
Available online www.jsaer.com

Journal of Scientific and Engineering Research

199

Journal of Scientific and Engineering Research, 2020, 7(9):199-203

Research Article

ISSN: 2394-2630

CODEN(USA): JSERBR

Exploring the Adapter Container Pattern in Kubernetes

Bhargav Bachina

Abstract This paper presents a comprehensive guide for deploying MERN (MongoDB, Express.js, React.js,

Node.js) stack applications on Amazon Web Services (AWS) Elastic Container Service (ECS). With the

increasing popularity of MERN stack for web development and the growing adoption of cloud computing,

efficient deployment strategies are essential. Leveraging AWS ECS offers scalability, reliability, and ease of

management. The paper provides an overview of MERN stack components, AWS ECS features, and a step-by-

step deployment process covering containerization, task definition creation, cluster setup, service configuration,

and load balancing. Practical examples, code snippets, and best practices are discussed to empower developers

and DevOps engineers in efficiently deploying MERN stack applications on AWS ECS, facilitating streamlined

development workflows and robust, cloud-native solutions.

Keywords Kubernetes, Docker, DevOps, Software Development, Software Engineering

Kubernetes is an open-source container orchestration engine for automating deployment, scaling, and

management of containerized applications. A pod is the basic building block of Kubernetes application.

Kubernetes manages pods instead of containers and pods encapsulate containers. A pod may contain one or

more containers, storage, IP addresses, and options that govern how containers should run inside the pod.

A pod that contains one container refers to a single container pod and it is the most common Kubernetes use

case. A pod that contains multiple co-related containers refers to a multi-container pod. There are a few patterns

for multi-container pods one of them is the adapter container pattern. In this post, we will see this pattern in

detail with an example project.

• What is Adapter Container

• Other Patterns

• Example Project

• Test With Deployment Object

• How to Configure Resource Limits

• When should we use this pattern?

• Summary

• Conclusion

1. What are adapter containers

There are so many applications that are heterogeneous in nature which means they don’t contain the same

interface or are not consistent with other systems. This pattern extends and enhances the functionality of current

containers without changing it as the sidecar container pattern. Nowadays, we know that we use container

technology to wrap all the dependencies for the application to run anywhere. A container does only one thing

and does that thing very well.

Imagine that you have a pod with a single container working very well but, it doesn't have the same interface as

other systems to integrate or work with it. How can you make this container have a unified interface with a

Bachina B Journal of Scientific and Engineering Research, 2020, 7(9):199-203

Journal of Scientific and Engineering Research

200

standardized format so that other systems can to your container? This adapter container pattern really helps

exactly in that situation.

Figure 1: Adapter Container Pattern

If you look at the above diagram, you can define any number of containers for Adapter containers and your main

container works along with it successfully. All the Containers will be executed parallelly and the whole

functionality works only if both types of containers are running successfully. Most of the time these adapter

containers are simple and small and consume fewer resources than the main container.

2. Other Patterns

There are other patterns that are useful for everyday Kubernetes workloads.

• Init Container Pattern

• Adapter Container Pattern

• Ambassador Container Pattern

3. Example Project

Here is an example project you can clone and run on your machine. You need to install Minikube as a

prerequisite.

https://github.com/bbachi/k8s-adaptor-container-pattern.git

Imagine your main container generates logs in text format and external systems need to consume these logs in a

JSON format. You need to have some mechanism to convert text files to JSON format.

Figure 2: Adapter Pattern

The Adapter container is a simple express node server that reads from the location /var/log/file.log and produces

JSON format. Let’s implement a simple project to understand this pattern. The Adapter container is a simple

express API that serves these logs as a JSON response. Here is the file server.js

https://gist.github.com/bbachi/c00c6e6a1a2e74a97f634ce7106863ba#file-server-js

Here is the Dockerfile that converts this app into a Docker image.

https://gist.github.com/bbachi/e5ab5e0cd85a5c7ff7fc9f32e0fe40ed#file-dockerfile

The following are the commands creating a Docker image and pushing into Docker Hub.

// build the Docker imagedocker build -t bbachin1/adapter-node-server

// list the imagesdocker images

// push the imagedocker push bbachin1/adapter-node-server

https://github.com/bbachi/k8s-adaptor-container-pattern.git
https://gist.github.com/bbachi/c00c6e6a1a2e74a97f634ce7106863ba#file-server-js
https://gist.github.com/bbachi/e5ab5e0cd85a5c7ff7fc9f32e0fe40ed#file-dockerfile

Bachina B Journal of Scientific and Engineering Research, 2020, 7(9):199-203

Journal of Scientific and Engineering Research

201

Figure 3: Docker Hub

Once the Docker image is ready and pushed into Docker Hub and it can be available publicly. You can pull it

when creating a pod. Here is a simple pod that has a main and adapter container. The main container is busybox

generating some logs to the path /var/log/file.log from the volume mount workdir location. Since the Adapter

container and main container runs parallel node express API will display the new log information every time you

hit in the browser.

https://gist.github.com/bbachi/75318bd1f3648a6dbe0b6371bfb1b6bf#file-pod-yml

// create the podkubectl create -f pod.yml

// list the podskubectl get po

// exec into podkubectl exec -it adapter-container-demo -c adapter-container -- /bin/sh# apt-get update && apt-get

install -y curl# curl localhost

You can install curl and query the local host and check the response.

Figure 4: Testing Adapter Container

4: Test with Deployment Object

Let’s create a deployment object with the same pod specification with 5 replicas. I have created a service with the

port type NodePort so that we can access the deployment from the browser. Pods are dynamic here and the

deployment controller always tries to maintain the desired state that’s why you can’t have one static IP Address to

access the pods so that you must create a service that exposes the static port to the outside world. Internally

service maps to port 3080 based on the selectors. You will see that in action in a while.

Figure 5: Deployment

Let’s look at the below deployment object where we define one main container and one adapter container. All the

containers run in parallel. The main container creates logs in the location /var/log/file.log. The adapter container

serves those log files in a JSON format on the REST API on port 3080. You will see that in action in a while.

https://gist.github.com/bbachi/18acf3a40950adf1514d39cecda46760#file-manifest-yml

Let’s follow these commands to test the deployment.

// create a deploymentkubectl create -f manifest.yml

// list the deployment, pods, and servicekubectl get deploy -o widekubectl get po -o widekubectl get svc -o wide

https://gist.github.com/bbachi/75318bd1f3648a6dbe0b6371bfb1b6bf#file-pod-yml
https://gist.github.com/bbachi/18acf3a40950adf1514d39cecda46760#file-manifest-yml

Bachina B Journal of Scientific and Engineering Research, 2020, 7(9):199-203

Journal of Scientific and Engineering Research

202

Figure 6: Deployment in action

In the above diagram, you can see 5 pods running in different IP addresses and the service object maps the

port 32063 to port 3080. You can access this deployment from the browser from the Kubernetes master IP

address 192.168.64.2 and the service port 32063.

http://192.168.64.2:32063/logs

Figure 7: Adapter container pattern

You can even test the pod with the following commands.

// exec into main container of the podkubectl exec -it <pod name> -c adapter-container -- /bin/sh

// install curl# apt-get update && apt-get install -y curl# curl localhost

5. How to Configure Resource Limits

Configuring resource limits is very important when it comes to Adapter containers. The main point we need to

understand here is all the containers run in parallel so when you configure resource limits for the pod you have to

take that into consideration.

• The sum of all the resource limits of the main containers as well as adapter containers (Since all the

containers run in parallel)

6. When Should We Use This Pattern

These are some of the scenarios where you can use this pattern.

• Whenever you want to extend the functionality of the existing single container pod without touching

the existing one.

• Whenever you want to enhance the functionality of the existing single container pod without touching

the existing one.

• Whenever there is a need to convert or standardize the format for the rest of the systems.

7. Summary

• A pod that contains one container refers to a single container pod and it is the most common Kubernetes

use case.

• The Adapter container pattern is a specialization of sidecar containers.

http://192.168.64.2:32063/logs

Bachina B Journal of Scientific and Engineering Research, 2020, 7(9):199-203

Journal of Scientific and Engineering Research

203

• The application containers and Adapter containers run in parallel which means all the containers run at

the same time. So that you need to sum up all the request/resource limits of the containers while

defining request/resource limits for the pod.

• All the pods in the deployment object don’t have static IP addresses so that you need a service object to

expose yourself to the outside world.

• The service object internally maps to the port container port based on the selectors.

• You can use this pattern where your application or main containers need to standardize some format for

the external systems.

8. Conclusion

In conclusion, Kubernetes stands as a powerful open-source tool for orchestrating containerized applications,

offering automation and scalability benefits. Understanding the concept of pods, the fundamental units managed

by Kubernetes, is crucial for effective application deployment. While single-container pods are common, multi-

container pods present diverse architectural possibilities, including the adapter container pattern explored in this

paper. Through the detailed examination of this pattern and its application in an example project, we've

underscored its significance in facilitating efficient communication and collaboration between co-related

containers within a pod. Furthermore, this paper has provided insights into other multi-container pod patterns,

emphasizing the importance of choosing the right architecture based on specific use cases. Practical

considerations such as configuring resource limits and determining the appropriate timing for pattern

implementation have also been addressed, contributing to a comprehensive understanding of Kubernetes best

practices.

References

[1]. Official Docker Guides https://docs.docker.com/get-started/overview/

[2]. Official Kubernetes Docs https://kubernetes.io/docs/home/

[3]. Container Design Patterns https://kubernetes.io/blog/2016/06/container-design-patterns/

https://docs.docker.com/get-started/overview/
https://kubernetes.io/docs/home/
https://kubernetes.io/blog/2016/06/container-design-patterns/

