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Abstract The transitions in Markov chain are assumed to occur instantaneously and the future evolution of the 

system depends only on its current state and not on its past history, then the system may be represented by a 

Markov process. Even when the system does not possess this Markov property explicitly, it is often possible to 

construct a corresponding implicit representation. In this study, the irreducible Markov chain where all states are 

positive recurrent, null recurrent and transient are investigated, in order to provide an insight into the 

performance measures in irreducible aperiodic Markov chains, irreducible Ergodic Markov chains and 

irreducible periodic Markov chain. The matrix operations and laws are use with the help of some existing 

equations and formulas in Markov Chain. The Equations for performance measures are derived and 

demonstrated with the help of illustrative examples, and the following results are obtained for illustrative 

example 1, the mean number of sunny days per week is        ,  the average number of rainy days is        , 

the average number of transitions from one sunny day to the next sunny day  is                 , the average 

number of days between two sunny days is 13.55, the mean number of rainy days between two sunny days is 

      while the mean number of cloudy days between two sunny days is     . Likewise, for other two 

illustrative examples. 

 

Keywords Aperiodic, ergodic, irreducibility, null recurrent, positive recurrent, cyclic classes 

Introduction  

The irreducibility of a Markov chain can be enunciated in terms of the reachability of the states. State j is said to 

be reachable or accessible from state   if there exists a path from state   to state  . We write this as      . A 

discrete-time Markov chain is irreducible if every state is reachable from every other state, i.e., if there exists an 

integer  for which    
   , for every pair of states  and j. Romanovsky [1] introduced the application and 

simulation of a discrete Markov Chains and this was extended to the introduction of Numerical Solutions of 

Markov Chains by Stewart [2, 3], while the suitability of the Markov chain approach is demonstrated in the 

wind feed in Germany by Pesch et al. [4].  Uzun and Kiral [5] carried out the study to predict the direction of the 

gold price movement, and to determine the probabilistic transition matrix of the closing returns of gold prices, 

using the Markov chain model of fuzzy state, while the application of Markov chain using a data mining 

approach to get a prediction of the monthly rainfall data is shown by Aziza et al. [6]. The application of Markov 

chain on the spread of disease infection which shown that Hepatitis B was more infectious overtime than 

tuberculosis and HIV is demonstrated by Clemence [7], while the application of Markov chain to Journalism is 

demonstrated by Vermeer and Trilling [8], but in this study, the performance measure analysis on the 

irreducibility in Markov chain states classification are analysed, for Markov chains with different classes of 

states, and these are demonstrated with illustrative examples. 
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Notation 

   the set of all states in a Markov chain 

                 the subsets of states that partition   

   
   

  Conditional Probability that on leaving state j the first return to state j occurs n steps later 

   mean recurrence time  

     Probability of moving from state   to state   

   
   

  that the Markov chain is once again in state  ,  time steps after leaving it  

     the average time spent by the Markov chain in state  at steady state between two successive 

visits to state   

        the average time spent by the chain in state j in a fixed period of time τ at steady state 

   the stationary probability distribution 

    the proportion of time that the process spends in state  

 

Materials and Methods 

In the study of classifications concerning groups of states. Let   be the set of all states in a Markov chain, and 

let                  be subsets of states that partition  . The subset of states    is said to be closed if no one-step 

transition is possible from any state in    to any state in   . This is illustrated in Figure 1 where the subset 

consisting of states {1, 2, 3} is closed. The subset containing states 4 through 6 is not closed. Also, the set that 

contains all six states is closed. More generally, any nonempty subset    of  is said to be closed if no state in 

  leads to any state outside    (in any number of steps), i.e., 

   
      for                               (1) 

 
Figure 1:    is a close subset of States   

If the closed subset    consists of a single state, then that state is an absorbing state. While a set of states that is 

not closed is said to be open. It is apparent that any finite set of transient states must constitute an open set. Any 

individual state that is not an absorbing state constitutes by itself, an open set. If the set of all states  is closed 

and does not contain any proper subset that is closed, then the Markov chain is said to be irreducible. On the 

other hand, if   contains proper subsets that are closed, the chain is said to be reducible. A closed subset of 

states is said to be an irreducible subset if it contains no proper subset that is closed. In Figure 1, the subset 

consisting of states 1, 2, and 3 is the unique irreducible subset of this Markov chain. In this example, no other 

subset of states constitutes an irreducible subset. Any proper subset of an irreducible subset constitutes a set of 

states that is open. The matrix of transition probabilities of the Markov chain in Figure 1 as shown in Figure 2 

has the following nonzero structure. 

  

 

  
 

      
      
 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

  
  
 
 

 
  

  
 
  

      
      

  

Figure 2: Transition Probabilities Matrix for Group of States Classification I 
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In this matrix, the symbol  represents a nonzero probability corresponding to a transition of the Markov chain. 

The matrix has been decomposed according to the partition                 into two diagonal blocks     and 

   , and two off-diagonal blocks,     and    , all of size      . Observe that the upper off-diagonal block     

is identically equal to zero. This means that notransition is possible from any state represented by diagonal block 

    to any state representedby diagonal block    . On the other hand, the lower off-diagonal block     does 

contain nonzero elements signifying that transitions do occur from the states of     to the states of    . If state 

 is reachable from state           and state   is reachable from state             then states   and   are said to be 

communicating states and we write      . By its very nature, this communication property is symmetric, 

transitive, and reflexive and thus constitutes an equivalence relationship. We have, for any states      and  , 

                

                          

                         

To prove the above communication properties: for       implies that      and thus there exists an     for 

which      
    .  Likewise for      there exists an     for which      

    . 

Set        

Then, from the Chapman-Kolmogorov equation, we have 

   
      

       
    

         
       

              (2) 

Let the set of all states that communicate with state  forms a class and is denoted by      . 

If state   is recurrent, there exists an integer     such that 

   
             

     
    

          (3) 

Since state  is recurrent,     
    

   , likewise for recurrent state j,     
    

     

Since 

    
     

    
       

     
   

       
    

         (4) 

Thus recurrent states can only reach other recurrent states: no transient state can be reached from are current 

state and the set of recurrent states must be closed. If state   is a recurrent state, then      is an irreducible closed 

set and contains only recurrent states and all these states must be positive recurrent or they all must be null 

recurrent. 

 

Results 

Irreducible Markov Chains that are Null Recurrent or Transient 

Consider the infinite (denumerable) Markov chain with probability transition matrix in random walk as given in 

Figure 3 below 

  

 

 
 

    
     
 
 
 

 
 
 

    

   
     

 
 

 

Figure 3: State transition probability matrix for a random walk on the integers 

where   is a positive probability and       . Observe that every time the Markov chain reachesstate 0, it 

must leave it again at the next time step. State 0 is said to constitute a reflecting barrier. Since every state can 

reach every other state, the Markov chain is irreducible and hence all the states are positive recurrent or all the 

states are null recurrent or all the states are transient. When    , we obtained an irreducible, null-recurrent 

Markov chain and when    , we obtained an irreducible, transient Markov chain. Recall that  is the 

probability of moving from any state     to state    ,  is the probability of movingfrom any state     to 

   . In such Markov chains, there is no stationary probability vector.The only solution to the system of 

equations     is the vector whose components are all equal to zero. Furthermore, if a limiting distribution 

exists, its components must all be equal to zero. 
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Irreducible Markov Chains that are Positive Recurrent 

An example of an irreducible, positive-recurrent Markov chain is the same random walk problem but this time 

with    . In an irreducible, positive-recurrent Markov chain, the system of equations      has a unique and 

strictly positive solution. This solution is the stationary probabilitydistribution π, and its elements are given by 

   
 

   
              (5) 

where     is the mean recurrence time of state   (which, for a positive-recurrent state, is finite). 

Equation (5) is readily verified by multiplying both sides of known matrix Equation of mean recurrence time  

                        (6) 

 by the vector  andobserving that      We get 

                                                    (7) 

and thus 

           .           (8) 

Conversely, the states of an irreducible Markov chain which has a unique stationary probability vector, are 

positive recurrent. An irreducible, positive-recurrent Markov chain does not necessarily have a limiting 

probability distribution. This is the case when the Markov chain is periodic as the following example shows. 

Illustrative Example 1: Consider the four-state irreducible, positive-recurrent Markov chain whose transition 

probability matrix is 

   

    
    
 
 

 
 

 
 

 
 

   

It may readily be verified that the vector                       is the unique stationary distribution ofthis 

Markov chain, but that no matter which starting state is chosen, there is no limiting distribution.This Markov 

chain is periodic with period 4 which means that if it is in state 1 at time step  it willmove to state 2 at time step 

     , to state 3 at time step      , to state 4 at time step      , andback to state 1 at time step      . It 

will alternate forever in this fashion and will never settle into alimiting distribution. As illustrated bellow  

 

    
    
 
 

 
 

 
 

 
 

   

    
    
 
 

 
 

 
 

 
 

   

    
    
 
 

 
 

 
 

 
 

   

    
    
 
 

 
 

 
 

 
 

    

i.e.,  

    ,     ,            ,          ,          ,   

Then        
  does not exist and P does not have a limiting distribution. In this case, successive powers of P 

alternate. Therefore, the existence of a unique stationary distribution of a Markov chain does not necessarily 

mean that the Markov chain has a limiting distribution. 

 

Irreducible, Aperiodic Markov Chains 

An example of an irreducible and aperiodic Markov chain is the semi-infinite random walk problem with a 

Bernoulli barrier. From state 0, rather than moving to state 1 with probability 1, the Markov chain remains in 

state 0 with probability  or moves to state 1 with probability  . Thisintroduces a self-loop on state 0 and 

destroys the periodicity property of the original chain. The three previous characteristics of the states, transient, 

null recurrent, and positive recurrent, remain in effect according to whether    ,    , or     , 

respectively. In an irreducible and aperiodic Markov chain, the limiting distribution always exists and is 

independent of the initial probability distribution. Moreover, exactly one of the following conditions must hold: 

1. All states are transient or all states are null recurrent, in which case      for all  , and there exists no 

stationary distribution (even though the limiting distribution exists). The state space in this case must be infinite. 

2. All states are positive recurrent (which, together with the aperiodicity property, makes themergodic), in which 

case     , for all j , and the probabilities   constitute a stationarydistribution. The    are uniquely determined 

by means of 

                and        .       (9) 
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In matrix terminology, this is written as 

    ,  and         

When the Markov chain is irreducible and contains only a finite number of states, then these states are all 

positive recurrent and there exists a unique stationary distribution. If the Markov chain is also aperiodic, the 

aperiodicity property allows us to assert that this stationary distribution is also the unique steady-state 

distribution. The states of an irreducible, finite, and aperiodic Markov chain are ergodic as is the Markov chain 

itself. 

 

Irreducible, Ergodic Markov Chains 

In an ergodic discrete-time Markov chain all the states are positive recurrent and aperiodic. This, together with 

the irreducibility property, implies that in such a Markov chain the probability distribution     , as a function of 

 , always converges to a limiting distribution  ,which is independent of the initial state distribution. This 

limiting (steady-state) distribution is alsothe unique stationary distribution of the Markov chain. It follows from 

Equation of the probability that the Markov chain is in state  at step   given by  

          
 

                             (10) 

Which in matrix form  

                    (11) 

where      denotes the initial state distribution and         since we assume the chain to behomogeneous. 

The probability distribution     is called a transient distribution, since it gives the probability of being in the 

various states of the Markov chain at a particular instant in time, i.e., at step  . As the Markov chain evolves 

onto step      , the distribution at time step  is discarded,hence it is only transient.Suchthat   

            
 

                 (12) 

and taking the limit as n→∞of both sides gives 

       
 

                                  (13) 

Thus, the equilibrium probabilities may be uniquely obtained by solving the matrix equation 

      with       and           

It may be shown that, as n → ∞, the rows of the n-step transition matrix   all becomeidentical to the vector of 

stationary probabilities. Letting    
 denote the     element of   , we have 

            
     for all             

i.e., the stationary distribution is replicated on each row of   in the limit as n→∞. This property may be 

observed in the example of the Markov chain given below:  

Illustrative Example 2: Consider a homogeneous, discrete-time Markov chain that describes the daily weather 

pattern in Calabar South South Nigeria (well known for its prolonged periods of rainy days). We simplify the 

situation by considering only three types of weather pattern: rainy, cloudy, and sunny. These three weather 

conditions describe the three states of our Markov chain: state 1 (R) represents a (mostly) rainy day; state 2 (C), 

a (mostly) cloudy day; and state 3 (S), a (mostly) sunny day. The weather is observed daily. On any given rainy 

day, the probability that it will rain the next day is estimated at 0.8; the probability that the next day will be 

cloudy is 0.15, while the probability that tomorrow will be sunny is only 0.05. Similarly, probabilities may be 

assigned when a particular day is cloudy or sunny as shown in Tables 1 -3 and Figure 1 below.  

 
Figure 3: Transition diagram for weather pattern at Calabar, South South, Nigeria 
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Figure 4: Transition probability for weather pattern at Calabar, Nigeria 

    
           
         
         

   
           
         
         

   
               
               
               

  

        

   
   

    
                    
                    
                    

  

The matrix consists of rows that are all identical and equal to the                         

The following are some performance measurements often deduced from the steady-state probability vector of 

irreducible, ergodic Markov chains. 

•      , the average time spent by the chain in state j in a fixed period of time τ at steady state, is equal to the 

product of the steady-state probability of state j and the duration of the observation period: 

             

The steady-state probability   itself may be interpreted as the proportion of time that theprocess spends in state , 

averaged over the long run. Returning to the weather example, themean number of sunny days per week is only 

       , while the average number of rainydays is        . 

•     is the average number of steps between successive visits to state  . For example, the average number of 

transitions from one sunny day to the next sunny day in the weather example is                 . Hence the 

average number of days between two sunny days is13.55. 

•    is the average time spent by the Markov chain in state  at steady state between two successive visits to 

state .It is equal to the ratio of the steady-state probabilities of states and  : 

    
  

  
          (14) 

The quantity    is called the visit ratio, since it indicates the average number of visits to state between two 

successive visits to state  . In our example, the mean number of rainy daysbetween two sunny days is       

while the mean number of cloudy days between two sunny days is     . 

 

Irreducible, Periodic Markov Chains 

We now investigate the effects that periodicity introduces when we seek limiting distributions and higher 

powers of the single-step transition matrix. In an irreducible discrete-time Markov chain, when the number of 

single-step transitions required on leaving any state to return to that same state(by any path) is a multiple of 

some integer   , the Markov chain is said to be periodic of period , or cyclic of index  . One of the 

fundamental properties of such a Markov chain, is that it ispossible by a permutation of its rows and columns to 

transform it to the form, called the normal form, 

  

 

 
 

       
       
 
 
   

 
 
 

 
 
 

 
 
 

 
      
  

 
 

       (15) 

in which the diagonal submatrices    are square and the only nonzero submatrices are         ,    .  This 

corresponds to a partitioning of the states of the system into  distinctsubsets and an ordering imposed on the 

subsets. These subsets are referred to as the cyclic classes of the Markov chain. The imposed ordering is such 

that once the system is in a state of subset   itmust exit this subset in the next time step and enter a state of 

subset  

                    (16) 

Illustrative Example 3: Consider the Markov chain whose transition diagram is given in Figure below, in 

which the states have been ordered according to their cyclic classes. 
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Figure 5: Cyclic Markov Chain 

Its transition matrix is given by 

  

 

 
 
 
 
 
 
 

 

      

 

  
 
  

 

  
 
  

  
  

  
  

 

 
 
 
 
 
 
 

 

Transition Probability of Cyclic Markov Chain 

Evidently, this Markov chain has periodicity    . There are four cyclic classes    through    

given by 

                                                              

On leaving any state of class               , the Markov chain can only go to states of class              

in the next time step and therefore it can only return to a starting state after four, or somemultiple of four, 

steps.Our interest in periodic Markov chains such as this is in determining its behavior at time step n in the limit 

as n → ∞. Specifically, we wish to investigate the behavior of    as    , the existence or nonexistence of a 

limiting probability distribution and the existence or nonexistence ofa stationary distribution. We begin by 

examining the case when the Markov chain possesses four cyclic classes, i.e., the case of Equation (15) with p = 

4. We have 

   

      
      
 
   

 
 

 
 

   
   

        (16) 

and taking successive powers, we obtain 
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Illustrative Example 4: Consider the Markov chain of Example 3. We find that   = 

  

 

 
 
 
 
 
 
 

        

        

    
    
     

    
    
     

    
    
    

     
     

     
     

    
     
     

    
     
     

    
     
      

 
 
 
 
 
 
 

 

   
   

    

 

 
 
 
 
 
 
 

            

            

      
      
      

      
      
      

      
      
      

      
      

      
      

      
      
      

      
      
      

      
      
       

 
 
 
 
 
 
 

 

 

Discussion 

In illustrative Example 2, The matrix consists of rows that are all identical and equal to the 

                          and the mean number of sunny days per week is       , while the 

average number of rainydays is        . Also, the average number of transitions from one sunny day to the 

next sunny day is                 . Hence the average number of days between two sunny days is 13.55 and 

the mean number of rainy days between two sunny days is       while the mean number of cloudy days 

between two sunny days is     . In Illustrative Example 3, these successive powers show that, beginning in one 

of the states of   , a state of    may bereached in one step, at least two steps are needed to reach a state of   , 

and a minimum of threesteps to reach a state of   . After four steps, the Markov chain is back in a state of   . 

Thus, afterfour steps, the transition matrix is block diagonal, and each block is a stochastic matrix. It 

followsthen that at any time step 4              , the transition matrix has this block structure and eachblock 

represents the transition probability matrix of an irreducible, recurrent and aperiodic Markovchain; aperiodic 

since a single-step in the new chain corresponds to four steps in the original chain. This means that we may now 

apply the previously discussed theory on irreducible, recurrent and aperiodic Markov chains to each of the 

blocks. In particular, each has a limit as    . It follows that        
   exists. In illustrative Example 4, 

each diagonal block is treated as the transition probability matrix of a finite, aperiodic, irreducible Markov chain 

whose limiting distribution is then equal to its stationary distribution. This stationary distribution may be 

computed for each of the four blocks separately and, in the limit as    , each block row must become equal 

to this distribution. Now observe that concatenating the fourstationary distributions together yields a vector  for 

which     . We have 

                                                                           , 

which when normalized becomes the stationary distribution of the original Markov chain: 

                                                                         

Notice that this assumes (correctly) that the Markov chain spends equal amounts of time in all periodic classes. 

Since an irreducible, positive-recurrent Markov chain has a unique and strictly positive stationary distribution, it 

follows that this computed solution is the only possible solution. 
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Conclusion 

The irreducible Markov chain where all states are positive recurrent, null recurrent and transient are 

investigated, in order to provide an insight into the performance measures in irreducible, aperiodic Markov 

chains, irreducible, Ergodic Markov chains and irreducible, periodic Markov chain. The matrix operations and 

laws are use with the help of some existing equations and formulas in Markov Chain. The Equations for 

performance measures are derived and demonstrated with the help of illustrative examples. 
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