Journal of Scientific and Engineering Research, 2021, 8(1):27-37

Research Article

ISSN: 2394-2630 CODEN(USA): JSERBR

The Fekete-Szegö Problem for Certain Subclass Bi-univalent Functions of Complex Order

Nizami Mustafa*, Taner Turaç

Department of Mathematics, Faculty of Science and Letters, Kafkas University, Kars, Turkey E-mail: nizamimustafa@gmail.com

Abstract In this paper, we introduce and investigate a subclass of analytic and bi-univalent functions of complex order on the open unit disk in the complex plane. Here, we solve the Fekete-Szegö problem for this function class.

Keywords Analytic functions, bi-univalent functions, coefficient bounds, Fekete-Szegö functional **2010 Mathematics Subject Classification:** Primary 30C45, 30C50, Secondary 30C80

1. Introduction

Let A be the class of the functions in the form

$$f(z) = z + a_2 z^2 + a_3 z^3 + \dots = z + \sum_{n=2}^{\infty} a_n z^n, \ a_n \in \mathbb{C}$$
, (1.1)

which are analytic on the open unit disk $U = \{z \in \mathbb{C} : |z| < 1\}$ in the complex plane.

We denote by S the subclass of A consisting of the functions which are also univalent in U. Some of the important subclass of S is the class $\Re(\alpha, \beta)$ that is defined as follows

$$\Re(\alpha,\beta) = \left\{ f \in S : \operatorname{Re}(f'(z) + \beta z f''(z)) > \alpha, z \in U \right\}, \alpha \in [0,1), \beta \ge 0$$

Gao and Zhou [12] investigated the class $\Re(\alpha,\beta)$ and showed some mapping properties of this class. Early, by Alintaş and Özkan [1] were investigated a subclass $\Re(\alpha,\beta,\tau)$, $\alpha \in (0,1]$, $\beta \in [0,1]$, $\tau \in \mathbb{C}^* = \mathbb{C} - \{0\}$ of the analytic and bi-univalent functions consisting of functions $f \in S$ which satisfy the condition

$$f \in T, \ \left|\frac{1}{\tau}\left[f'(z) + \beta z f''(z) - 1\right]\right| \le \alpha, z \in U$$

Here T is subclass of A consisting of the functions f in the form

$$f(z) = z - a_2 z^2 - a_3 z^3 - \dots = z - \sum_{n=2}^{\infty} a_n z^n, \ a_n \ge 0$$

They found necessary and sufficient conditions for the functions belonging to this class.

It is well-known that (see, for example, [8]) every function $f \in S$ has an inverse f^{-1} which is defined by

$$f^{-1}(f(z)) = z, z \in U, f(f^{-1}(w)) = w, w \in U_{r_0} = \{w : |w| < r_0(f)\}, r_0(f) \ge \frac{1}{4}$$

where

$$f^{-1}(w) = w - a_2 w^2 + (2a_2^2 - a_3) w^3 - (5a_2^3 - 5a_2a_3 + a_4) w^4 + \dots, w \in U_{r_0};$$

$$A_2 = -a_2, A_3 = 2a_2^2 - a_3, A_4 = -5a_2^3 + 5a_2a_3 - a_4.$$

As known that a function $f \in A$ is said to be bi-univalent in U if both f and f^{-1} are univalent in U and U_{r_0} , respectively. Let Σ denote the class of bi-univalent functions in U given (1.1).

In 1967, Lewin [18] showed that for every function $f \in \Sigma$ of the form (1.1) for the second coefficient true the inequality $|a_2| < 1.51$. In 1967, Brannan and Clunie [2] conjectured that $|a_2| < \sqrt{2}$ for $f \in \Sigma$. In 1984, Tan [26] obtained the inequality $|a_2| < 1.485$, which is the best known estimate for the functions in the class Σ . In 1985, Kedzierawski [15] proved the Brannan-Clunie conjecture for the bi-starlike functions. Brannan and Taha [3] obtained estimates on the initial coefficients $|a_2|$ and $|a_3|$ for the functions in the classes of bi-starlike functions of order α and bi-convex functions of order α .

The study of the bi-univalent functions was revived by Srivastava et al. [23] and a considerably large number of sequels to the work of Srivastava et al. [23] have appeared in the literature. In particular, several results on

coefficient estimates for the initial coefficients $|a_2|, |a_3|$ and $|a_4|$ were proved for various subclasses of Σ (see, for example, [6, 10, 14, 21, 24, 25, 27 and 28]).

Recently, Deniz [7] and Kumar et al. [17] both extended and improved the results of Brannan and Taha [3] by generalizing their classes by means of the principle of subordination between analytic functions.

Despite the numerous studies mentioned above, the problem of estimating the coefficients $|a_n|$ (n = 2, 3, ...)for the general class functions Σ is still open (see also [25] in this connection).

As known that one of the important tools in the theory of analytic functions is the functional $H_2(1) = a_3 - a_2^2$ which is known as the Fekete-Szegö functional and one usually considers the further generalized functional $a_3 - \mu a_2^2$, where μ is real or complex number (see [9]). Also, finding the upper bound of $|a_3 - \mu a_2^2|$ is known as the Fekete-Szegö problem in the literature. In 1969, Keogh and Merkes [16] solved the Fekete-Szegö problem for the classes starlike and convex functions. Someone can see the Fekete-Szegö problem for the classes of starlike functions of order α and convex functions of order α at special cases in the paper of Orhan et al. [20]. On the other hand, recently, Çağlar and Aslan [4] have obtained Fekete-Szegö inequality for a subclass of the bi-univalent functions. Also, Zaprawa [29, 30] have studied on Fekete-Szegö problem for some subclasses of the bi-univalent functions. In special cases, he solved the Fekete-Szegö problem for the subclasses of the bi-starlike functions of order α and of bi-convex functions of order α .

Motivated by the aforementioned works, we define a new subclass of bi-univalent functions Σ as follows.

Definition 1.1. A function $f \in \Sigma$ given by (1.1) is said to be in the class $\Im_{\Sigma}(\alpha, \beta, \tau), \alpha \in [0,1), \beta \ge 0$. $\tau \in \mathbb{C}^* = \mathbb{C} - \left\{0\right\}$, if the following conditions are satisfied

$$\operatorname{Re}\left\{1+\frac{1}{\tau}\left[f'(z)+\beta z f''(z)-1\right]\right\} > \alpha, z \in U$$

and

$$\operatorname{Re}\left\{1+\frac{1}{\tau}\left[g'(w)+\beta wg''(w)-1\right]\right\} > \alpha, w \in U_{r_0},$$

where $g = f^{-1}$ is inverse of the function f.

Remark 1.1. If we take $\tau = 1$ in Definition 1.1 we have function class $\Im_{\Sigma}(\alpha, \beta, 1) = H_{\Sigma}(\alpha, \beta)$, $\alpha \in [0,1), \beta \ge 0$. That is.

$$f \in H_{\Sigma}(\alpha,\beta) \Leftrightarrow \operatorname{Re}(f'(z) + \beta z f''(z)) > \alpha, z \in U$$

and

$$\operatorname{Re}(g'(w) + \beta w g''(w)) > \alpha, w \in U_{r_0}$$

where $g = f^{-1}$ is inverse of the function f.

Remark 1.2. Choose $\beta = 0$ in Definition 1.1 we have function class $\mathfrak{I}_{\Sigma}(\alpha, 0, \tau), \ \alpha \in [0, 1), \tau \in \mathbb{C}^* = \mathbb{C} - \{0\}$. That is,

$$f \in \mathfrak{I}_{\Sigma}(\alpha, 0, \tau) \Leftrightarrow \operatorname{Re}\left\{1 + \frac{1}{\tau}\left[f'(z) - 1\right]\right\} > \alpha, z \in U$$

and

$$\operatorname{Re}\left\{1+\frac{1}{\tau}\left[g'(w)-1\right]\right\} > \alpha, w \in U_{r_0}$$

where $g = f^{-1}$ is inverse of the function f.

Remark 1.3. Letting $\beta = 0$, $\tau = 1$ in Definition 1.1, we have function class $\Im_{\Sigma}(\alpha, 0, 1) = \Re_{\Sigma}(\alpha, 0)$, $\alpha \in [0,1)$ That is

$$f \in \Re_{\Sigma}(\alpha, 0) \Leftrightarrow \operatorname{Re}(f'(z)) > \alpha, z \in U_{and} \operatorname{Re}(g'(w)) > \alpha, w \in U_{r_0}$$

where $g = f^{-1}$ is inverse of the function f.

Remark 1.4. Setting $\beta = 1$ in Definition 1.1, we have function class $\mathfrak{I}_{\Sigma}(\alpha, 1, \tau), \quad \alpha \in [0, 1), \tau \in \mathbb{C}^* = \mathbb{C} - \{0\}$. That is.

$$f \in \mathfrak{I}_{\Sigma}(\alpha, 1, \tau) \Leftrightarrow \operatorname{Re}\left\{1 + \frac{1}{\tau}\left[f'(z) + zf''(z) - 1\right]\right\} > \alpha, z \in U$$

and

$$\operatorname{Re}\left\{1+\frac{1}{\tau}\left[g'(w)+wg''(w)-1\right]\right\} > \alpha, w \in U_{r_0}$$

where $g = f^{-1}$ is inverse of the function f.

Remark 1.5. Choose $\beta = 1$, $\tau = 1$ in Definition 1.1, we have function class $\Im_{\Sigma}(\alpha, 1, 1) = \Re_{\Sigma}(\alpha, 1)$, $\alpha \in [0, 1)$. That is,

$$f \in \mathfrak{R}_{\Sigma}(\alpha, 1) \Leftrightarrow \operatorname{Re}(f'(z) + zf''(z)) > \alpha, z \in U_{and} \operatorname{Re}(g'(w) + wg''(w)) > \alpha, w \in U_{r_0},$$

where $g = f^{-1}$ is inverse of the function f.

Recently, the class $\Im_{\Sigma}(\alpha, \beta, \tau)$ were investigated by Mustafa and Turaç [19]. They give the upper bound estimates for three initial coefficients of the functions belonging to this class.

The class $\mathfrak{I}_{\Sigma}(\alpha,0,1) = \mathfrak{R}_{\Sigma}(\alpha,0) = N_{\Sigma}(\alpha)$ were investigated by Srivastava et al. [24] and by Çağlar et al. [5].

Recently, by Frasin [11] investigated subclass $\mathfrak{I}_{\Sigma}(\alpha,\beta,1) = H_{\Sigma}(\alpha,\beta), \alpha \in [0,1), \beta > 0$ with condition

$$2(1-\alpha)\sum_{n=1}^{+\infty}\frac{(-1)^{n-1}}{\beta n+1} \le 1$$

5n+1 . He found estimates on two first coefficients for the functions in this class.

The object of the present paper is to find a upper bound estimate for the Fekete-Szegö functional of the functions belonging to the class $\Im_{\Sigma}(\alpha, \beta, \tau)$. In the study, results were also obtained for some subclasses

functions belonging to the class 2 (1979). In the study, results were also obtained for some subclasses from the results obtained.

To prove our main results, we need require the following lemmas.

Lemma 1.1. (See, [22]) If $p \in P$, then the sharp estimates $|p_n| \le 2, n = 1, 2, 3, ...$ are provided, where P is the family of all functions p, analytic in U for which p(0) = 1 and $\operatorname{Re}(p(z)) > 0, z \in U$, and $p(z) = 1 + p_1 z + p_2 z^2 + \cdots, z \in U$. (1.2)

Lemma 1.2. (See, [13]) If $p \in \mathbf{P}$, then

$$2p_{2} = p_{1}^{2} + (4 - p_{1}^{2})x,$$

$$4p_{3} = p_{1}^{3} + 2(4 - p_{1}^{2})p_{1}x - (4 - p_{1}^{2})p_{1}x^{2} + 2(4 - p_{1}^{2})(1 - |x|^{2})y$$

$$|x| < 1$$

for some x, y with $|x| \le 1$, $|y| \le 1$.

Lemma 1.3. (See, [13]) The power series given in (1.2) converges in U to the function p in P if and only if the Toeplitz determinants

$$D_{n} = \begin{vmatrix} 2 & p_{1} & p_{2} & \cdots & p_{n} \\ p_{-1} & 2 & p_{1} & \cdots & p_{n-1} \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ p_{-n} & p_{-n+1} & p_{-n+2} & \cdots & 2 \end{vmatrix}, n = 1, 2, 3, ...$$

and $p_{-n} = p_n$, are all nonnegative. They are strictly positive except for

$$p(z) = \sum_{n=1}^{m} \rho_n p_0(e^{it_n z}), \ \rho_n > 0, \ t_n \ real$$

and $t_n \neq t_k$ for $n \neq k$ in this case $D_n > 0$ for n < m-1 and $D_n = 0$ for $n \ge m$.

Note 1.1. If $p \in P$, then according to Lemma 1.3 $p_n \ge 0$ for each n = 1, 2, 3, On the other hand, from the Lemma 1.1 $|p_n| \le 2$ for each n = 1, 2, 3, For these reasons, for p_1 which is first coefficient in (1.2), we will assume that $|4 - p_1^2| = |4 - |p_1|^2| = 4 - |p_1|^2$ throughout our study.

2. Fekete-Szegö problem for the function class $\Im_{\Sigma}(lpha,eta, au)$

In this section, we give solution of the Fekete-Szegö problem in two different $\mu \in \mathbb{C}$ and $\mu \in \mathbb{R}$ case for the function class $\mathfrak{T}_{\Sigma}(\alpha, \beta, \tau)$.

Firstly, we will give the following theorem on the solution of the Fekete-Szegö problem in the case $\mu \in \mathbb{C}$.

Theorem 2.1. Let the function
$$f$$
 given by (1.1) be in the class $\mathfrak{I}_{\Sigma}(\alpha,\beta,\tau)$ and $\mu \in \mathbb{C}$. Then,

$$|a_{3} - \mu a_{2}^{2}| \leq \begin{cases} \frac{2|\tau|(1-\alpha)}{3(1+2\beta)}, & \text{if } |1-\mu| \in [0, \mu_{0}), \\ |1-\mu| \frac{|\tau|^{2}(1-\alpha)^{2}}{(1+\beta)^{2}}, & \text{if } |1-\mu| \geq \mu_{0}, \end{cases}$$

 $\mu_0 = \frac{2(1+\beta)^2}{3|\tau|(1-\alpha)(1+2\beta)}$ where

Proof. Let
$$f \in \mathfrak{I}_{\Sigma}(\alpha, \beta, \tau)$$
, $\alpha \in [0,1)$, $\beta \in [0,1]$, $\tau \in \mathbb{C}^* = \mathbb{C} - \{0\}$ and $\mu \in \mathbb{C}$. Then,
 $1 + \frac{1}{\tau} [f'(z) + \beta z f''(z) - 1] = \alpha + (1 - \alpha) p(z)$

$$(2.1)$$

and

$$1 + \frac{1}{\tau} \Big[g'(w) + \beta w g''(w) - 1 \Big] = \alpha + (1 - \alpha) q(w), \qquad (2.2)$$

where functions $p(z) = 1 + p_1 z + p_2 z^2 + \cdots$ and $q(w) = 1 + q_1 w + q_2 w^2 + \cdots$ are in the class P. Comparing the coefficients in (2.1) and (2.2), we have

$$a_{2} = \frac{\tau(1-\alpha)}{2(1+\beta)}p_{1}, a_{3} = \frac{\tau(1-\alpha)}{3(1+2\beta)}p_{2}$$
(2.3)

and

$$-a_{2} = \frac{\tau(1-\alpha)}{2(1+\beta)}q_{1}, \quad 2a_{2}^{2} - a_{3} = \frac{\tau(1-\alpha)}{3(1+2\beta)}q_{2}$$
(2.4)

From the first equalities of (2.3) and (2.4), we can write

$$\frac{\tau(1-\alpha)}{2(1+\beta)}p_1 = a_2 = -\frac{\tau(1-\alpha)}{2(1+\beta)}q_1$$
and $p_1 = -q_1$
(2.5)

Subtracting the second equality of (2.4) from the second equality of (2.3) and considering (2.5), we obtain

$$a_{3} = a_{2}^{2} + \frac{\tau (1 - \alpha)}{6(1 + 2\beta)} (p_{2} - q_{2})$$
(2.6)

From (2.6), we get

$$a_{3} - \mu a_{2}^{2} = (1 - \mu) a_{2}^{2} + \frac{\tau (1 - \alpha)}{6(1 + 2\beta)} (p_{2} - q_{2})$$
(2.7)

Since $p_1 = -q_1$, in view of Lemma 1.2, we can write

$$2p_{2} = p_{1}^{2} + (4 - p_{1}^{2})x,$$

$$2q_{2} = q_{1}^{2} + (4 - q_{1}^{2})y \implies p_{2} - q_{2} = \frac{4 - p_{1}^{2}}{2}(x - y)$$
(2.8)

for some x, y with $|x| \le 1$, $|y| \le 1$

Note that if we take $|p_1| = t$, we can write $|4 - p_1^2| = |4 - |p_1|^2| = |4 - t^2| = 4 - t^2$ (see, Note 1.1 at the end of the first section). That is, we may assume without restriction that $t \in [0, 2]$. In that case, substituting the expression (2.8) in (2.7), setting $|x| = \xi$, $|y| = \eta$ and using triangle inequality, we write $|a_3 - \mu a_2^2| \le d_1(t) + d_2(t)(\xi + \eta) = \varphi(\xi, \eta)$

where

$$d_{1}(t) = |1 - \mu| \frac{|\tau|^{2} (1 - \alpha)^{2}}{4(1 + \beta)^{2}} t^{2} \ge 0 \quad \text{and} \quad d_{2}(t) = \frac{|\tau| (1 - \alpha) (4 - t^{2})}{12(1 + 2\beta)} \ge 0$$

It is clear that the maximum of the function $\varphi_{\text{occurs at}}(\xi,\eta) = (1,1)$. Therefore,

$$\varphi(\xi,\eta) \le \max\left\{\varphi(\xi,\eta):\xi,\eta\in[0,1]\right\} = \varphi(1,1) = d_1(t) + 2d_2(t)$$

That is,

$$\left|a_{3}-\mu a_{2}^{2}\right| \leq d_{1}(t)+2d_{2}(t)$$
 (2.10)

Let us define the function $G:[0,2] \to \mathbb{R}$ as follows

$$G(t) = d_1(t) + 2d_2(t)$$
(2.11)

for each fixed $\tau \in \mathbb{C}^* = \mathbb{C} - \{0\}$. Substituting the value d_1 and d_2 in (2.11), we obtain

The value
$$G(t) = C(\alpha, \beta, \mu, \tau)t^2 + D(\alpha, \beta, \tau)$$

where

$$C(\alpha,\beta,\mu,\tau) = \frac{(1-\alpha)^{2}|\tau|^{2}}{4(1+\beta)^{2}} \left[|1-\mu| - \frac{2(1+\beta)^{2}}{3(1-\alpha)|\tau|(1+2\beta)} \right], D(\alpha,\beta,\tau) = \frac{2|\tau|(1-\alpha)}{3(1+2\beta)}$$

Now, we must investigate the maximum of the function G on the interval $\begin{bmatrix} 0,2 \end{bmatrix}$.

Journal of Scientific and Engineering Research

(2.9)

By simple computation, we have

$$G'(t) = 2C(\alpha, \beta, \mu, \tau)t$$

We will examine the sign of the function G'(t) depending on the different cases of the sign of $C(\alpha, \beta, \mu, \tau)$ as follows.

1. Let us $C(\alpha, \beta, \mu, \tau) \ge 0$. Then $G'(t) \ge 0$, so G is an increasing function. Therefore,

$$G(t) \le \max\left\{G(t): t \in (0,2)\right\} = G(2) = d_1(2) = |1-\mu| \frac{|\tau|^2 (1-\alpha)^2}{(1+\beta)^2}$$
(2.12)

2. Let us
$$C(\alpha, \beta, \mu, \tau) < 0$$
. Then $G'(t) < 0$; that is, G is a decreasing function. Therefore,
 $G(t) \le \max \{G(t) : t \in (0, 2)\} = G(0) = 2d_2(0) = \frac{2|\tau|(1-\alpha)}{3(1+2\beta)}$
(2.

From (2.12) and (2.13), we conclude that

$$G(t) \le \max\left\{G(t): t \in (0,2)\right\} = \left|1 - \mu\right| \frac{\left|\tau\right|^2 (1 - \alpha)^2}{(1 + \beta)^2}$$
(2.14)

 $_{\mathrm{if}}\left|1-\mu\right|\geq\mu_{0}\ _{\mathrm{and}}$

$$G(t) \le \max\{G(t) : t \in (0,2)\} = \frac{2|\tau|(1-\alpha)}{3(1+2\beta)}$$
(2.15)

 $\mu_{0} = \frac{2(1+\beta)^{2}}{3|\tau|(1-\alpha)(1+2\beta)}.$

Thus, from (2.9), (2.10) and (2.14), (2.15), the proof of Theorem 2.1 is completed. In the special cases from Theorem 2.1, we arrive at the following results.

Corollary 2.1. Let the function f given by (1.1) be in the class $\mathfrak{I}_{\Sigma}(\alpha,\beta,1) = H_{\Sigma}(\alpha,\beta)$ and $\mu \in \mathbb{C}$. Then,

$$|a_{3} - \mu a_{2}^{2}| \leq \begin{cases} \frac{2(1-\alpha)}{3(1+2\beta)}, & \text{if } |1-\mu| \in [0,\mu_{0}), \\ |1-\mu| \frac{(1-\alpha)^{2}}{(1+\beta)^{2}}, & \text{if } |1-\mu| \geq \mu_{0}, \end{cases}$$

 $\mu_{0} = \frac{2(1+\beta)^{2}}{3(1-\alpha)(1+2\beta)}$ where

Corollary 2.2. Let the function f given by (1.1) be in the class $\mathfrak{I}_{\Sigma}(\alpha, 0, \tau)$ and $\mu \in \mathbb{C}$. Then,

Journal of Scientific and Engineering Research

(2.13)

$$|a_3 - \mu a_2^2| \le \begin{cases} \frac{2|\tau|(1-\alpha)}{3}, & \text{if } |1-\mu| \in [0,\mu_0), \\ |1-\mu||\tau|^2 (1-\alpha)^2, & \text{if } |1-\mu| \ge \mu_0, \end{cases}$$

where $\mu = \frac{2}{3|\tau|(1-\alpha)}$

Corollary 2.3. Let the function f given by (1.1) be in the class $\mathfrak{I}_{\Sigma}(\alpha, 0, 1) = \mathfrak{R}_{\Sigma}(\alpha, 0) = N_{\Sigma}(\alpha)$ and $\mu \in \mathbb{C}_{. Then,}$

$$|a_3 - \mu a_2^2| \le \begin{cases} \frac{2(1-\alpha)}{3}, & \text{if } |1-\mu| \in [0, \mu_0), \\ |1-\mu|(1-\alpha)^2, & \text{if } |1-\mu| \ge \mu_0, \end{cases}$$

 $\mu = \frac{2}{3(1-\alpha)}$ where

Corollary 2.4. Let the function f given by (1.1) be in the class $\Im_{\Sigma}(\alpha, 1, \tau)$ and $\mu \in \mathbb{C}$. Then, $\left[2(1-\alpha)|\tau|\right]$

$$|a_{3} - \mu a_{2}^{2}| \leq \begin{cases} \frac{|-(-\alpha)/(1)|}{9}, & \text{if } |1 - \mu| \in [0, \mu_{0}), \\ |1 - \mu| \frac{(1 - \alpha)^{2} |\tau|^{2}}{4}, & \text{if } |1 - \mu| \geq \mu_{0}, \end{cases}$$

 $\mu_0 = \frac{8}{9|\tau|(1-\alpha)}$ where

Corollary 2.5. Let the function f given by (1.1) be in the class $\mathfrak{T}_{\Sigma}(\alpha, 1, 1) = \mathfrak{R}_{\Sigma}(\alpha, 1)$. Then,

$$|a_3 - \mu a_2^2| \le \begin{cases} \frac{2(1-\alpha)}{9}, & \text{if } |1-\mu| \in [0, \mu_0), \\ |1-\mu| \frac{(1-\alpha)^2}{4}, & \text{if } |1-\mu| \ge \mu_0, \end{cases}$$

 $\mu_0 = \frac{8}{9(1-\alpha)}$

In the case $\mu \in \mathbb{R}$, Theorem 2.1 can be given as follows.

Theorem 2.2. Let the function f given by (1.1) be in the class $\mathfrak{I}_{\Sigma}(\alpha,\beta,\tau)$ and $\mu \in \mathbb{R}$. Then,

$$\begin{aligned} \left|a_{3}-\mu a_{2}^{2}\right| &\leq \begin{cases} \left(1-\mu\right)\frac{\left|\tau\right|^{2}\left(1-\alpha\right)^{2}}{\left(1+\beta\right)^{2}}, & \text{if } \mu < 1-\mu_{0}, \\ \frac{2\left|\tau\right|\left(1-\alpha\right)}{3\left(1+2\beta\right)}, & \text{if } 1-\mu_{0} \leq \mu \leq 1+\mu_{0}, \\ \frac{3\left(1+2\beta\right)}{3\left(1+2\beta\right)}, & \text{if } 1-\mu_{0} \leq \mu \leq 1+\mu_{0}, \end{cases} \\ \mu_{0} &= \frac{2\left(1+\beta\right)^{2}}{3\left|\tau\right|\left(1-\alpha\right)\left(1+2\beta\right)} \end{aligned}$$

where

Proof. Since the proof of the Theorem 2.2 is similar to the proof of Theorem 2.1, we do not give this proof. Taking $\mu = 0$ and $\mu = 1$ in Theorem 2.2, we can easily arrive at the following result.

Corollary 2.6. Let the function f given by (1.1) be in the class $\mathfrak{I}_{\Sigma}(\alpha,\beta,\tau), \tau \in \mathbb{C}^* = \mathbb{C} - \{0\}$. Then, $\left[\frac{2(1-\alpha)|\tau|}{2}, \quad \text{if } |\tau| \in (0,\tau_{0}).\right]$

$$|a_{3}| \leq \begin{cases} \frac{1}{3(1+2\beta)}, & \text{if } |\tau| \in (0,\tau_{0}), \\ \frac{1}{(1-\alpha)^{2}|\tau|^{2}}, & \text{if } |\tau| \geq \tau_{0}, \end{cases}$$

where $\tau_0 = \frac{2(1+\beta)^2}{3(1-\alpha)(1+2\beta)}$ and

$$|a_3 - a_2^2| \le \frac{2|\tau|(1-\alpha)}{3(1+2\beta)}$$

Note 2.1. The first result of Corollary 2.6 confirms the second inequality of Theorem 1 in [19]. **Remark 2.1** Numerous consequences of the results obtained in the Corollary 2.1 - 2.6 can indeed be deduced by specializing the various parameters involved.

3. Results and Discussion

In this paper, we introduce and investigate a subclass of analytic and bi-univalent functions of complex order on the open unit disk in the complex plane. Here, the Fekete-Szegö problem solved for this function class.

Consequence, we give the upper bound estimate for the coefficient $|a_3|$ of the functions belonging to this class.

4. Conclusion

In this paper we have given the Fekete-Szegö inequality for a new class of analytic and bi-univalent functions.

References

- [1]. Altıntaş, O., Özkan, Ö. (2000). Neighborhoods of a Class of Analytic Functions with Negative Coefficients. *Applied Mathematics Letters*, 13: 63-67.
- [2]. Brannan, D. A., Clunie, J. (1980). Aspects of contemporary complex analysis. Proceedings of the NATO Advanced Study Institute held at the University of Durham, Durham, July 120, 1979, Academic Press New York, London.
- [3]. Brannan, A., Taha, T. S. (1986). On some classes of bi-univalent functions. In: S. M. Mazhar, A. Hamoui and N. S. Faour (Eds.), Math. Anal. and Appl., Kuwait; February 18-21, 1985, in: KFAS

Proceedings Series, vol. 3, Pergamon Press, Elsevier Science Limited, Oxford, 1988, pp. 53-60. See also Studia Univ. Babeş-Bolyai Math. 31: 70-77.

- [4]. Çağlar, M., Aslan, S. (2016). Fekete-Szegö inequalities for subclasses of bi-univalent functions satisfying subordinate conditions. *AIP Conference Proceedings* 1726, 020078, doi:http://dx.doi.org/10.1063/1.4945904.
- [5]. Çağlar, M., Deniz, E., Srivastava, H. M. (2017). Second Hankel determinant for certain subclasses of bi-univalent function. *Turk J Math*, 41(3): 694-706.
- [6]. Çağlar, M., Orhan, H., Yağmur, N. (2013). Coefficient bounds for new subclasses of bi-univalent functions. *Filomat*, 27: 1165-1171.
- [7]. Deniz, E. (2013). Certain subclasses of bi-univalent functions satisfying subordinate conditions. *J Class Anal*, 2: 49-60.
- [8]. Duren, P. L. (1983). Univalent Functions. Grundlehren der Mathematishen Wissenschaften, Vol. 259, Springer, New York.
- [9]. Fekete, M., Szegö, G. (1933). Eine Bemerkung uber ungerade schlichte Funktionen. J London Math Soc, 8: 85-89.
- [10]. Frasin, B. A., Aouf, M. K. (2011). New subclasses of bi-univalent functions. Appl Math Lett, 24: 1569-1573.
- [11]. Frasin, B. A. (2014). Coefficient bounds for certain classes of bi-univalent functions. *Hacettepe Journal of Mathematics and Statistics*, 43: 383-389.
- [12]. Gao, C. Y., Zhou, S. Q. (2007). Certain subclass of starlike functions. Appl Math Comput, 187: 176-182.
- [13]. Grenander, U., Szegö, G. (1958). *Toeplitz form and their applications*. California Monographs in Mathematical Sciences, University California Press, Berkeley.
- [14]. Hamidi, S. G., Jahangiri, J. M. (2014). Faber polynomial coefficient estimates for analytic bi-close-toconvex functions. *CR Acad Sci Paris Ser-I*, 352: 17-20.
- [15]. Kedzierawski, A. W. (1985). Some remarks on bi-univalent functions. Ann Univ Mariae Curie-Sklodowska Sect A, 39: 77-81.
- [16]. Keogh, F. R., Merkes, E. P. (1969). A coefficient inequality for certain classes of analytic functions. *Proc Amer Math Soc*, 20: 8-12.
- [17]. Kumar, S. S., Kumar, V., Ravichandran, V. (2013). Estimates for the initial coefficients of bi-univalent functions. *Tamsui Oxford J Inform Math Sci*, 29: 487-504.
- [18]. Lewin, M. (1967). On a coefficient problem for bi-univalent functions. *Proc Amer Math Soc*, 18: 63-68.
- [19]. Mustafa, N. and Turaç, T. (2020). On the Upper Bound Estimates for the Coefficients of Certain Subclass Bi-univalent Functions of Complex order. *Journal of Scientific and Engineering Research*, 7(6): 19-20.
- [20]. Orhan, H., Deniz, E., Raducanu, D. (2010). The Fekete-Szegö problem for subclasses of analytic functions defined by a differential operator related to conic domains. *Comput Math Appl*, 59: 283-295.
- [21]. Orhan, H., Magesh, N., Balaji, V. K. (2015). Initial coefficient bounds for a general class of biunivalent functions. *Filomat*, 29: 1259-1267.
- [22]. Pommerenke, C. H. (1975). Univalent Functions. Vandenhoeck and Rupercht, Göttingen.
- [23]. Srivastava, H. M., Mishra, A. K., Gochhayat, P. (2010). Certain subclasses of analytic and bi-univalent functions. *Appl Mat Lett*, 23: 1188-1192.
- [24]. Srivastava, H. M., Bulut, S., Çağlar, M., Yağmur, N. (2013). Coefficient estimates for a general subclass of analytic and bi-univalent functions. *Filomat*, 27: 831-842.
- [25]. Srivastava, H. M., Eker, S. S., Ali, R. M. (2015). Coefficient estimates for a certain class of analytic and bi-univalent functions. *Filomat*, 29: 1839-1845.
- [26]. Tan, D. L. (1984). Coefficient estimates for bi-univalent functions. *Chinese Ann Math Ser A*, 5: 559-568.

- [27]. Xu, Q.H., Gui, Y.C., Srivastava, H. M. (2012). Coefficient estimates for a certain subclass of analytic and bi-univalent functions. *Appl Math Lett*, 25: 990-994.
- [28]. Xu, Q. H., Xiao, H. G., Srivastava, H. M. (2012). A certain general subclass of analytic and biunivalent functions and associated coefficient estimate problems. *Appl Math Comput*, 218: 11461-11465.
- [29]. Zaprawa, P. (2014). On the Fekete-Szegö problem for classes of bi-univalent functions. *Bull Belg Math Soc Simon Stevin*, 21: 169-178.
- [30]. Zaprawa, P. (2014). Estimates of initial coefficients for bi-univalent functions. Abstr Appl Anal, Article ID 357480: 1-6.