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Abstract In 1970, Cesàro Sequence Spaces was introduced by Shiue.  In 1981, Kızmaz defined difference 

sequence spaces for ℓ∞, c0 and c. Then, in 1983, Orhan introduced Cesàro Difference Sequence Spaces. In this 

study, first we discuss the fixed point property for these spaces. Then, we recall that Goebel and Kuczumow 

showed that there exists a very large class of closed, bounded, convex subsets in Banach space of absolutely 

summable scalar sequences, ℓ1  with fixed point property for nonexpansive mappings. So we consider an 

analogue result for a Köthe-Toeplitz Dual of a Cesàro Difference Sequence Space. We show that there exists a 

large class of closed, bounded and convex subsets of these spaces with fixed point property for affine 

nonexpansive mappings. 
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1. Introduction and preliminaries 

There is a strong relation between reflexivity and fixed point property for non-expansive mappings. It is an open 

question whether or not every non-reflexive fails the fixed point property for non-expansive mappings but it was 

shown by Lin [12] that a non-reflexive Banach space failing to have the fixed point property for non-expansive 

mappings can be renormed to have the fixed point property for non-expansive mappings. Lin showed this fact 

by setting an equivalent norm on Banach space of absolutely summable scalar sequences, ℓ1. Because of sharing 

many common properties, it is natural to ask if 𝑐0, Banach space of scalar sequences converging to 0,  can be 

renormed to have the fixed point property for non-expansive mappings as another well known classical non-

reflexive Banach space. Maria and Hernandes Lineares [13] obtained the first example for the class of 

nonreflexive Banach spaces which can be renormed to have the fixed point property for affine nonexpansive 

mappings and their space was the Banach space of Lebesgue integrable functions on [0,1], 𝐿1[0,1]. It can be 

said that all these works are inspired by the work of Goebel and Kuczumow [9]. Goebel and Kuczumow showed 

that there exists very large class of non-weakly compact, closed, bounded and convex subsets of ℓ1 respect to 

weak* topology of ℓ1 with fixed point property for non-expansive mappings.  

Thus, in this study, we work on Goebel and Kuczumow analogy for a Banach space contained in ℓ1. The space 

we consider is a Köthe-Toeplitz Dual of a Cesàro Difference Sequence Space. We show that there exists a very 

large class of closed, bounded and convex subsets of the space with the fixed point property for non-expansive 

mappings under affinity condition. 

We recall that the Cesàro sequence spaces  
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ces𝑝 = {𝑥 = (𝑥𝑛)𝑛 ⊂ ℝ| (∑ (
1

𝑛
∑ |𝑥𝑘|𝑛

𝑘=1 )
𝑝

∞
𝑛=1 )

1
𝑝⁄

< ∞} 

and  

ces∞ = {𝑥 = (𝑥𝑛)𝑛 ⊂ ℝ| sup
𝑛

1

𝑛
∑ |𝑥𝑘|𝑛

𝑘=1 < ∞} 

were introduced by Shiue [17] in 1970, where 1 ≤ 𝑝 < ∞. It has been shown that ℓ𝑝 ⊂ ces𝑝for 1 < 𝑝 ≤ ∞. 

Moreover, it has been shown that Cesàro sequence spaces ces𝑝for 1 < 𝑝 < ∞are seperable reflexive Banach 

spaces. Furthermore, it was also proved by Cui-Hudzik [2], Cui-Hudzik-Li [3] and Cui-Meng-Pluciennik [4] 

that Cesàro sequence spaces ces𝑝for 1 < 𝑝 < ∞ have the fixed point property. They prove this result using 

different methods. One method is to calculate Garcia-Falset coefficient. It is known that if Garcia-Falset 

coefficient is less than 2 for a Banach space, then it has the fixed point property for nonexpansive mappings [8]. 

Using this fact, since they calculate this coefficient for ces𝑝 as 21/𝑝 similary to what it is for ℓ𝑝, they point the 

result for the Cesàro sequence spaces. Another fact is that they see that the space has normal structure for 1 <

𝑝 < ∞.Then using the fact via Kirk [11] that reflexive Banach spaces with normal structure has the fixed point 

property, they easily deduce that the space has the fixed point property for 1 < 𝑝 < ∞. Their results on Cesàro 

sequence spaces as a survey can be seen in [1].   

Later, in 1981, Kızmaz [10] introduced difference sequence spaces for ℓ∞, cand c0 where they are the Banach 

spaces of bounded, convergent and null sequences 𝑥 = (𝑥𝑛)𝑛, respectively. As it is seen below, his definitions 

for these spaces were given using difference operator applied to the sequence 𝑥, △ 𝑥 = (𝑥𝑘 − 𝑥𝑘+1)𝑘. 

ℓ∞(△) = {𝑥 = (𝑥𝑛)𝑛 ⊂ ℝ| △ 𝑥 ∈ ℓ∞}, 

c(△) = {𝑥 = (𝑥𝑛)𝑛 ⊂ ℝ| △ 𝑥 ∈ c}, 

c0(△) = {𝑥 = (𝑥𝑛)𝑛 ⊂ ℝ| △ 𝑥 ∈ c0}. 

Kızmaz investigated Köthe-Toeplitz Duals and some properties of these spaces. 

Furthermore, Cesàro sequence spaces 𝑋𝑝 of non-absolute type were defined by Ng and Lee [14] in 1977 as 

follows: 

𝑋𝑝 = {𝑥 = (𝑥𝑛)𝑛 ⊂ ℝ| (∑ |
1

𝑛
∑ 𝑥𝑘

𝑛
𝑘=1 |

𝑝
∞
𝑛=1 )

1
𝑝⁄

< ∞} 

and  

𝑋∞ = {𝑥 = (𝑥𝑛)𝑛 ⊂ ℝ| sup
𝑛

|
1

𝑛
∑ 𝑥𝑘

𝑛
𝑘=1 | < ∞}, 

where 1 ≤ 𝑝 < ∞. They prove that 𝑋𝑝  is linearly isomorphic and isometric to ℓ𝑝  for 1 ≤ 𝑝 ≤ ∞. Thus, one 

would easily deduce that they have similar properties in terms of the fixed point theory. That is, for 1 < 𝑝 < ∞ 

they have the fixed point property for nonexpansive mappings but for other two cases they fail. 

 

Later, in 1983, Orhan [15] introduced Cesàro Difference Sequence Spaces by the following definitions: 

𝐶𝑝 = {𝑥 = (𝑥𝑛)𝑛 ⊂ ℝ| (∑ |
1

𝑛
∑ △ 𝑥𝑘

𝑛
𝑘=1 |

𝑝
∞
𝑛=1 )

1
𝑝⁄

< ∞} 

and  

𝐶∞ = {𝑥 = (𝑥𝑛)𝑛 ⊂ ℝ| sup
𝑛

|
1

𝑛
∑ △ 𝑥𝑘

𝑛
𝑘=1 | < ∞}, 

where 1 ≤ 𝑝 < ∞ and △ 𝑥𝑘 = 𝑥𝑘 − 𝑥𝑘+1 for each 𝑘 ∈ ℕ. He noted that their norms are given as below for any 

𝑥 = (𝑥𝑛)𝑛: 

‖𝑥‖𝑝
∗ = |𝑥1| + (∑ |

1

𝑛
∑△ 𝑥𝑘

𝑛

𝑘=1

|

𝑝∞

𝑛=1

)

1
𝑝⁄

and  ‖𝑥‖∞
∗ = |𝑥1| + sup

𝑛
|
1

𝑛
∑△ 𝑥𝑘

𝑛

𝑘=1

| 

respectively. 

Orhan showed that there exists a linear bounded operator 𝑆: 𝐶𝑝 → 𝐶𝑝 for 1 ≤ 𝑝 ≤ ∞ such that Köthe-Toeplitz 

𝛽 −Duals of these spaces are given respectively as follows: 
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𝑆(𝐶𝑝)𝛽 = {𝑎 = (𝑎𝑛)𝑛 ⊂ ℝ|(𝑛𝑎𝑛)𝑛 ∈ ℓ𝑞} where 1 < 𝑝 < ∞ and 𝑞 =
𝑝

𝑝 − 1
, 

𝑆(𝐶1)𝛽 = {𝑎 = (𝑎𝑛)𝑛 ⊂ ℝ|(𝑛𝑎𝑛)𝑛 ∈ ℓ∞} and 

𝑆(𝐶∞)𝛽 = {𝑎 = (𝑎𝑛)𝑛 ⊂ ℝ|(𝑛𝑎𝑛)𝑛 ∈ ℓ1}. 

It might be better to use the notation 𝑋𝑝(△) instead of 𝐶𝑝 for 1 ≤ 𝑝 ≤ ∞ since we also recalled the difference 

sequence spaces and used similar type of notation. 

We note that Orhan also proved that 𝑋𝑝 ⊂ 𝑋𝑝(△)  for 1 ≤ 𝑝 ≤ ∞ strictly. Also, one can clearly see that 𝑋𝑝(△) 

is linearly isomorphic and isometric to ℓ𝑝 for 1 ≤ 𝑝 ≤ ∞. Thus, one would easily deduce that they have similar 

properties in terms of the fixed point theory. That is, for 1 < 𝑝 < ∞ they have the fixed point property for 

nonexpansive mappings but for other two cases they fail. 

Note also that Köthe-Toeplitz Dual for 𝑝 = ∞ case in Orhan’s study and ℓ∞ case in Kızmaz study coincides.  

Furthermore, Et and Çolak [5] generalized the spaces introduced in Kızmaz’s work [10] in the following way 

for 𝑚 ∈ ℕ.  

ℓ∞(△𝑚) = {𝑥 = (𝑥𝑛)𝑛 ⊂ ℝ| △𝑚 𝑥 ∈ ℓ∞}, 

c(△𝑚) = {𝑥 = (𝑥𝑛)𝑛 ⊂ ℝ| △𝑚 𝑥 ∈ c}, 

c0(△𝑚) = {𝑥 = (𝑥𝑛)𝑛 ⊂ ℝ| △𝑚 𝑥 ∈ c0} 

where △ 𝑥 = (△ 𝑥𝑘) = (𝑥𝑘 − 𝑥𝑘+1)𝑘 , △0 𝑥 = (𝑥𝑘)𝑘 , △𝑚 𝑥 = (△𝑚 𝑥𝑘) = (△𝑚−1 𝑥𝑘 −△𝑚−1 𝑥𝑘+1)𝑘 and 

△𝑚 𝑥𝑘 = ∑ (−1)𝑖(𝑚
𝑖

)𝑚
𝑖=0 𝑥𝑘+𝑖  for each 𝑘 ∈ ℕ. 

Also, Et [6] and Tripathy et. al. [18] generalized the space introduced by Orhan in the following way for 𝑚 ∈ ℕ. 

𝑋𝑝(△𝑚) = {𝑥 = (𝑥𝑛)𝑛 ⊂ ℝ| (∑ |
1

𝑛
∑ △𝑚 𝑥𝑘

𝑛
𝑘=1 |

𝑝
∞
𝑛=1 )

1
𝑝⁄

< ∞} 

and  

𝑋∞(△𝑚) = {𝑥 = (𝑥𝑛)𝑛 ⊂ ℝ| sup
𝑛

|
1

𝑛
∑ △𝑚 𝑥𝑘

𝑛
𝑘=1 | < ∞} 

where 1 ≤ 𝑝 < ∞. Then, it is seen that that Köthe-Toeplitz Dual for 𝑝 = ∞ case in Et’s study [6] and ℓ∞ case in 

Et and Çolak study [5] coincides such that Köthe-Toeplitz Dual was given as below for any 𝑚 ∈ ℕ. 

𝐷𝑚 ≔ {𝑎 = (𝑎𝑛)𝑛 ⊂ ℝ|(𝑛𝑚𝑎𝑛)𝑛 ∈ ℓ1} 

= {𝑎 = (𝑎𝑘)𝑘 ⊂ ℝ ∶   ‖𝑎‖ = ∑ 𝑘𝑚|𝑎𝑘|

∞

𝑘=1

< ∞}. 

Note that 𝐷𝑚 ⊂ ℓ1 for any 𝑚 ∈ ℕ. 

One can see that corresponding function space for these duals can be given as below for any 𝑚 ∈ ℕ: 

𝑈𝑚 ≔ {
𝑓: [0,1] → ℝ
measurable

: ‖𝑓‖ =  ∫ 𝑡𝑚|𝑓(𝑡)|𝑑𝑡

1

0

< ∞ }. 

Note that 𝐿1[0,1] ⊂ 𝑈𝑚 and 𝐷𝑚 is the space when counting measure is used for 𝑈𝑚. 

As we have already stated, in this study, we consider Goebel and Kuczumow [9] analogy for a Köthe-Toeplitz 

Dual of a Cesàro Difference Sequence Space. We show that there exists a large class of closed, bounded and 

convex subsets of Köthe-Toeplitz Dual for 𝑋∞(△) with fixed point property for affine nonexpansive mappings. 

We need to note that Nezir and Mustafa are working on a Köthe-Toeplitz Dual of a generalized Cesàro 

Difference Sequence Space to extend our work on more general space containing the one we study in this paper. 

Now we provide some preliminaries before giving our main results.  

 

Definition 1.1. Let (𝑋, ∥⋅∥) be a Banach space and 𝐶 is a non-empty closed, bounded, convex subset. 

1.  If 𝑇: 𝐶 → 𝐶  is a mapping such that for all 𝜆 ∈ [0,1]  and for all 𝑥, 𝑦 ∈ 𝐶 , 𝑇((1 − 𝜆)𝑥 + 𝜆 𝑦) = (1 −

𝜆)𝑇(𝑥) + 𝜆 𝑇(𝑦) then 𝑇 is said to be an  affine mapping. 

2.  If  𝑇: 𝐶 → 𝐶 is a mapping such that  ∥ 𝑇(𝑥) − 𝑇(𝑦) ∥≤∥ 𝑥 − 𝑦 ∥     𝑓𝑜𝑟  𝑎𝑙𝑙  𝑥, 𝑦 ∈ 𝐶 then 𝑇 is said to be a  

nonexpansive mapping. 
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Also, if for every nonexpansive mapping 𝑇: 𝐶 → 𝐶, there exists 𝑧 ∈ 𝐶 with 𝑇(𝑧) = 𝑧, then 𝐶 is said to have the  

fixed point property for nonexpansive mappings [fpp(ne)]. 

 

Remark 1.1. In 1979, Goebel and Kuczumow [9] showed there exists a large class of closed, bounded and 

convex subsets of ℓ1  using a key lemma they obtained. Their lemma says that if {𝑥𝑛} is a sequence in ℓ1 

converging to 𝑥 in weak-star topology, then for any 𝑦 ∈ ℓ1,  

 𝑟(𝑦) = 𝑟(𝑥) + ‖𝑦 − 𝑥‖1  𝑤ℎ𝑒𝑟𝑒  𝑟(𝑦) = 𝑙𝑖𝑚𝑠𝑢𝑝
𝑛

‖𝑥𝑛 − 𝑦‖1  . 

Since Köthe-Toeplitz Dual for 𝑋∞(△) is contained in ℓ1 and in fact it is isometrically isomorphic to ℓ1, Goebel 

and Kuczumow’s lemma above (Lemma 1 in [9]) applies in Köthe-Toeplitz Dual for 𝑋∞(△).  We will call this 

fact ∴. 

 

2. Main Result 

In this section, we consider Goebel and Kuczumow analogy for a Köthe-Toeplitz Dual ofa Cesàro Difference 

Sequence Space. We show that there exists a large class of closed, bounded and convex subsets of Köthe-

Toeplitz Dual for 𝑋∞(△) with fixed point property for affine nonexpansive mappings.  

Now, we consider the following class of closed, bounded and convex subsets. Note that here we will be using 

the ideas similar to those in the section 2 of Ph.D. thesis of Everest [7], written under supervision of Chris 

Lennard , where Everest firstly provides Goebel and Kuczumow’s proofs in detailed. 

 

Example 2.1. Fix 𝑏 ∈ (0,1). Define a sequence (𝑓𝑛)𝑛∈ℕ by setting 𝑓1: = 𝑏 𝑒1,𝑓2: =
𝑏 𝑒2

2
,  and 𝑓𝑛: =

1

𝑛
𝑒𝑛, for all 

integers 𝑛 ≥ 3 where the sequence (𝑒𝑛)𝑛∈ℕ  is the canonical basis of both 𝑐0 and ℓ1 . Next, we can define a 

closed, bounded, convex subset 𝐸 = 𝐸𝑏 of 𝑆(𝐶∞ )𝛽 by  

𝐸: = {∑

∞

𝑛=1

𝑡𝑛𝑓𝑛:  ∀𝑛 ∈ ℕ, 𝑡𝑛 ≥ 0  𝑎𝑛𝑑  ∑

∞

𝑛=1

𝑡𝑛 = 1}  . 

 

Theorem 2.1. For any 𝑏 ∈ (0,1), the set 𝐸 defined as in the example above has the fixed point property for 

affine ‖ , ‖-nonexpansive mappings. 

 

Proof.  Fix 𝑏 ∈ (0,1).Let 𝑇: 𝐸 → 𝐸 be an affine nonexpansive mapping. Then, since 𝑇 is affine, by Lemma 

1.1.2 in the Ph.D. thesis of Everest [7] written under supervision of Lennard, there exists a sequence 

(𝑥(𝑛))
𝑛∈ℕ

∈ 𝐸 such that ‖𝑇𝑥(𝑛) − 𝑥(𝑛)‖
𝑛
→ 0. Without loss of generality, passing to a subsequence if necessary, 

there exists 𝑥 ∈ 𝑆(𝐶∞)𝛽 such that 𝑥(𝑛) converges to 𝑥 in weak∗ topology. Then, by Goebel Kuczumow analog 

fact ∴ given in the last part of the previous section, we can define a function 𝑠: 𝑆(𝐶∞)𝛽 → [0, ∞) by  

 𝑠(𝑦) = limsup
𝑛

‖𝑥(𝑛) − 𝑦‖    , ∀𝑦 ∈ 𝑆(𝐶∞)𝛽 

and so  

 𝑠(𝑦) = 𝑠(𝑦) + ‖𝑥 − 𝑦‖  , ∀𝑦 ∈ 𝑆(𝐶∞)𝛽 . 

Now define  the weak* closure of the set 𝐸 as it is seen below.  

𝑊: = 𝐸
𝑤∗

= {∑

∞

n=1

𝑡𝑛𝑓𝑛:  𝑒𝑎𝑐ℎ  𝑡𝑛 ≥ 0  𝑎𝑛𝑑  ∑

∞

𝑛=1

𝑡𝑛 ≤ 1} 

Case 1:𝑥 ∈ 𝐸. 

Then, ∀n ∈ ℕ, we have 𝑠(𝑇𝑥) = 𝑠(𝑥) + ‖𝑇𝑥 − 𝑥‖ and   

𝑠(𝑇𝑥) = limsup
𝑛

‖𝑇𝑥 − 𝑥(𝑛)‖                                                       

                ≤ limsup
𝑛

‖𝑇𝑥 − 𝑇(𝑥(𝑛))‖ + limsup
𝑛

‖𝑥(𝑛) − 𝑇(𝑥(𝑛))‖ 

                                               ≤ limsup
𝑛

‖𝑥 − 𝑥(𝑛)‖ + 0 = 𝑠(𝑥).                                                           (2.1) 
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Therefore, 𝑠(𝑇𝑥) = 𝑠(𝑥) + ‖𝑇𝑥 − 𝑥‖ ≤ 𝑠(𝑥) and so ‖𝑇𝑥 − 𝑥‖ = 0. Thus,  𝑇𝑥 = 𝑥. 

 

Case 2: 𝑥 ∈ 𝑊\𝐸. 

Then, 𝑥 is of the form ∑∞
𝑛=1 𝛾𝑛𝑓𝑛  suchthat  ∑∞

𝑛=1 𝛾𝑛 < 1  𝑎𝑛𝑑  𝛾𝑛 ≥ 0, ∀𝑛 ∈ ℕ. 

Define 𝛿: = 1 − ∑∞
𝑛=1 𝛾𝑛and for 𝛼 ∈ [

−𝛾1

𝛿
,

𝛾2

𝛿
+ 1] define 

h𝛼: = (𝛾1 + 𝛼𝛿)𝑓1 + (𝛾2 + (1 − 𝛼)𝛿)𝑓2 + ∑

∞

𝑛=3

𝛾𝑛𝑓𝑛. 

Then,  ‖h𝛼 − 𝑥‖ = ‖𝛼𝑏𝛿𝑒1 + (1 − 𝛼)𝛿
𝑏 𝑒2

2
‖ = b|𝛼|𝛿 + 𝑏|1 − 𝛼|𝛿. 

‖h𝛼 − 𝑥‖ is minimized for 𝛼 ∈ [0,1] and its minimum value would be 𝑏𝛿. 

Now fix 𝑦 ∈ 𝐸 of the form ∑∞
𝑛=1 𝑡𝑛𝑓𝑛 such that ∑∞

𝑛=1 𝑡𝑛   = 1 with 𝑡𝑛 ≥ 0, ∀𝑛 ∈ ℕ. 

Then,   

‖y − 𝑥‖ = ‖∑

∞

𝑘=1

𝑡𝑘𝑓𝑘 − ∑

∞

𝑘=1

𝛾𝑘𝑓𝑘‖ = b|𝑡1 − 𝛾1| + b|𝑡2 − 𝛾2| + ∑

∞

𝑘=3

|𝑡𝑘 − 𝛾𝑘| 

                 = b|𝑡1 − 𝛾1| + b|𝑡2 − 𝛾2| + 𝑏 ∑

∞

𝑘=3

|𝑡𝑘 − 𝛾𝑘| + (1 − 𝑏) ∑

∞

𝑘=3

|𝑡𝑘 − 𝛾𝑘| 

≥ b |∑

∞

𝑘=1

𝑡𝑘 − 𝛾𝑘| + (1 − 𝑏) ∑

∞

𝑘=3

|𝑡𝑘 − 𝛾𝑘|                              

= b |∑

∞

𝑘=1

𝑡𝑘 − ∑

∞

𝑘=1

𝛾𝑘| + (1 − 𝑏) ∑

∞

𝑘=3

|𝑡𝑘 − 𝛾𝑘|                      

= b|1 − (1 − 𝛿)| + (1 − 𝑏) ∑

∞

𝑘=3

|𝑡𝑘 − 𝛾𝑘|                            

Hence, 

 

‖y − 𝑥‖ ≥ 𝑏𝛿 + (1 − 𝑏) ∑

∞

𝑘=3

|𝑡𝑘 − 𝛾𝑘| ≥ 𝑏𝛿 

and we have the equality if and only if  (1 − 𝑏) ∑∞
𝑘=3 |𝑡𝑘 − 𝛾𝑘| = 0 which means we have ‖y − 𝑥‖ = 𝑏𝛿 if and 

only if 𝑡𝑘 = 𝛾𝑘 for every 𝑘 ≥ 3; or say, ‖y − 𝑥‖ = 𝑏𝛿 if and only if y = h𝛼 for some 𝛼 ∈ [0,1]. 

 

Now, define Λ: = {h𝛼   ∶   𝛼 ∈ [0,1]}. Clearly, Λ is the contiunous image of a compact set and so it is a compact 

subset of 𝐸. It is also easy to see that it is convex. 

Now for any ℎ ∈ Λ, since ‖y − 𝑥‖ achieves its minimum value at y = h𝛼, firstly we have  

𝑠(ℎ) = 𝑠(𝑥) + ‖h − 𝑥‖ ≤ 𝑠(𝑥) + ‖𝑇h − 𝑥‖ = 𝑠(𝑇h) but this follows 

                             = limsup
𝑛

‖𝑇ℎ − 𝑥(𝑛)‖ then similarly to the inequality (2.1) 

                             ≤ limsup
𝑛

‖𝑇ℎ − 𝑇(𝑥(𝑛))‖ + limsup
𝑛

‖𝑥(𝑛) − 𝑇(𝑥(𝑛))‖ 

                             ≤ limsup
𝑛

‖ℎ − 𝑥(𝑛)‖ + limsup
𝑛

‖𝑥(𝑛) − 𝑇(𝑥(𝑛))‖ 

    ≤ limsup
𝑛

‖ℎ − 𝑥(𝑛)‖ + 0                                                                           

                             = 𝑠(ℎ).                                                                             

Hence, 𝑠(ℎ) ≤ 𝑠(𝑇h) ≤ 𝑠(ℎ) and so 𝑠(𝑇h) = 𝑠(ℎ). Hence, 𝑠(𝑥) + ‖𝑇h − 𝑥‖ = 𝑠(𝑥) + ‖h − 𝑥‖. Therefore,  

‖𝑇h − 𝑥‖ = ‖h − 𝑥‖ 

and so 𝑇ℎ ∈ Λ but this means 𝑇(Λ) ⊆ Λ and since 𝑇 is continuous, Schauder’s Fixed Point Theorem [16] tells us 

that 𝑇 has a fixed point such that ℎ is the unique minimizer of ‖y − 𝑥‖  ∶ 𝑦 ∈ 𝐸 and 𝑇ℎ = ℎ. 

Therefore, 𝐸 has fpp(ne) as desired. 
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