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Abstract In 1970, Cesàro Sequence Spaces was introduced by Shiue.  In 1981, Kızmaz defined difference 

sequence spaces for ℓ∞, c0 and c. Then, in 1983, Orhan introduced Cesàro Difference Sequence Spaces. In this 

study, first we discuss the fixed point property for these spaces. Then, we recall some important fixed point 

theory oriented results on Lebesgue space 𝐿1[0,1] . Firstly, we discuss Alspach’s study showing the first 

example of a Banach space failing weak fixed point property and next we talk about earlier works of Dowling, 

Lennard and Turett from 2003 and 2007 where they show the existance of fixed point free contractions on some 

weak compact subsets of 𝐿1[0,1]. Furthermore, we recall such many examples in the literature for 𝐿1[0,1]. So 

we wonder analogs of these studies on the corresponding function space for a Köthe-Toeplitz Dual of a Cesàro 

Difference Sequence Space after talking about a recent study of Nezir and Mustafa where they show that the 

corresponding function space fails the weak fixed point property and there exist many examples of fixed point 

free contractive mappings on some weakly compact subsets of these spaces. Then, we consider extending their 

study with some examples. Next we consider another Lebesgue-like Banach space contained in 𝐿1[0,1]. We 

show that the Banach space we consider fails the weak fixed point property for nonexpansive mappings. In fact 

we find a weakly compact convex subset and fixed point free contractive mappings on it. 

 

Keywords Fixed point property, Asymptotically noexpansive mapping, Cesàro Difference Sequences, Köthe-

Toeplitz Dual 
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1. Introduction and preliminaries 

We say that a Banach space (𝑋, ‖. ‖) has the fixed point property for non-expansive mappings if every non-

expansive self mappings defined on any non-empty closed, bounded and convex subset of the Banach space has 

a fixed point. Here we note that if 𝐶 is a subset of the Banach space, then T: C → C is said to be a  nonexpansive 

mapping if ∥ T(x) − T(y) ∥≤∥ x − y ∥, for  all  x, y ∈ C. Moreover, we say that a Banach space (𝑋, ‖. ‖) has the 

weak fixed point property for non-expansive mappings if every non-expansive self mappings defined on any 

non-empty weakly compact and convex subset of 𝑋 has a fixed point. Researches showed that most classical 

non-reflexive Banach spaces fail the fixed point property while they were satisfying the weak fixed point 

property. For a long time, it was thought that Banach spaces could have the weak fixed point property for non-

expansive mappings; however, Alspach [1] showed that 𝐿1[0,1], Banach space of Lebesgue integrable functions 

defined on [0,1], fails the fixed point property for non-expansive mappings. He provided the first example of a 

fixed point free map on a weakly compact, convex set. It is clear that if a Banach space fails to have the weak 

fixed point property then it fails to have the fixed point property. Hence, Alspach’s result immediately implied 

the failure of the fixed point property for non-expansive mappings in 𝐿1[0,1]. 
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Alspach usedBaker’s transformation for his example in 𝐿1[0,1]. His construction is given as in the following. 

Define𝐶: = {𝑓 ∈ 𝐿1[0,1]  ∶   0 ≤ 𝑓 ≤ 1, 𝑡 ∈ [0,1]} and consider the nonexpansive mapping   

 𝑇𝑓(𝑡) = {
min{2𝑓(2𝑡),1}   if  0 ≤ 𝑡 <

1

2

max{2𝑓(2𝑡 − 1) − 1,0}   if  
1

2
≤ 𝑡 < 1.

 (1.1) 

Then, set 𝐶1

2
: = {𝑓 ∈ 𝐶 ∶   ∫

1

0
𝑓𝑑𝑚 =

1

2
} where 𝑚 is Lebesque measure. So he shows that 𝑇 is a fixed point free 

isometry on 𝐶1

2
. 

Later, different examples like his by some researchers have been given such as [8, 9] by Dowling, Lennard and 

Turett, [18] by Llorens-Fuster and Sims, and [24] by Sine. 

For example, using the similar set to Alspach’s,Sine constructed a composite isometry given by 𝑆𝑓 = 𝜒[0,1] −

𝑇𝑓, ∀𝑓 ∈ 𝐶1

2
. 

On the other hand, Dowling, Lennard and Turett’s study [8] showed that there exists a fixed point free isometry 

on 𝐶1

2
 as in the following: 

Let 

 Δ𝑓(𝑡): = {
𝑓(2𝑡)   if  0 ≤ 𝑡 <

1

2

1 − 𝑓(2𝑡 − 1)   if  
1

2
≤ 𝑡 < 1.

                                       (1.2) 

Then, they showed that 𝑇Δ: 𝐶1

2
→ 𝐶1

2
 is an isometry such that it does not have any fixed point. 

So all the examples we mentioned above are isometries. As we recall from the famous Banach Contraction 

Principle that contractions defined on complete metric spaces or closed subsets of those have fixed points. Then, 

researchers wondered if there exist fixed point free contractions defined on weaklycompact sets. Note that if a 

map 𝑓: 𝐷 → 𝐷satisfies the condition ∥ 𝑓𝑥 − 𝑓𝑦 ∥<∥ 𝑥 − 𝑦 ∥ for all 𝑥, 𝑦 ∈ 𝐷, then we call it a contraction.  

The first example of a fixed point free such map on a weakly compact convex set was introduced in [2]. Later, 

Casini, Miglierina, and Piasecki in [4] provided the second example. There are more examples found in Sivek’s 

Ph.D. thesis [25] written under supervision of Chris Lennard. 

In this study, firstly we provide and introduction to a recent study of Nezir and Mustafa [20] where they show 

that the corresponding function space fails the weak fixed point property and there exist many examples of fixed 

point free contractive mappings on some weakly compact subsets of these spaces. Then, we give more 

examples. 

Next we consider another Lebesgue-like Banach space contained in 𝐿1[0,1]. We show that it  does not have 

weak fixed point property and in fact there exist a weakly compact subset and invariant fixed point free 

contractive mappings defined on it. 

Now, we recall that the Cesàro sequence spaces  

ces𝑝 = {𝑥 = (𝑥𝑛)𝑛 ⊂ ℝ| (∑ (
1

𝑛
∑ |𝑥𝑘|𝑛

𝑘=1 )
𝑝

∞
𝑛=1 )

1
𝑝⁄

< ∞} 

and  

ces∞ = {𝑥 = (𝑥𝑛)𝑛 ⊂ ℝ| sup
𝑛

1

𝑛
∑ |𝑥𝑘|𝑛

𝑘=1 < ∞} 

were introduced by Shiue [23] in 1970, where 1 ≤ 𝑝 < ∞.It has been shown that ℓ𝑝 ⊂ ces𝑝for 1 < 𝑝 ≤ ∞. 

Moreover, it has been shown that Cesàro sequence spaces ces𝑝for 1 < 𝑝 < ∞  are seperable reflexive Banach 

spaces. Furthermore, it was also proved by Cui and Hudzik [5], Cui, Hudzik and Li [6] and Cui, Meng and 

Pluciennik [7] that Cesàro sequence spaces ces𝑝 for 1 < 𝑝 < ∞ have the fixed point property. They prove this 

result using different methods. One method is to calculate Garcia-Falset coefficient. It is known that if Garcia-

Falset coefficient is less than 2 for a Banach space, then the space has the fixed point property for nonexpansive 

mappings [14]. Using this fact, since they calculate this coeeficient for ces𝑝 as 21/𝑝 similary to what it is for ℓ𝑝, 

they point the result for the Cesàro sequence spaces. Another fact is that they see that the space has normal 

structure for 1 < 𝑝 < ∞. Then using the fact via Kirk [15] that reflexive Banach spaces with normal structure 
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has the fixed point property, they easily deduce that the space has the fixed point property for 1 < 𝑝 < ∞. Their 

results on Cesàro sequence spaces as a survey can be seen in [4].   

Later, in 1981, Kızmaz [14] introduced difference sequence spaces for ℓ∞, c and c0 where they are the Banach 

spaces of bounded, convergent and null sequences 𝑥 = (𝑥𝑛)𝑛, respectively. As it is seen below, his definitions 

for these spaces were given using difference operator applied to the sequence 𝑥, △ 𝑥 = (𝑥𝑘 − 𝑥𝑘+1)𝑘. 

ℓ∞(△) = {𝑥 = (𝑥𝑛)𝑛 ⊂ ℝ| △ 𝑥 ∈ ℓ∞}, 

c(△) = {𝑥 = (𝑥𝑛)𝑛 ⊂ ℝ| △ 𝑥 ∈ c}, 

c0(△) = {𝑥 = (𝑥𝑛)𝑛 ⊂ ℝ| △ 𝑥 ∈ c0}. 

Kızmaz investigated Köthe-Toeplitz Duals and some properties of these spaces. 

Furthermore, Cesàro sequence spaces 𝑋𝑝 of non-absolute type were defined by Ng and Lee [21] in 1977 as 

follows: 

𝑋𝑝 = {𝑥 = (𝑥𝑛)𝑛 ⊂ ℝ| (∑ |
1

𝑛
∑ 𝑥𝑘

𝑛
𝑘=1 |

𝑝
∞
𝑛=1 )

1
𝑝⁄

< ∞} 

and  

𝑋∞ = {𝑥 = (𝑥𝑛)𝑛 ⊂ ℝ| sup
𝑛

|
1

𝑛
∑ 𝑥𝑘

𝑛
𝑘=1 | < ∞}, 

where 1 ≤ 𝑝 < ∞. They prove that 𝑋𝑝  is linearly isomorphic and isometric to ℓ𝑝  for 1 ≤ 𝑝 ≤ ∞. Thus, one 

would easily deduce that they have similar properties in terms of the fixed point theory. That is, for 1 < 𝑝 < ∞ 

they have the fixed point property for nonexpansive mappings but for other two cases they fail. 

Later, in 1983, Orhan [22] introduced Cesàro Difference Sequence Spaces by the following definitions: 

𝐶𝑝 = {𝑥 = (𝑥𝑛)𝑛 ⊂ ℝ| (∑ |
1

𝑛
∑ △ 𝑥𝑘

𝑛
𝑘=1 |

𝑝
∞
𝑛=1 )

1
𝑝⁄

< ∞} 

and  

𝐶∞ = {𝑥 = (𝑥𝑛)𝑛 ⊂ ℝ| sup
𝑛

|
1

𝑛
∑ △ 𝑥𝑘

𝑛
𝑘=1 | < ∞}, 

where 1 ≤ 𝑝 < ∞ and △ 𝑥𝑘 = 𝑥𝑘 − 𝑥𝑘+1 for each 𝑘 ∈ ℕ. He noted that their norms are given as below for any 

𝑥 = (𝑥𝑛)𝑛: 

‖𝑥‖𝑝
∗ = |𝑥1| + (∑ |

1

𝑛
∑△ 𝑥𝑘

𝑛

𝑘=1

|

𝑝∞

𝑛=1

)

1
𝑝⁄

and   ‖𝑥‖∞
∗ = |𝑥1| + sup

𝑛
|
1

𝑛
∑△ 𝑥𝑘

𝑛

𝑘=1

| 

respectively. 

Orhan showed that there exists a linear bounded operator 𝑆: 𝐶𝑝 → 𝐶𝑝 for 1 ≤ 𝑝 ≤ ∞ such that Köthe-Toeplitz 

𝛽 −Duals of these spaces are given respectively as follows: 

𝑆(𝐶𝑝)𝛽 = {𝑎 = (𝑎𝑛)𝑛 ⊂ ℝ|(𝑛𝑎𝑛)𝑛 ∈ ℓ𝑞} where 1 < 𝑝 < ∞ and 𝑞 =
𝑝

𝑝 − 1
, 

𝑆(𝐶1)𝛽 = {𝑎 = (𝑎𝑛)𝑛 ⊂ ℝ|(𝑛𝑎𝑛)𝑛 ∈ ℓ∞} and 

𝑆(𝐶∞)𝛽 = {𝑎 = (𝑎𝑛)𝑛 ⊂ ℝ|(𝑛𝑎𝑛)𝑛 ∈ ℓ1}. 

It might be better to use the notation 𝑋𝑝(△) instead of 𝐶𝑝 for 1 ≤ 𝑝 ≤ ∞since we also recalled the difference 

sequence spaces and used similar type of notation. 

We note thatOrhan also proved that 𝑋𝑝 ⊂ 𝑋𝑝(△)for 1 ≤ 𝑝 ≤ ∞ strictly. Also, one can clearly see that 𝑋𝑝(△) is 

linearly isomorphic and isometric to ℓ𝑝 for 1 ≤ 𝑝 ≤ ∞. Thus, one would easily deduce that they have similar 

properties in terms of the fixed point theory. That is, for 1 < 𝑝 < ∞ they have the fixed point property for 

nonexpansive mappings but for other two cases they fail. 

Note also that Köthe-Toeplitz Dual for𝑝 = ∞ case in Orhan’s study and ℓ∞ case in Kızmaz study coincides.  

Furthermore, Et and Çolak [10] generalized the spaces introduced in Kızmaz’s work [14] in the following way 

for 𝑚 ∈ ℕ.  

ℓ∞(△𝑚) = {𝑥 = (𝑥𝑛)𝑛 ⊂ ℝ| △𝑚 𝑥 ∈ ℓ∞}, 

c(△𝑚) = {𝑥 = (𝑥𝑛)𝑛 ⊂ ℝ| △𝑚 𝑥 ∈ c}, 

c0(△𝑚) = {𝑥 = (𝑥𝑛)𝑛 ⊂ ℝ| △𝑚 𝑥 ∈ c0} 
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where △ 𝑥 = (△ 𝑥𝑘) = (𝑥𝑘 − 𝑥𝑘+1)𝑘 , △0 𝑥 = (𝑥𝑘)𝑘 , △𝑚 𝑥 = (△𝑚 𝑥𝑘) = (△𝑚−1 𝑥𝑘 −△𝑚−1 𝑥𝑘+1)𝑘 and 

△𝑚 𝑥𝑘 = ∑ (−1)𝑖(𝑚
𝑖

)𝑚
𝑖=0 𝑥𝑘+𝑖  for each 𝑘 ∈ ℕ. 

Also, Et [11] and Tripathy et. al. [27] generalized the space introduced by Orhan in the following way for 𝑚 ∈

ℕ. 

𝑋𝑝(△𝑚) = {𝑥 = (𝑥𝑛)𝑛 ⊂ ℝ| (∑ |
1

𝑛
∑ △𝑚 𝑥𝑘

𝑛
𝑘=1 |

𝑝
∞
𝑛=1 )

1
𝑝⁄

< ∞} 

and  

𝑋∞(△𝑚) = {𝑥 = (𝑥𝑛)𝑛 ⊂ ℝ| sup
𝑛

|
1

𝑛
∑ △𝑚 𝑥𝑘

𝑛
𝑘=1 | < ∞}, 

Then, it is seen that that Köthe-Toeplitz Dual for𝑝 = ∞ case in Et’s study [11] and ℓ∞ case in Et and Çolak 

study [10] coincides such that Köthe-Toeplitz Dual was given as below for any 𝑚 ∈ ℕ. 

𝐷𝑚 ≔ {𝑎 = (𝑎𝑛)𝑛 ⊂ ℝ|(𝑛𝑚𝑎𝑛)𝑛 ∈ ℓ1} 

= {𝑎 = (𝑎𝑘)𝑘 ⊂ ℝ ∶   ‖𝑎‖ = ∑ 𝑘𝑚|𝑎𝑘|

∞

𝑘=1

< ∞}. 

Note that 𝐷𝑚 ⊂ ℓ1. 

One can see that corresponding function space for these duals can be given as below: 

𝑈𝑚 ≔ {
𝑓: [0,1] → ℝ
measurable

: ‖𝑓‖ =  ∫ 𝑡𝑚|𝑓(𝑡)|𝑑𝑡

1

0

< ∞ }. 

Note that 𝐿1[0,1] ⊂ 𝑈𝑚 and 𝐷𝑚 is the space when counting measure is used for 𝑈𝑚. 

As we have already stated, in this study, first we introduce a recent study of Nezir and Mustafa where they show 

that the corresponding function space 𝑈1 fails the weak fixed point property and there exist many examples of 

fixed point free contractive mappings on some weakly compact subsets of these spaces. Next, we consider 

another Lebesgue-like Banach space contained in 𝐿1[0,1]. We show that it  does not have weak fixed point 

property and in fact there exist a weakly compact subset and invariant fixed point free contractive mappings 

defined on it. 

 

Now we provide some preliminaries before giving our main results.  

 

Definition 1.1. Let (𝑋, ∥⋅∥) be a Banach space and 𝐶be a non-empty closed, bounded, convex subset. 

1.  If 𝑇: 𝐶 → 𝐶  is a mapping such that for all 𝜆 ∈ [0,1]  and for all 𝑥, 𝑦 ∈ 𝐾 , 𝑇((1 − 𝜆)𝑥 + 𝜆 𝑦) = (1 −

𝜆)𝑇(𝑥) + 𝜆 𝑇(𝑦) then 𝑇 is said to be an  affine mapping. 

2.  If  𝑇: 𝐶 → 𝐶 is a mapping such that  ∥ 𝑇(𝑥) − 𝑇(𝑦) ∥≤∥ 𝑥 − 𝑦 ∥    𝑓𝑜𝑟  𝑎𝑙𝑙  𝑥, 𝑦 ∈ 𝐶 then 𝑇 is said to be a  

nonexpansive mapping. 

Also, if  for every nonexpansive mapping 𝑇: 𝐶 → 𝐶, there exists 𝑧 ∈ 𝐶 with 𝑇(𝑧) = 𝑧, then 𝐶 is said to have the  

fixed point property for nonexpansive mappings [fpp(ne)]. 

3.  If  𝑇: 𝐶 → 𝐶 is a mapping such that there exists𝜆 ∈ (0,1)and ∥ 𝑇(𝑥) − 𝑇(𝑦) ∥≤ 𝜆 ∥ 𝑥 − 𝑦 ∥   𝑓𝑜𝑟  𝑎𝑙𝑙  𝑥, 𝑦 ∈

𝐶 then 𝑇 is said to be a  contractive mapping. 

Also, if for every contractive mapping 𝑇: 𝐶 → 𝐶, there exists 𝑧 ∈ 𝐶 with 𝑇(𝑧) = 𝑧, then 𝐶 is said to have the  

fixed point property for contractive mappings [fpp(c)]. 

 

Definition 1.2. Let (𝑋, ∥⋅∥) be a Banach space and 𝐶be a non-empty weakly compact, convex subset. 

1.  If  for every nonexpansive mapping 𝑇: 𝐶 → 𝐶, there exists 𝑧 ∈ 𝐶 with 𝑇(𝑧) = 𝑧, then 𝐶 is said to have the  

weak fixed point property for nonexpansive mappings [w-fpp(ne)]. 

2.  If  for every contractive mapping 𝑇: 𝐶 → 𝐶, there exists 𝑧 ∈ 𝐶 with 𝑇(𝑧) = 𝑧, then 𝐶 is said to have the  weak 

fixed point property for contractive mappings[w-fpp(c)]. 
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2. Main Result 

In this section,first we introduce a recent study of Nezir and Mustafa [20] where they show that the 

corresponding function space 𝑈1 fails the weak fixed point property and there exist many examples of fixed 

point free contractive mappings on a weakly compact subset of these spaces. Next, we consider a degenerate 

Lorentz space contained in Lebesgue space 𝐿1[0,1]. We consider another Lebesgue-like Banach space contained 

in 𝐿1[0,1]. We show that it  does not have weak fixed point property and in fact there exist a weakly compact 

subset and invariant fixed point free contractive mappings defined on it. 

 

2.1. A Lebesgue-like space containing 𝑳𝟏[𝟎, 𝟏] 

Now firstly we consider the corresponding function space for a Köthe-Toeplitz Dual ofa Cesàro Difference 

Sequence Space.Nezir and  Mustafa [20] show there exists a fixed point free isometry. Since it is an unpublished 

work, we give only some details but one can confirm that 𝑈1 fails the weak fixed point property; that is, there 

exists a fixed point free nonexpansive mapping defined on a weakly compact subset of 𝑈1since 𝐿1[0,1] ⊂ 𝑈1 

and there exists a fixed point free nonexpansive mapping defined on a weakly compact subset of 𝐿1[0,1].Indeed, 

Nezir and Mustafa[20] first consider the set 𝐷: = {𝑓 ∈ 𝐿1[0,1]:  0 ≤ 𝑓 ≤ 1, 𝑡 ∈ [0,1]} and they define 𝐷1

2
: =

{𝑓 ∈ 𝐷 ∶   ∫
1

0
 t|𝑓(𝑡)|𝑑𝑡 =

1

2
}. Then they show that there exists a fixed point free isometry 𝑇 on 𝐷1

2
. 

Then, Sine’s construction but defined on 𝐷1

2
 and using Nezir and Mustafa’s map would be an isometry as well; 

that is, 𝑆𝑓 = 𝜒[0,1] − 𝑇𝑓, ∀𝑓 ∈ 𝐷1

2
 would be an isometry. Then, similarly to works of Burns, Lennard and Sivek 

[2], they define a map 𝑅: 𝐷1/2 → 𝐷1/2by 

𝑅(𝑓) = ∑

∞

𝑛=0

𝑇𝑛(𝑓)

2𝑛+1
 

and show that 𝑅 is a fixed point free contraction. Using their ideas, we can also say that we can define some 

other maps 𝐽: 𝐷1/2 → 𝐷1/2 and by 𝑃: 𝐷1/2 → 𝐷1/2 

𝐽(𝑓) = ∑

∞

𝑛=0

𝑞𝑛+1𝑆𝑛(𝑓)   and   𝑃(𝑓) = ∑

∞

𝑛=0

𝑞𝑛+1𝑇𝑛(𝑓) 

where (𝑞𝑛)𝑛 is any scalar sequence summing to 1; that is, ∑∞
𝑛=0 𝑞𝑛+1 = 1. 

 

2.2. A Lebesgue-like space contained in 𝑳𝟏[𝟎, 𝟏] 

Now, we consider another Lebesgue like Banach space which is actually contained in Lebesgue space 𝐿1[0,1]. It 

can be said that the space we consider is a degenerate Lorentz space. So firstly we recall Lorentz space. 

 

Definition 2.1. Let 𝛼 ∈ (0,1).  

 𝐿𝛼,1[0,1]: = {𝑓: [0,1] → ℝ  𝑚𝑒𝑎𝑠𝑢𝑟𝑎𝑏𝑙𝑒  |∥ 𝑥 ∥𝛼,1: = ∫
1

0

𝛼𝑓∗(𝑡)

𝑡1−𝛼 𝑑𝑡 < ∞} 

where 𝑓∗(𝑡) is the decreasing rearrangement of |𝑓(𝑡)|; that is, 𝑓∗(𝑡) is ordered decreasing and equimeasurable 

with |𝑓(𝑡)|. 

Note that rearrangement is a non-expansive mapping with respect to Lebesgue norms. The non-increasing 

rearrangement of a function was first studied by Steiner [26] and it is defined as a certain generalized inverse of 

the distribution function. There have been many researches on these type of functions but first most known 

properties were given by Hardy, Littlewood and Pólya in 1930’s [13].  

Another 𝐿1[0,1] analogue, Lorentz-Marcinkiewicz space, is defined as follows:  

Definition 2.2. Let 𝑤: [0,1] → ℝ be the weight function which is nonincreasing such that ∫
∞

0
𝑤𝑑𝑚 = ∞ where 

m is the Lebesgue measure. Then,  

 𝐿𝑤,1[0,1]: = {
𝑓: [0,1] → ℝ
measurable

|∥ 𝑥 ∥𝑤,1: = ∫
1

0
𝑤(𝑡)𝑓∗(𝑡)𝑑𝑡 < ∞} 

where 𝑓∗(𝑡) is the decreasing rearrangement of |𝑓(𝑡)|.  



Nezir V                                                        Journal of Scientific and Engineering Research, 2021, 8(11):89-96 

 

Journal of Scientific and Engineering Research 

94 

 

But in this study we will be working on the Banach space defined below. Note that this space is originated from 

the space introduced in previous two definitions but here we do not use decreasing rearrengements instead we 

use the absolute value. One may consider subspaces of decreasing functions in Lorentz spaces or Lorentz-

Marcinkiewicz spaces. So our space would generalize this type of subspaces.Standard references for Lorentz-

Marcinkiewicz spaces are[16,17,18]. 

 

Definition 2.3.Let 

  

ℳ ≔ {
𝑓: [0,1] → ℝ
measurable

: ‖𝑓‖~ =  ∫
|𝑓(𝑡)|

𝑡
𝑑𝑡

1

0

< ∞ }. 

Then, it is easy to see that ℳ is a Banach space contained in Lebesgue space 𝐿1[0,1].  

The following theorem shows that ℳdoes not have weak fixed point property and in fact there exist aweakly 

compact subset and invariant fixed point free contractive mappings defined on it. 

Theorem 2.1.There exists a weakly compact subsets of ℳ  such that there exist invariant fixed point free 

nonexpansive mappings and invariant fixed point free contractive mappings defined on that set. 

 

Proof. In ℳ, consider the subset  

𝐾: =  {𝑓 ∈ ℳ ∶   0 ≤ 𝑓 ≤ 1, 𝑡 ∈ [0,1], ∫
1

0

𝑓(𝑡)

𝑡
𝑑𝑡 ≤ 1}, then also consider the mapping   

                                                      𝜓𝑓(𝑡) = 𝑡𝑇 (
𝑓(𝑡)

𝑡
)                                                      (2.1) 

where 𝑇 is Alspach’s mapping with the formula (1.1). 

Then, for any 𝑓, 𝑔 ∈ 𝐾, we have   

‖𝜓(𝑓) − 𝜓(𝑔)‖~ = ∫
1

0

|𝑡𝑇 (
𝑓(𝑡)

𝑡
) − 𝑡𝑇 (

𝑔(𝑡)

𝑡
)|

𝑡
𝑑𝑡                             

        = ∫
1

0

|𝑇 (
𝑓(𝑡)

𝑡
) − 𝑇 (

𝑔(𝑡)

𝑡
)| 𝑑𝑡 

       = ‖T (
𝑓

𝑡
) − T (

𝑔

𝑡
)‖

1
                     

= ‖
𝑓

𝑡
−

𝑔

𝑡
‖

1
                             

    = ∫
1

0

|
𝑓(𝑡)

𝑡
−

𝑔(𝑡)

𝑡
| 𝑑𝑡                

    = ∫
1

0

|𝑓(𝑡) − 𝑔(𝑡)|

𝑡
𝑑𝑡               

     = ‖𝑓 − 𝑔‖~                                  

 

Next define 𝐾1

2
: =  {𝑓 ∈ 𝐾 ∶   ∫

1

0

𝑓(𝑡)

𝑡
𝑑𝑡 =

1

2
}. Then, 𝜓 is a fixed point free nonexpansive mapping on 𝐾1

2
 by the 

proof of Alspach’s theorem in [1]. Also, similarly to Sine’s result [24], the mapping defined by Ω𝑓: = 𝜒[0,1] −

𝜓𝑓, ∀𝑓 ∈ 𝐾1

2
 is another fixed point free nonexpansive mapping on 𝐾1

2
 

 

Now, define 𝑅~: 𝐾1

2
→ 𝐾1

2
 by  

𝑅~(𝑓) = ∑

∞

𝑛=0

𝜓𝑛(𝑓)

2𝑛+1
, 

then using the strategy in the proof of the main theorem in [2], it is seen that 𝑅~ is a fixed point free contractive 

invariant mapping on 𝐾1

2
 and so ℳfails w-fpp for contractive mappings (so does for nonexpansive mappings). 
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Now, we will provide another invariant fixed point free nonexpansive mapping and a different invariant fixed 

point free contractive mapping defined on the set 𝐾1

2
 using ideas in [8]. 

Claim: Using Dowling, Lennard and Turett’s mapping given in the formula (1.2), define a composite mapping 

by   

 Δ~𝑓(𝑡): = {

𝑓(2𝑡)

2𝑡
  if  0 ≤ 𝑡 ≤

1

2

1 −
f(2𝑡−1)

2𝑡−1
  if  

1

2
< 𝑡 < 1

   and Δ∗𝑓(𝑡) ≔ tΔ~𝑓(𝑡). 

One can see that Δ∗𝑓(𝑡) = 𝑡𝛥 (
𝑓

𝑡
) (𝑡) is an invariant mapping  defined on 𝐾1

2
. 

 

Then, 𝜓Δ∗: 𝐾1

2
→ 𝐾1

2
 is a fixed point free nonexpansive mapping where 𝜓 is given as in the formula (2.1). 

Moreover, there exists a fixed point free contractive mapping 𝜑~: 𝐾1

2
→ 𝐾1

2
.   

Proof of the claim: For any 𝑓, 𝑔 ∈ 𝐾1

2
, we have   

‖𝜓Δ∗(𝑓) − 𝜓Δ∗(𝑔)‖~ = ∫
1

0

|𝑡𝑇 (
Δ∗(𝑓)(𝑡)

𝑡
) − 𝑡𝑇 (

Δ∗(𝑔)(𝑡)

𝑡
)|

𝑡
𝑑𝑡                                                   

    = ∫
1

0

|𝑇 (
𝑡Δ~(𝑓)(𝑡)

𝑡
) − 𝑇 (

𝑡Δ~(𝑔)(𝑡)

𝑡
)| 𝑑𝑡 

 =∥ T(Δ~(𝑓)) − T(Δ~(𝑔)) ∥1                        

=∥ Δ~(𝑓) − Δ~(𝑔) ∥1                                    

              = ∫
1

0

|𝛥 (
𝑓

𝑡
) (𝑡) − 𝛥 (

𝑔

𝑡
) (𝑡)| 𝑑𝑡                               

          = ‖𝛥 (
𝑓

𝑡
) − 𝛥 (

𝑔

𝑡
)‖

1
                                               

 = ‖
𝑓

𝑡
−

𝑔

𝑡
‖

1
                                                     

= ∫
1

0

|
𝑓(𝑡)

𝑡
−

𝑔(𝑡)

𝑡
| 𝑑𝑡                                 

= ∫
1

0

|𝑓(𝑡) − 𝑔(𝑡)|

𝑡
𝑑𝑡                                

 = ‖𝑓 − 𝑔‖~                                                   

Now define 𝜑~: 𝐾1

2
→ 𝐾1

2
 by    

𝜑~(𝑓) ≔ ∑

∞

𝑛=0

(𝜓Δ∗)𝑛(𝑓)

2𝑛+1
, 

then using the strategy in the proof of the main theorem in [2], it is seen that 𝜑~ is a fixed point free contractive 

invariant mapping on 𝐾1

2

. 
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