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Abstract In this paper, we introduce and investigate some subclasses of analytic functions in the open unit disk 

centred on origin. Here, various geometric properties of these classes are examined. Coefficient bounds, 
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of the convexity is determined for one of these classes. 
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1. Introduction 

Let  be the class of analytic functions in the open unit disk  in the complex plane, 

normalized by  of the for 

,                                (1.1) 

and  denote the class of all functions in  which are also univalent in .  

Let  denote the subclass of all functions in  of the form 

, .                            (1.2) 

For , we denote by ,  and  the subclasses of  that are, respectively, 

starlike, convex and close-to-convex with respect to starlike function  (need not be normalized) of order  in 

the disk .  

By definition, we have (see for details, [4, 5], also [8])     

                                     (1.3) 

                                     (1.4) 

and  
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for . For convenience, are, respectively, well-known 

starlike, convex and close-to-convex functions in . For details on these classes, one could refer to the 

monograph by Goodman [5].      

For ,  an interesting generalization of the class  is the class  

 

We will denote   

Note 1.1. For ,   the class  is the first time introduced in this paper. Clearly, 

in the case  we have .  

Note that, we will use  instead , respectively, 

if . Also, we will denote  instead of  when .  

For ,  an generalization of the classes  and  is the class  

 .                   (1.5)  

In special case, we have . 

We also denote  instead  if . Thus, for ,  

.                    (1.6) 

The class  was investigated by Altintaş et al. [2] and [3] (in a more general way ) and 

(subsequently) by Irmak et al. [6]. In particular, the class  was considered earlier by Altintaş [1].  

For , we introduce an generalization of the classes  and  

provided by  as follows 

 .            (1.7) 

In special case, we have  and .  

Note that, we will use  instead  if .  

Thus for  
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.              (1.8) 

In special case, we have . 

In this paper, two new subclasses  and  of the analytic functions in  are introduced. 

Coefficient bounds, distortion bound and growth theorems for the functions belonging to these classes are given. 

Radius of convexity for these classes are also determined. 

 

2. Coefficient bounds for the classes  and  

In this section, we examine some inclusion results of the classes   and . Firstly, we 

give a sufficient condition for the class  by the following theorem.  

Theorem 2.1. Let . Then, the function  belongs to the class  if the following condition is 

satisfied    

.                                      (2.1) 

The result is sharp for the function 

                                (2.2) 

for  each . 

Proof. From the definition of the class , for  a function 

 if and only if  

                           (2.3) 

To show that the condition (2.3) is fulfilled, it is sufficient to show that  

                             (2.4) 

Using the series expansion (1.1) of the function  and triangle inequality, we write 

 
As can be easily seen that the necessary and sufficient condition for the fraction on the right hand side of the last 

inequality to be bounded with the number  is the realization of the following inequality   
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. 

On the other hand, this inequality is equivalent to (2.1). 

Thus, the inequality (2.4) is true if the condition (2.1) is satisfied. That is, the condition (2.3) is provided. Hence, 

. 

Now let's see that this inequality occurs as an equality for the functions given by the formula (2.2). Really if we 

take ,  in the inequality (2.1), we can easily see that the following 

equality is provided 

. 

Thus the proof of Theorem 2.1 is completed. 

If we take  in Theorem 2.1, we can readily deduce the following corollary. 

Corollary 2.1. The function  given by (1.1) belongs to the class  if the following condition is 

satisfied  

. 

The result obtained here is sharp. 

By setting  in Corollary 2.1, we have the following result. 

Corollary 2.2. (see [7, p. 110, Theorem 1]) The function  given by (1.1) belongs to the class  if the 

following condition is satisfied    

. 

The result obtained here is sharp.  

By taking  in Corollary 2.1, we arrive at the following result. 

Corollary 2.3. (see [7, p. 110, Corollary of Theorem1]) The function  given by (1.1) belongs to the class 

 if the following condition is satisfied    

. 

The result obtained here is sharp.  

If we take  in Theorem 2.1, we have the following corollary. 

Corollary 2.4. The function  given by (1.1) belongs to the class  if the following condition is 

satisfied    

. 

The result obtained here is sharp.  

By taking  in Corollary 2.4, we have the following result.  
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Corollary 2.5. The function  given by (1.1) belongs to the class  if the following condition is satisfied    

. 

The result obtained here is sharp.  

For the function in class , the converse of Theorem 2.1 is also true. 

Theorem 2.2. Let . Then, the function  belongs to the class  if and only if    

.                                       (2.1) 

The result obtained here is sharp. 

Proof. Since the proof of the sufficiency of the theorem is the same as the proof of Theorem 2.1, it is sufficient 

to prove the necessary part of the theorem.  

Assume that , then  

.                       (2.5) 

Using the series expansion (1.2) of the function , by simple computation the inequality (2.5) we can write as 

follows 

, .                            (2.6) 

The expression in the parentheses in the inequality (2.6) is real if choose  real. Thus, from the inequality (2.6) 

letting  through real values, we obtain  

; 

that is, 

 
which equivalent to (2.1). 

Thus, the proof of Theorem 2.2 is completed. 

Special case of Theorem 2.2 has been proved by Altintaş et al [2],  (here ). 

If we take  in Theorem 2.2, we can readily deduce the following corollary. 

Corollary 2.6. The function  given by (1.2) belongs to the class  if and only if    

. 

Remark 2.1. The result obtained in Corollary 2.6 verifies to Theorem 1 in [2].  
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By taking  in Corollary 2.6, we have the following result. 

Corollary 2.7. (see [7, p. 110, Theorem 2]) The function  given by (1.2) belongs to the class  if and 

only if    

. 

By taking  in Corollary 2.6, we have the following result. 

Corollary 2.8. (see [7, p. 111, Corollary 2]) The function  given by (1.2) belongs to the class  if and 

only if    

. 

By setting  in Theorem 2.2, we arrive at the following corollary. 

Corollary 2.9. The function  given by (1.2) belongs to the class  if and only if    

. 

By taking  in Corollary 2.9, we have the following result. 

Corollary 2.10. The function  given by (1.2) belongs to the class  if and only if    

. 

Now, on the coefficient bounds of the functions belonging in the class , we give the following 

lemma.   

Lemma 2.1. Let the function  given by (1.2) belongs to the class . Then,  

  and  . 

Poof. Using Theorem 2.2, we write 

. 

From this, the first assertion of the lemma is obtained immediately. 

Similarly to the above, we can write 

; 

that is, 

. 

Using the first assertion of lemma, we arrive at the following inequality 
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which immediately yields the second assertion of Lemma 2.1. 

Thus, the proof of Lemma 2.1 is completed. 

If we take  in Lemma 2.1, we arrive at the following corollary. 

Corollary 2.11. Let the function  given by (1.2) belongs to the class . Then,  

   and   . 

Remark 2.2. The result obtained in the Corollary 2.11 verifies to Lemma 2 (with ) of [2].   

From Theorem 2.2, we have the following inequalities foe the coefficients. 

Corollary 2.12. If , then  

 
Numerous consequences of Corollary 2.12 can indeed be deduced by specializing the various parameters 

involved. Many of these consequences were proved by earlier workers on the subject (cf., e.g., [1, 7, 9]). 

 

3. Distortion bound and growth theorems for the class  

In this section, we give distortion and growth theorems for the function class . 

Our coefficient bound estimates we found, enable us to prove the following theorems. 

Theorem 3.1. If , then 

              (3.1) 

The result obtained here is sharp. 

Proof. Using Theorem 2.2, we write 

. 

Hence,  

.                                             (3.2) 

If apply it, we obtain 

                 (3.3) 

Also, using the inverse triangle inequality and the inequality (3.2), we can write 

                  (3.4) 

Unification of the inequalities (3.3) and (3.4), gives us the inequality (3.1). 

Thus, the proof of Theorem 3.1 is completed. 
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If we take  in Theorem 3.1, we arrive at the following corollary. 

Corollary 3.1. If , then  

 

By taking  in Corollary 3.1, we have the following result. 

Corollary 3.2. (see [7, p. 111, Theorem 4]) If , then 

 

By setting  in Corollary 3.1, we have the following result. 

Corollary 3.3. (see [7, p. 112, Corollary of Theorem 4]) If , then 

 

If we take  in Theorem 3.1, we arrive at the following corollary. 

Corollary 3.4. If , then  

 

By taking  in Corollary 3.4, we have the following result. 

Corollary 3.5. If , then  

 

Theorem 3.2. If , then 

               (3.5) 

The result obtained here is sharp. 

Proof. Using the series expansion (1.2) of the function  and triangle inequality, we obtain 

.                     (3.6)  

In view of Theorem 2.2, we can write 

. 

From this, using the inequality (3.2) we obtain   

.          (3.7) 

Considering (3.7) in the (3.6), we obtain 
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.                                               (3.8) 

Similarly, we obtain 

.                   (3.9) 

Unification of the inequalities (3.8) and (3.9), immediately gives the inequality (3.5). 

Thus, the proof of Theorem 3.2 is completed. 

If we take  in Theorem 3.2, we arrive at the following corollary. 

Corollary 3.6. If , then 

 

By setting  in Corollary 3.6, we have the following result. 

Corollary 3.7 (see [7, p. 112, Theorem 6]). If , then 

 

By taking  in Corollary 3.6, we have the following result. 

Corollary 3.8 (see [7, p. 112, Corollary of Theorem 6]). If , then 

 

By setting  in Theorem 3.2, we arrive at the following corollary. 

Corollary 3.9. If  then 

 

By taking  in Corollary 3.9, we have the following result. 

Corollary 3.10. If , then 

 
 

 

4. Radius of the convexity for class  

In this section, we determine the radius of the convexity for class . 

Theorem 4.1. The function  is convex in the disk 

, 

where  
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. 

Proof. To prove the theorem, it suffices to show that  for .  

Using the series expansion (1.2) of the function ,  by simple computation we obtain 

 .                      (4.1) 

The fraction to the right hand of the inequality (4.1) is bounded by  if and only if 

 
which is equivalent to 

.                                                           (4.2) 

Also, according to Theorem 2.2 we write 

.                                              (4.3) 

It follows from (4.2) and (4.3) that inequality (4.2) will be true if 

 .                               (4.4) 

Solving the inequality (4.4) for , we obtain 

 .                            (4.5) 

From the inequality (4.5), obtained the result. 

Thus, the proof of Theorem 4.1 is completed. 

If we take   in Theorem 4.1, we arrive at the following corollary. 

Corollary 4.1. İf , then  is convex in the disk 

, 

where  

. 

By setting  in Corollary 4.1, we have the following result. 

Corollary 4.2. (see [7, p. 113, Theorem 8]). If , then  is convex in the disk 
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, 

where  

. 
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