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Abstract In 1970, Cesàro Sequence Spaces was introduced by Shiue. In 1981, Kızmaz defined difference 

sequence spaces for ℓ∞, c0 and c. Then, in 1983, Orhan introduced Cesàro Difference Sequence Spaces. Later, 

Et and Tripathy et. al. generalized the space introduced by Orhan for any 𝑚 ∈ ℕ. We will be interested in their 

generalizations. In this study, first we discuss the fixed point property for these spaces. Then, we recall that 

Goebel and Kuczumow showed that there exists a very large class of closed, bounded, convex subsets in ℓ1, 

Banach space of absolutely summable scalar sequences, with fixed point property for nonexpansive mappings. 

So we consider an analogue result for the corresponding function space of a Köthe-Toeplitz Dual of a 

generalized Cesàro Difference Sequence Space which contains Lebesgue space 𝐿1[0,1]. We show that there 

exists a large class of closed, bounded and convex subsets of these spaces with fixed point property for affine 

nonexpansive mappings. 
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1. Introduction and preliminaries 

We say that a Banach space (𝑋, ‖. ‖) has the fixed point property for non-expansive mappings if every non-

expansive self mappings defined on any non-empty closed, bounded and convex subset of the Banach space has 

a fixed point. Here we note that if 𝐶 is a subset of the Banach space, then T: C → C is said to be a  nonexpansive 

mapping if ∥ T(x) − T(y) ∥≤∥ x − y ∥, for  all  x, y ∈ C . Researchers have been interested in checking if a 

nonreflexive Banach space can be renormed to have the fixed point property to see how the fixed point property 

is related with reflexivity. In fact, the first example of a nonreflexive Banach space which is renormable to have 

the fixed point property was given by Lin [13]. Lin showed this fact by setting an equivalent norm on Banach 

space of absolutely summable scalar sequences, ℓ1. Because of sharing many common properties, it is natural to 

ask if , Banach space of scalar sequences converging to 0, 𝑐0 can be renormed to have the fixed point property 

for non-expansive mappings as another well known classical non-reflexive Banach space. Maria and Hernandes 

Lineares [15] obtained an example for the class of nonreflexive Banach spaces which can be renormed to have 

the fixed point property for affine nonexpansive mappings and their space was the Banach space of Lebesgue 

integrable functions on [0,1], 𝐿1[0,1]. It can be said that all these works are inspired by the work of Goebel and 

Kuczumow [10]. Goebel and Kuczumow showed that there exists very large class of non-weakly compact, 

closed, bounded and convex subsets of ℓ1 respect to weak* topology of ℓ1 with fixed point property for non-

expansive mappings.  
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Thus, in this study, we work on Goebel and Kuczumow analogy for a Banach space containing Lebesgue space 

𝐿1[0,1]. The space we consider is the corresponding function space of a Köthe-Toeplitz Dual of a generalized 

Cesàro Difference Sequence Space which contains Lebesgue space 𝐿1[0,1]. We show that there exists a very 

large class of closed, bounded and convex subsets of the space with the fixed point property for non-expansive 

mappings under affinity condition. 

We recall that the Cesàro sequence spaces  

ces𝑝 = {𝑥 = (𝑥𝑛)𝑛 ⊂ ℝ| (∑ (
1

𝑛
∑ |𝑥𝑘|𝑛

𝑘=1 )
𝑝

∞
𝑛=1 )

1
𝑝⁄

< ∞} 

and  

ces∞ = {𝑥 = (𝑥𝑛)𝑛 ⊂ ℝ| sup
𝑛

1

𝑛
∑ |𝑥𝑘|𝑛

𝑘=1 < ∞} 

were introduced by Shiue [19] in 1970, where 1 ≤ 𝑝 < ∞. It has been shown that ℓ𝑝 ⊂ ces𝑝for 1 < 𝑝 ≤ ∞. 

Moreover, it has been shown that Cesàro sequence spaces ces𝑝for 1 < 𝑝 < ∞ are seperable reflexive Banach 

spaces. Furthermore, it was also proved by Cui-Hudzik [3], Cui-Hudzik-Li [4] and Cui-Meng-Pluciennik [5] 

that Cesàro sequence spaces ces𝑝for 1 < 𝑝 < ∞ have the fixed point property. They prove this result using 

different methods. One method is to calculate Garcia-Falset coefficient. It is known that if Garcia-Falset 

coefficient is less than 2 for a Banach space, then it has the fixed point property for nonexpansive mappings [9]. 

Using this fact, since they calculate this coefficient for ces𝑝 as 21/𝑝 similary to what it is for ℓ𝑝, they point the 

result for the Cesàro sequence spaces. Another fact is that they see that the space has normal structure for 1 <

𝑝 < ∞. Then using the fact via Kirk [12] that reflexive Banach spaces with normal structure has the fixed point 

property, they easily deduce that the space has the fixed point property for 1 < 𝑝 < ∞. Their results on Cesàro 

sequence spaces as a survey can be seen in [2].   

Later, in 1981, Kızmaz [11] introduced difference sequence spaces for ℓ∞, cand c0 where they are the Banach 

spaces of bounded, convergent and null sequences 𝑥 = (𝑥𝑛)𝑛, respectively. As it is seen below, his definitions 

for these spaces were given using difference operator applied to the sequence 𝑥, △ 𝑥 = (𝑥𝑘 − 𝑥𝑘+1)𝑘. 

ℓ∞(△) = {𝑥 = (𝑥𝑛)𝑛 ⊂ ℝ| △ 𝑥 ∈ ℓ∞}, 

c(△) = {𝑥 = (𝑥𝑛)𝑛 ⊂ ℝ| △ 𝑥 ∈ c}, 

c0(△) = {𝑥 = (𝑥𝑛)𝑛 ⊂ ℝ| △ 𝑥 ∈ c0}. 

Kızmaz investigated Köthe-Toeplitz Duals and some properties of these spaces. 

Furthermore, Cesàro sequence spaces 𝑋𝑝 of non-absolute type were defined by Ng and Lee [16] in 1977 as 

follows: 

𝑋𝑝 = {𝑥 = (𝑥𝑛)𝑛 ⊂ ℝ| (∑ |
1

𝑛
∑ 𝑥𝑘

𝑛
𝑘=1 |

𝑝
∞
𝑛=1 )

1
𝑝⁄

< ∞} 

and  

𝑋∞ = {𝑥 = (𝑥𝑛)𝑛 ⊂ ℝ| sup
𝑛

|
1

𝑛
∑ 𝑥𝑘

𝑛
𝑘=1 | < ∞}, 

where 1 ≤ 𝑝 < ∞. They prove that 𝑋𝑝  is linearly isomorphic and isometric to ℓ𝑝  for 1 ≤ 𝑝 ≤ ∞. Thus, one 

would easily deduce that they have similar properties in terms of the fixed point theory. That is, for 1 < 𝑝 < ∞ 

they have the fixed point property for nonexpansive mappings but for other two cases they fail. 

Later, in 1983, Orhan [17] introduced Cesàro Difference Sequence Spaces by the following definitions: 

𝐶𝑝 = {𝑥 = (𝑥𝑛)𝑛 ⊂ ℝ| (∑ |
1

𝑛
∑ △ 𝑥𝑘

𝑛
𝑘=1 |

𝑝
∞
𝑛=1 )

1
𝑝⁄

< ∞} 

and  

𝐶∞ = {𝑥 = (𝑥𝑛)𝑛 ⊂ ℝ| sup
𝑛

|
1

𝑛
∑ △ 𝑥𝑘

𝑛
𝑘=1 | < ∞}, 

where 1 ≤ 𝑝 < ∞ and △ 𝑥𝑘 = 𝑥𝑘 − 𝑥𝑘+1 for each 𝑘 ∈ ℕ. He noted that their norms are given as below for any 

𝑥 = (𝑥𝑛)𝑛: 
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‖𝑥‖𝑝
∗ = |𝑥1| + (∑ |

1

𝑛
∑△ 𝑥𝑘

𝑛

𝑘=1

|

𝑝∞

𝑛=1

)

1
𝑝⁄

and   ‖𝑥‖∞
∗ = |𝑥1| + sup

𝑛
|
1

𝑛
∑△ 𝑥𝑘

𝑛

𝑘=1

|, 

respectively. 

Orhan showed that there exists a linear bounded operator 𝑆: 𝐶𝑝 → 𝐶𝑝 for 1 ≤ 𝑝 ≤ ∞ such that Köthe-Toeplitz 

𝛽 −Duals of these spaces are given respectively as follows: 

𝑆(𝐶𝑝)𝛽 = {𝑎 = (𝑎𝑛)𝑛 ⊂ ℝ|(𝑛𝑎𝑛)𝑛 ∈ ℓ𝑞} where 1 < 𝑝 < ∞ and 𝑞 =
𝑝

𝑝 − 1
, 

𝑆(𝐶1)𝛽 = {𝑎 = (𝑎𝑛)𝑛 ⊂ ℝ|(𝑛𝑎𝑛)𝑛 ∈ ℓ∞} and 

𝑆(𝐶∞)𝛽 = {𝑎 = (𝑎𝑛)𝑛 ⊂ ℝ|(𝑛𝑎𝑛)𝑛 ∈ ℓ1}. 

It might be better to use the notation 𝑋𝑝(△) instead of 𝐶𝑝 for 1 ≤ 𝑝 ≤ ∞ since we also recalled the difference 

sequence spaces and used similar type of notation. 

We note that Orhan also proved that 𝑋𝑝 ⊂ 𝑋𝑝(△)  for 1 ≤ 𝑝 ≤ ∞ strictly. Also, one can clearly see that 𝑋𝑝(△) 

is linearly isomorphic and isometric to ℓ𝑝 for 1 ≤ 𝑝 ≤ ∞. Thus, one would easily deduce that they have similar 

properties in terms of the fixed point theory. That is, for 1 < 𝑝 < ∞ they have the fixed point property for 

nonexpansive mappings but for other two cases they fail. 

Note also that Köthe-Toeplitz Dual for 𝑝 = ∞ case in Orhan’s study and ℓ∞ case in Kızmaz study coincides.  

Furthermore, Et and Çolak [6] generalized the spaces introduced in Kızmaz’s work [11] in the following way 

for 𝑚 ∈ ℕ.  

ℓ∞(△𝑚) = {𝑥 = (𝑥𝑛)𝑛 ⊂ ℝ| △𝑚 𝑥 ∈ ℓ∞}, 

c(△𝑚) = {𝑥 = (𝑥𝑛)𝑛 ⊂ ℝ| △𝑚 𝑥 ∈ c}, 

c0(△𝑚) = {𝑥 = (𝑥𝑛)𝑛 ⊂ ℝ| △𝑚 𝑥 ∈ c0} 

where △ 𝑥 = (△ 𝑥𝑘) = (𝑥𝑘 − 𝑥𝑘+1)𝑘 , △0 𝑥 = (𝑥𝑘)𝑘 , △𝑚 𝑥 = (△𝑚 𝑥𝑘) = (△𝑚−1 𝑥𝑘 −△𝑚−1 𝑥𝑘+1)𝑘 and 

△𝑚 𝑥𝑘 = ∑ (−1)𝑖(𝑚
𝑖

)𝑚
𝑖=0 𝑥𝑘+𝑖  for each 𝑘 ∈ ℕ. 

Also, Et [7] and Tripathy et. al. [20] generalized the space introduced by Orhan in the following way for 𝑚 ∈ ℕ. 

𝑋𝑝(△𝑚) = {𝑥 = (𝑥𝑛)𝑛 ⊂ ℝ| (∑ |
1

𝑛
∑ △𝑚 𝑥𝑘

𝑛
𝑘=1 |

𝑝
∞
𝑛=1 )

1
𝑝⁄

< ∞} 

and  

𝑋∞(△𝑚) = {𝑥 = (𝑥𝑛)𝑛 ⊂ ℝ| sup
𝑛

|
1

𝑛
∑ △𝑚 𝑥𝑘

𝑛
𝑘=1 | < ∞}, 

Then, it is seen that that Köthe-Toeplitz Dual for𝑝 = ∞ case in Et’s study [7] and ℓ∞ case in Et and Çolak study 

[6] coincides such that Köthe-Toeplitz Dual was given as below for any 𝑚 ∈ ℕ. 

𝐷𝑚 ≔ {𝑎 = (𝑎𝑛)𝑛 ⊂ ℝ|(𝑛𝑚𝑎𝑛)𝑛 ∈ ℓ1} 

= {𝑎 = (𝑎𝑘)𝑘 ⊂ ℝ ∶   ‖𝑎‖ = ∑ 𝑘𝑚|𝑎𝑘|

∞

𝑘=1

< ∞}. 

Note that 𝐷𝑚 ⊂ ℓ1for any 𝑚 ∈ ℕ. 

One can see that corresponding function space for these duals can be given as below: 

𝑈𝑚 ≔ {
𝑓: [0,1] → ℝ
measurable

: ‖𝑓‖ =  ∫ 𝑡𝑚|𝑓(𝑡)|𝑑𝑡

1

0

< ∞ }. 

Note that 𝐿1[0,1] ⊂ 𝑈𝑚 and 𝐷𝑚 is the space when counting measure is used for 𝑈𝑚. 

As we have already stated, in this study, we consider Goebel and Kuczumow [10] analogy for the corresponding 

function space of a Köthe-Toeplitz Dual ofa Cesàro Difference Sequence Space which contains Lebesgue space 

𝐿1[0,1]. We show that there exists a large class of closed, bounded and convex subsets of Köthe-Toeplitz Dual 

for 𝑋∞(△) with fixed point property for affine nonexpansive mappings.  

Now we provide some preliminaries before giving our main results.  

Definition 1.1. Let (𝑋, ∥⋅∥) be a Banach space and 𝐶 is a non-empty closed, bounded, convex subset. 

1.  If 𝑇: 𝐶 → 𝐶  is a mapping such that for all 𝜆 ∈ [0,1]  and for all 𝑥, 𝑦 ∈ 𝐶 , 𝑇((1 − 𝜆)𝑥 + 𝜆 𝑦) = (1 −

𝜆)𝑇(𝑥) + 𝜆 𝑇(𝑦) then 𝑇 is said to be an  affine mapping. 
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2.  If  𝑇: 𝐶 → 𝐶 is a mapping such that  ∥ 𝑇(𝑥) − 𝑇(𝑦) ∥≤∥ 𝑥 − 𝑦 ∥     𝑓𝑜𝑟  𝑎𝑙𝑙  𝑥, 𝑦 ∈ 𝐶 then 𝑇 is said to be a  

nonexpansive mapping. 

Also, if for every nonexpansive mapping 𝑇: 𝐶 → 𝐶, there exists 𝑧 ∈ 𝐶 with 𝑇(𝑧) = 𝑧, then 𝐶 is said to have the  

fixed point property for nonexpansive mappings [fpp(ne)]. 

 

Remark 1.1. In 1979, Goebel and Kuczumow [10] showed there exists a large class of closed, bounded and 

convex subsets of ℓ1  using a key lemma they obtained. Their lemma says that if {𝑥𝑛} is a sequence in ℓ1 

converging to 𝑥 in weak-star topology, then for any 𝑦 ∈ ℓ1,  

 𝑟(𝑦) = 𝑟(𝑥) + ‖𝑦 − 𝑥‖1  𝑤ℎ𝑒𝑟𝑒  𝑟(𝑦) = 𝑙𝑖𝑚𝑠𝑢𝑝
𝑛

‖𝑥𝑛 − 𝑦‖1  . 

We will call this fact ∴. 

The analogue of this lemma for L1[0,1] is observed via the result in Brezis and Lieb [1]. Note that Hernández-

Linares pointed this fact in his Ph.D. thesis [14], written under supervision of Maria Japon Pineda. Now we 

provide the lemma which is deduced by their results and will be key for our results in this section.  

 

Lemma 1.1. Let {𝑓𝑛}𝑛∈ℕ be a sequence of real valued measurable functions which are uniformly bounded in 

𝐿1[0,1]. Assume that 𝑓𝑛  converges to an 𝑓 ∈ 𝐿1[0,1] pointwise almost everywhere (a.e.). Then for any 𝑔 ∈

𝐿1[0,1],  

 𝑆(𝑔) = 𝑆(𝑓) + ‖𝑓 − 𝑔‖1  𝑤ℎ𝑒𝑟𝑒  𝑆(𝑔) = 𝑙𝑖𝑚𝑠𝑢𝑝
𝑛

‖𝑓𝑛 − 𝑔‖1  . 

Since the corresponding function space of a Köthe-Toeplitz Dual of a Cesàro Difference Sequence Space which 

contains Lebesgue space 𝐿1[0,1] and in fact it is isometrically isomorphic to 𝐿1[0,1], for the corresponding 

function space𝑈1 the following lemma can be given as straight and quick result.   

 

Lemma 1.2. Let {𝑓𝑛}𝑛∈ℕ be a sequence of real valued measurable functions which are uniformly bounded in 𝑈1. 

Assume that 𝑓𝑛 converges to an 𝑓 ∈ 𝑈1 pointwise almost everywhere (a.e.). Then for any 𝑔 ∈ 𝑈1,  

 𝑆(𝑔) = 𝑆(𝑓) + ‖𝑓 − 𝑔‖  𝑤ℎ𝑒𝑟𝑒  𝑆(𝑔) = 𝑙𝑖𝑚𝑠𝑢𝑝
𝑛

‖𝑓𝑛 − 𝑔‖  . 

 

2. Main Result 

In this section, we work on Goebel and Kuczumow analogy for a Banach space containing Lebesgue space 

𝐿1[0,1]. The space we consider is the corresponding function space 𝑈𝑚  of Köthe-Toeplitz Dual ofa Cesàro 

Difference Sequence Space 𝑋∞(△𝑚) for any 𝑚 ∈ ℕ, which is the corresponding function space of a Köthe-

Toeplitz Dual of a generalized Cesàro Difference Sequence Space. We show that there exists a very large class 

of closed, bounded and convex subsets of the space with the fixed point property for non-expansive mappings 

under affinity condition. 

Now, we consider the following class of closed, bounded and convex subsets. Note that here we will be using 

the ideas similar to those in the section 2 of Ph.D. thesis of Everest [8], written under supervision of Chris 

Lennard,  where Everest firstly provides Goebel and Kuczumow’s proofs in detailed. 

So we demonstrate examples of these subsets and provide a theorem related with each of them. 

Example 2.1. Fix 𝑚 ∈ ℕ and 𝑏 ∈ (0,1). Define a sequence (𝑓𝑛)𝑛∈ℕ by setting 𝑓1: = 𝑏 𝑒1,𝑓2: = 𝑏 𝑒2,  and 𝑓𝑛: =

𝑒𝑛 , for all integers 𝑛 ≥ 3 where the sequence (𝑒𝑛)𝑛∈ℕ is given by the formula 𝑒𝑛: = (𝑛 + 1)𝑡𝑛−𝑚  , ∀𝑛 ∈ ℕ. 

Next, we can define a closed, bounded, convex subset 𝐸(𝑚) of 𝑈1 by  

𝐸(𝑚): = {∑

∞

𝑛=1

𝛽𝑛𝑓𝑛:  ∀𝑛 ∈ ℕ, 𝑡𝑛 ≥ 0  𝑎𝑛𝑑  ∑

∞

𝑛=1

𝛽𝑛 = 1}  . 

Example 2.2. Fix 𝑚 ∈ ℕ and 𝑏 ∈ (0,1). Define a sequence (𝑓𝑛)𝑛∈ℕ by setting 𝑓1: = 𝑏 𝑒1,𝑓2: = 𝑏 𝑒2,  and 𝑓𝑛: =

𝑒𝑛, for all integers 𝑛 ≥ 3 where the sequence (𝑒𝑛)𝑛∈ℕ is given by the formula 𝑒𝑛: =
𝑛𝑒𝑛𝑡

𝑡𝑚(𝑒𝑛−1)
 , ∀𝑛 ∈ ℕ. Next, we 

can define a closed, bounded, convex subset 𝐸(𝑚) of 𝑈1 by  
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𝐸(𝑚): = {∑

∞

𝑛=1

𝛽𝑛𝑓𝑛:  ∀𝑛 ∈ ℕ, 𝛽𝑛 ≥ 0  𝑎𝑛𝑑  ∑

∞

𝑛=1

𝛽𝑛 = 1}  . 

Example 2.3. Fix 𝑚 ∈ ℕ and 𝑏 ∈ (0,1).Define a sequence (𝑓𝑛)𝑛∈ℕ by setting 𝑓1: = 𝑏 𝑒1,𝑓2: = 𝑏 𝑒2,  and 𝑓𝑛: =

𝑒𝑛, for all integers 𝑛 ≥ 3 where the sequence (𝑒𝑛)𝑛∈ℕ is given by the formula 𝑒𝑛: =
𝑛𝑒𝑛𝑡

𝑡𝑚(𝑒𝑛−1)
𝜒

[0,
1

𝑛
]
  , ∀𝑛 ∈ ℕ, 

where 𝜒  is the characteristics funtion. Next, we can define a closed, bounded, convex subset 𝐸(𝑚) of 𝑈1 by  

𝐸(𝑚): = {∑

∞

𝑛=1

𝛽𝑛𝑓𝑛:  ∀𝑛 ∈ ℕ, 𝛽𝑛 ≥ 0  𝑎𝑛𝑑  ∑

∞

𝑛=1

𝛽𝑛 = 1}  . 

Example 2.4. Fix 𝑚 ∈ ℕ and 𝑏 ∈ (0,1).Define a sequence (𝑓𝑛)𝑛∈ℕ by setting 𝑓1: = 𝑏 𝑒1,𝑓2: = 𝑏 𝑒2,  and 𝑓𝑛: =

𝑒𝑛, for all integers 𝑛 ≥ 3 where the sequence (𝑒𝑛)𝑛∈ℕ is given by the formula 𝑒𝑛: =
4𝑛

𝜋𝑡𝑚(1+𝑛2𝑡2)
𝜒

[0,
1

𝑛
]
 , ∀𝑛 ∈ ℕ, 

where 𝜒  is the characteristics funtion. Next, we can define a closed, bounded, convex subset 𝐸(𝑚) of 𝑈1 by  

𝐸(𝑚): = {∑

∞

𝑛=1

𝛽𝑛𝑓𝑛:  ∀𝑛 ∈ ℕ, 𝛽𝑛 ≥ 0  𝑎𝑛𝑑  ∑

∞

𝑛=1

𝛽𝑛 = 1}  . 

Theorem 2.1. For any 𝑚 ∈ ℕ and𝑏 ∈ (0,1),each of the sets 𝐸(𝑚) defined as in the examples above has the fixed 

point property for affine ‖ , ‖-nonexpansive mappings. 

 

Proof.  Fix 𝑚 ∈ ℕ and 𝑏 ∈ (0,1).Let 𝑇: 𝐸(𝑚) → 𝐸(𝑚)  be an affine nonexpansive mapping. Then, since 𝑇  is 

affine, by Lemma 1.1.2 in the Ph.D. thesis of Everest [8] written under supervision of Lennard, there exists a 

sequence (𝑥(𝑛))
𝑛∈ℕ

∈ 𝐸(𝑚) such that ‖𝑇𝑥(𝑛) − 𝑥(𝑛)‖
𝑛
→ 0. Without loss of generality, passing to a subsequence 

if necessary, there exists 𝑥 ∈ 𝑈𝑚 such that 𝑥(𝑛)converges to 𝑥 in weak∗ topology. Then, by Goebel Kuczumow 

analog fact, Lemma 2 given in the last part of the previous section, we can define a function 𝑠: 𝑈𝑚  → [0, ∞) by  

 𝑠(𝑦) = limsup
𝑛

‖𝑥(𝑛) − 𝑦‖    , ∀𝑦 ∈ 𝑈𝑚 

and so  

 𝑠(𝑦) = 𝑠(𝑦) + ‖𝑥 − 𝑦‖  , ∀𝑦 ∈ 𝑈𝑚 . 

Now define  the weak* closure of the set 𝐸 as it is seen below.  

𝑊: = 𝐸(𝑚)
𝑤∗

= {∑

∞

n=1

β𝑛𝑓𝑛:  𝑒𝑎𝑐ℎ  𝛽𝑛 ≥ 0  𝑎𝑛𝑑  ∑

∞

𝑛=1

β𝑛 ≤ 1} 

Case 1:𝑥 ∈ 𝐸(𝑚). 

Then, ∀n ∈ ℕ, we have 𝑠(𝑇𝑥) = 𝑠(𝑥) + ‖𝑇𝑥 − 𝑥‖ and   

𝑠(𝑇𝑥) = limsup
𝑛

‖𝑇𝑥 − 𝑥(𝑛)‖ 

                                                                         ≤ limsup
𝑛

‖𝑇𝑥 − 𝑇(𝑥(𝑛))‖ + limsup
𝑛

‖𝑥(𝑛) − 𝑇(𝑥(𝑛))‖ 

                   ≤ limsup
𝑛

‖𝑥 − 𝑥(𝑛)‖ + 0  

                                                                     = 𝑠(𝑥).                                                                        (2.1)  

Therefore, 𝑠(𝑇𝑥) = 𝑠(𝑥) + ‖𝑇𝑥 − 𝑥‖ ≤ 𝑠(𝑥) and so ‖𝑇𝑥 − 𝑥‖ = 0. Thus,  𝑇𝑥 = 𝑥. 

Case 2: 𝑥 ∈ 𝑊\𝐸(𝑚). 

Then, 𝑥 is of the form ∑∞
𝑛=1 𝛾𝑛𝑓𝑛  such that  ∑∞

𝑛=1 𝛾𝑛 < 1  𝑎𝑛𝑑  𝛾𝑛 ≥ 0, ∀𝑛 ∈ ℕ. 

Define 𝛿: = 1 − ∑∞
𝑛=1 𝛾𝑛and for 𝛼 ∈ [

−𝛾1

𝛿
,

𝛾2

𝛿
+ 1] define 

h𝛼: = (𝛾1 + 𝛼𝛿)𝑓1 + (𝛾2 + (1 − 𝛼)𝛿)𝑓2 + ∑

∞

𝑛=3

𝛾𝑛𝑓𝑛. 

Then,  ‖h𝛼 − 𝑥‖ = ‖𝛼𝑏𝛿𝑒1 + (1 − 𝛼)𝛿𝑒2‖ ≤ b|𝛼|𝛿 + 𝑏|1 − 𝛼|𝛿 = b𝛿. 

So ‖h𝛼 − 𝑥‖ is minimized for 𝛼 ∈ [0,1] and its minimum value would be less than or equal to 𝑏𝛿. 

Now fix 𝑦 ∈ 𝐸(𝑚) of the form ∑∞
𝑛=1 β𝑛𝑓𝑛 such that ∑∞

𝑛=1 β𝑛   = 1 with β𝑛 ≥ 0, ∀𝑛 ∈ ℕ. 

Then,   
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‖y − 𝑥‖ = ‖∑

∞

𝑘=1

β𝑘𝑓𝑘 − ∑

∞

𝑘=1

𝛾𝑘𝑓𝑘‖ = ‖∑

∞

𝑘=1

β𝑘𝑓𝑘 − ∑

∞

𝑘=1

𝛾𝑘𝑓𝑘‖                                       

= ‖∑

∞

𝑘=1

(β𝑘 − 𝛾𝑘)𝑓𝑘‖                                                                                

        = ∫
1

0

𝑡 |∑

∞

𝑘=1

(β𝑘 − 𝛾𝑘)𝑓𝑘| 𝑑𝑚 =  ∫
1

0

|∑

∞

𝑘=1

(β𝑘 − 𝛾𝑘)𝑡𝑓𝑘| 𝑑𝑚                  

≥ |∫
1

0

∑

∞

𝑘=1

(β𝑘 − 𝛾𝑘)𝑡𝑓𝑘𝑑𝑚|                                                                  

   = |∑

∞

𝑘=1

(β𝑘 − 𝛾𝑘)|                                                                                        

     = |1 − ∑

∞

𝑘=1

𝛾𝑘|                                                                                                

    = 𝛿                                                                                                                   

Hence, 

 

‖y − 𝑥‖ ≥ 𝑏𝛿 ≥ ‖h𝛼 − 𝑥‖. 

Now, define Λ: = {h𝛼   ∶   𝛼 ∈ [0,1]}. Clearly, Λ is the contiunous image of a compact set and so it is a compact 

subset of 𝐸(𝑚), It is also easy to see that it is convex. 

 

Now for any ℎ ∈ Λ,  

𝑠(ℎ) = 𝑠(𝑥) + ‖h − 𝑥‖ ≤ 𝑠(𝑥) + ‖𝑇h − 𝑥‖ = 𝑠(𝑇h) but this follows 

 = limsup
𝑛

‖𝑇ℎ − 𝑥(𝑛)‖ then similarly to the inequality (2.1) 

 ≤ limsup
𝑛

‖𝑇ℎ − 𝑇(𝑥(𝑛))‖ + limsup
𝑛

‖𝑥(𝑛) − 𝑇(𝑥(𝑛))‖ 

 ≤ limsup
𝑛

‖ℎ − 𝑥(𝑛)‖ + limsup
𝑛

‖𝑥(𝑛) − 𝑇(𝑥(𝑛))‖ 

    ≤ limsup
𝑛

‖ℎ − 𝑥(𝑛)‖ + 0                                                                                                                                   

 = 𝑠(ℎ).      

 

Hence, 𝑠(ℎ) ≤ 𝑠(𝑇h) ≤ 𝑠(ℎ) and so 𝑠(𝑇h) = 𝑠(ℎ). Hence, 𝑠(𝑥) + ‖𝑇h − 𝑥‖ = 𝑠(𝑥) + ‖h − 𝑥‖. Therefore,  

‖𝑇h − 𝑥‖ = ‖h − 𝑥‖ 

and so 𝑇ℎ ∈ Λ but this means 𝑇(Λ) ⊆ Λ and since 𝑇 is continuous, Schauder’s Fixed Point Theorem [18] tells us 

that 𝑇 has a fixed point such that 𝑇ℎ = ℎ. 

Therefore, 𝐸(𝑚) has fpp(ne) as desired. 
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