud.

Keywords Apex Programming, Crypto Class, Salesforce Security, Data Encryption, Data Decryption, Cloud

Data Protection, Cryptography, Data Privacy

Introduction

Data security is paramount in today's technological landscape, especially for cloud-based platforms like

Salesforce. Salesforce ensures high security for sensitive data by providing developers with the Crypto class in

Apex. This class offers a range of encryption and decryption methods that can be seamlessly integrated into

Salesforce applications to safeguard data. Developers can implement robust security measures to protect

sensitive information stored in Salesforce by understanding cryptographic operations and leveraging the Crypto

class capabilities.

This article is designed to provide practical insights into using the Crypto class for data encryption and

decryption in Salesforce. We will investigate encryption techniques and share best practices to ensure the

highest data security standards. Furthermore, we will guide you on leveraging the Crypto class's full

functionality to enhance data privacy and integrity within the Salesforce environment.[2]

At the end of this guide, we will comprehensively understand how to use the Crypto class to secure sensitive

data effectively. This will contribute to a more secure and trustworthy Salesforce application.

Understanding Crypto Class in Salesforce

Salesforce's Apex programming language provides a powerful tool for developers to ensure data security: the

Crypto class. This class is part of the Apex framework that enables developers to perform complex encryption

and decryption operations, ensuring that sensitive data is handled securely within the Salesforce environment.

The Crypto class provides several methods for different cryptographic functions, including creating digests

(hashes), generating encryption keys, encrypting and decrypting data, and signing and verifying signatures.

These methods support various industry-standard algorithms such as AES, RSA, and SHA, allowing developers

to choose the appropriate level of security for their data.

Patnaik R Journal of Scientific and Engineering Research, 2021, 8(12):233-238

Journal of Scientific and Engineering Research

234

By utilizing these cryptographic functions, Apex developers can help maintain the confidentiality and integrity

of the data they manage. For instance, the Crypto class allows storing encrypted data in Salesforce, protecting it

from being read if accessed inappropriately. Additionally, it helps verify the authenticity of data through digital

signatures, ensuring that the data has not been tampered with during transit.

Understanding how to leverage the Crypto class is fundamental for developers who aim to create secure

Salesforce applications. Mastery of these crypto functions is critical to developing applications that maintain

trust and compliance, especially when dealing with personal data or information subject to regulatory

control.[2][3]

Apex Encryption and Decryption Essentials

In Salesforce, the protection of sensitive data is of utmost importance. Apex provides developers with

encryption and decryption capabilities through the Crypto class, enabling secure data management within

custom applications. Understanding the essentials of Apex cryptography is fundamental for maintaining data

confidentiality and integrity. Here are the key components:

[1]. Encryption Algorithms: Apex's Crypto class supports AES128, AES192, and AES256 algorithms,

which provide varying levels of security based on key size [5]

[2]. Key Generation: Developers can generate their keys or use the `Crypto.generateAESKey` method for

AES encryption keys. The choice and protection of encryption keys are crucial for security [4]

[3]. Encryption Functions: Data is encrypted using methods like `Crypto.Encrypt` with a specified

algorithm and key, converting plain text into a secure, unreadable format [4]

[4]. Decryption Functions: Corresponding decrypt methods, such as `Crypto.Decrypt`, are used to revert the

encrypted data to its original form, using the same key and algorithm that was used for encryption [4]

[5]. Managed Initialization Vectors: The method `Crypto.decryptWithManagedIV()` is recommended for

decryption, as it simplifies handling the initialization vector by managing it within the encrypted data .

[6]. Data Integrity: The `Crypto.generateDigest()` function helps create data hashes to verify the integrity

and ensure that data has not been altered during storage or transmission [4]

[7]. Base64 Encoding: When testing or transmitting encrypted data, blobs are often encoded in Base64,

allowing them to be represented as strings [5].

[8]. Storage of Secrets: To secure encryption keys, Salesforce recommends storing secrets in protected

custom metadata types or protected custom settings [4]

[9]. Dealing with Limitations: The size of data that can be encrypted is limited. Attempting to encrypt a too

large payload will result in an exception.

[10]. Security Exceptions: Proper error handling is critical. Developers should be familiar with Salesforce

security exceptions to manage potential errors during cryptographic operations

Apex developers must address these essentials to effectively leverage encryption and decryption in their

Salesforce applications, ensuring that data is transmitted and stored securely while complying with industry best

practices and regulations.

Using the Crypto Class for Data Security in Salesforce

Leveraging the Crypto class in Salesforce allows developers to build a security layer that protects sensitive data

by implementing robust encryption and decryption mechanisms. This class is essential for creating secure

applications in the Salesforce environment and adhering to best practices in data security. Here is an overview

of how to use the Crypto class for securing data:

A. Encrypting Data

To safeguard data at rest or in transit, Apex developers can utilize the Crypto class to encrypt information, thus

making it unreadable without the proper decryption key. Encryption involves converting plain text into

ciphertext using a specific algorithm and key, and it’s crucial for protecting data from unauthorized users.

Encryption is limited to data sizes of 1MB or less. Attempting to encrypt more extensive data will result in an

exception being thrown

Patnaik R Journal of Scientific and Engineering Research, 2021, 8(12):233-238

Journal of Scientific and Engineering Research

235

B. Decryption Process

Decryption reverses the encryption process, turning the ciphertext back into its original plaintext form. It is

executed using the same algorithm and key that were employed to encrypt the data. Protecting the decryption

key is critical to preventing unauthorized access to the decrypted data.

C. Ensuring Data Integrity

The `Crypto.generateDigest` method helps verify that the data has not been changed or tampered with. This

method generates a hash value of the original data, which you can compare against the hash value of received

data to ensure integrity.

D. Key and Initialization Vector Management

Securing the encryption key is a pivotal aspect of data security. Within Salesforce, storing these keys in

protected custom metadata types or custom settings is advisable to prevent exposure. When using algorithms

that require an IV, managed methods such as Crypto.decryptWithManagedIV` simplifies the process by

handling the IV internally.

E. Compliance with Limits and Handling Exceptions

Being aware of the limitations on the size of data that can be encrypted is essential to prevent exceptions. Also,

proper exception handling allows for a graceful response to any errors or issues that may arise during encryption

or decryption.

In conclusion, the Crypto class in Salesforce is a powerful tool for developers to protect sensitive data.

Developers can enforce data security policies effectively, thereby preserving the confidentiality, integrity, and

availability of data in their Salesforce applications.

Best Practices for Encrypting Data in Salesforce

Encrypting data within Salesforce is critical to secure sensitive information from unauthorized access or

exposure. Implementing encryption should follow best practices to ensure data is protected effectively

throughout its lifecycle. Here are some essential best practices for encrypting data in Salesforce:

[1]. Choose the Right Encryption Algorithm: Salesforce supports various encryption algorithms, such as

AES128, AES192, and AES256. Select an algorithm that balances security with performance based on

the sensitivity of the data.

[2]. Secure Key Management: Encryption keys must be stored securely and managed adequately. To

prevent unauthorized access, use Salesforce's recommended practices, such as storing keys in protected

custom metadata types or protected custom settings.

[3]. Minimize Key Exposure: To maintain security, limit the exposure of your encryption keys by using

indirect references to them rather than hardcoding them into your code. Refresh your keys regularly.

[4]. Understand Field Level Encryption: Shield Platform Encryption in Salesforce allows you to encrypt

standard and custom fields, files, and attachments. Understand the limitations and how encrypting fields

can affect other features, such as search functionality.

[5]. Implement Key Rotation: Periodically rotate your encryption keys to mitigate the risk of key

compromise. Ensure the data is re-encrypted with the new key as part of the rotation process [7]

[6]. Use Managed Initialization Vectors: When using block cipher modes that require an IV, utilize

Salesforce's methods like `Crypto. Decrypt With Managed IV` for handling the IV within the encrypted

data, as this promotes better security practices.

[7]. Limit Data Payload Size: Ensure that the encrypted data size conforms to Salesforce's limits.

Encrypting data that exceed these limits will cause exceptions.

[8]. Proper Exception Handling: Have a robust error-handling strategy to manage exceptions during

encryption and decryption processes Handle these gracefully to maintain a smooth user experience and

application stability.

[9]. Regular Security Audits: Review your encryption implementations for any potential weaknesses or new

vulnerabilities. Stay abreast of Salesforce updates that may affect encryption and decryption.

Patnaik R Journal of Scientific and Engineering Research, 2021, 8(12):233-238

Journal of Scientific and Engineering Research

236

Following these best practices will help Salesforce developers encrypt data effectively, promoting a secure

environment that protects against data breaches while complying with data protection regulations.[7]

OWASP (Open Web Application Security Project) Report

The Open Web Application Security Project (OWASP) is a non-profit organization that strives to improve the

security of software applications. It is famous for providing reliable resources on web application security. The

community drives OWASP's work and offers educational tools, resources, and events widely recognized in the

industry.[10]

Figure 1: List of Vulnerabilities in OWASP 2021[11]

From the list of vulnerabilities, the Cryptographic Failures category pertains to failures from the inadequate

implementation of cryptographic mechanisms, leading to the exposure of sensitive data. This is particularly

relevant in integrations, where data is transmitted from one system to another. Fortunately, the Salesforce

Platform and Apex have cryptographic utilities and algorithms that ensure secure data transmission without

compromise.

Salesforce has a Crypto. Decrypt With Managed IV, which can be used along with the initialization vector to

make encrypted data more secure.

The diagram below illustrates the usage of the IV in CBC mode.

Figure 2: Cipher Block Chaining (CBS) Mode Encryption [13]

Figure 3: Cipher Block Chaining (CBS) Mode Decryption [13]

Following these principles for encryption and decryption in Apex helps developers build more secure Salesforce

applications, safeguard user data against unauthorized access, and comply with privacy regulations. Data

security in the cloud is an ongoing process that requires diligence and a proactive approach to employing the

best cryptographic techniques available in the Salesforce environment.[1][9]

Patnaik R Journal of Scientific and Engineering Research, 2021, 8(12):233-238

Journal of Scientific and Engineering Research

237

Figure 4: Encryption and Decryption with AES256

The sample code generates an AES256 encryption key to encrypt a string. The encrypted data is then converted

to a base64 string for easy storage or transport.

The decryption function requires the encrypted string and the original encryption key. The encrypted string is

first converted into a 'Blob' before decryption.

The 'key' used for encryption and decryption should be securely stored and passed to the respective methods for

proper execution. In the given code, the 'encrypting' method encrypts the precise text data using the AES256

algorithm and a provided encryption key. This ensures the initialization vector is managed along with the

encrypted data, making it more secure.

The 'decryptString' method takes the base64-encoded encrypted string and the encryption key as parameters. It

then decodes the base64 string into a 'Blob' and uses the 'Crypto.decryptWithManagedIV()' method to decrypt

the data using the AES256 algorithm and the provided key.

Conclusion

In summary, encryption and decryption in Apex on Salesforce are critical for protecting sensitive data

throughout its lifecycle in the cloud. As developers, you play a crucial role in this process. By leveraging the

Apex Crypto class, you can implement the necessary cryptographic techniques to ensure data confidentiality and

integrity, thereby empowering you to contribute significantly to data security.

Here's the conclusion for the topic of encryption and decryption techniques in Apex:

[1]. Utilize Strong Encryption: Based on the security requirements, choose from supported algorithms like

AES128, AES192, and AES256.

[2]. Maintain Secure Key Practices: Generate encryption keys securely and manage them properly through

protected custom metadata types or settings.

[3]. Ensure Proper Decryption: Decrypt data responsibly using corresponding cryptographic keys and

maintain a system for secure key retrieval.

[4]. Manage Initialization Vectors: Use Salesforce's managed methods, such as

Crypto.decryptWithManagedIV, to handle initialization vectors correctly.

[5]. Check Data Integrity: Utilize methods like Crypto.generateDigest() to verify the integrity of your data

and prevent tampering.

[6]. Handle Exceptions and Limitations: Be aware of and prepared to handle any exceptions that arise,

understanding Salesforce's limits on data that can be encrypted.

It's essential to stay updated and Educated: Keeping abreast of best practices and Salesforce updates and

continuing to educate yourself on secure coding practices in Apex is not just a task but a responsibility that you

shoulder to ensure the highest level of data security in your applications.

References

[1]. "Salesforce Security Best Practices". 2020

[2]. "Use Encryption in Custom Applications". 2020

Patnaik R Journal of Scientific and Engineering Research, 2021, 8(12):233-238

Journal of Scientific and Engineering Research

238

[3]. "Cryptography concepts". 2021

[4]. "Use Encryption in Custom Applications | Salesforce Trailhead". 2020

[5]. “Salesforce Developer - https://developer.salesforce.com/docs/atlas.en-us.apexref.meta/apexref/apex_

classes_restful_crypto.htm” 2020

[6]. "Keep sensitive data protected and leverage flexible key management". 2021

[7]. "Salesforce Shield Platform Encryption Implementation Guide". 2019

[8]. A. Arnaud, "Credentials encryption in Apex - Salesforce Stack Exchange". 2015

[9]. “Encryption and Signature Techniques in Apex” 2021

[10]. “OWASP (Open Web Application Security Project)” 2021

[11]. “Wikipedia CBS Encryption, Decryption” 2006

https://developer.salesforce.com/docs/atlas.en-us.apexref.meta/apexref/apex_classes_restful_crypto.htm
https://developer.salesforce.com/docs/atlas.en-us.apexref.meta/apexref/apex_classes_restful_crypto.htm

