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Abstract: Let )(zp be a polynomial of degree n , 
=

=
n

zazp
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 . In this paper we have been able to obtain a 

symmetric result concerning the maximum modulus of polynomial on two different radii. Our result provides 

generalizations of earlier proved results and opens new avenues for other results in the same field of research. 
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1-Introduction and Statement of Results 

Concerning maximum modulus of polynomial functions we have several results so far, among which 

a few are as follows. 
Theorem A. If is a polynomial of degree n, then for every 1R

)(max)(max
1

zpRzp
z

n

Rz ==
 .                                                                                           (1.1) 

The result is best possible and extremal polynomial is
nzzp =)( , ( )0  is a complex 

number. 

Inequality (1.1) is a simple deduction from the maximum modulus principle (for reference 

see [7] or [5]). 

For the case 1r  we have the following result. 

Theorem B.  If is a polynomial of degree n, then for 1r  
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 .                                                                                          (1.2) 

The result is best possible andextremal polynomial is . ( )0  is a complex 

number. 

Inequality (1.2) is due to Zerrantonello and Varga [9].  
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If we restrict ourselves to the class of polynomials having no zeros in , then the 

inequalities (1.1) and (1.2) can be sharpened. In this connection the following results are well 

known. 

Theorem C. If is a polynomial of degree n, having no zeros in , then 
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 .                                                                                  (1.3) 

The result is best possible and equality in (1.3) holds for , where  = . 

Theorem D. If is a polynomial of degree n, having no zeros in , then for 1r
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 +
 .                                                                                 (1.4) 

The result is best possible and equality in inequality (1.1.4) holds for 

n
z

zp 






 +
=

2

1
)( . 

The inequality (1.3) is due to Ankeny and Rivlin [1] and inequality (1.4) is due to Rivlin [8]. 

The following interesting result is due to Jain [3]. 

Theorem E. If is a polynomial of degree n, having all its zeros in  0,  kkz , then 

for Rkr   

11

),(),(
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+ nnnn RkR

RpM
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rpM
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Mir [4] generalized inequality (1.5) by introducing coefficients in it and proved the following  

Theorem F. If 
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)( is a polynomial of degree n, having all its zeros in  

0,  kkz , then for Rkr   
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(1.6)  

In this paper, our main aim is to generalize the above mentioned inequality (1.6) for lacunary 

type of polynomials. More specifically we prove the following  

Theorem 1.1. If 
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)( is a polynomial of degree n having all its zeros in  

1,  kkz , then for Rkr  , 
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Remark 1.3. If we put 1=  in Theorem 1.1, we get Theorem F. 

 

2. Lemmas 

 

To prove the main result, we need the following lemmas. 

Lemma 2.1. If ( ) 
=

=
n

zazp
0


 is a polynomial of degree n having no zeros in , 

then  
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The result is best possible with extremal polynomial
nkzzp )()( += . 

The above lemma is due to Govil, Rahman and Schmeisser [2].  

Qazi [6] generalized Lemma 1.1 and proved the following  

Lemma 2.2. If 
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0)( , n 1  is a polynomial of degree n not vanishing in 

, then  
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3. Proof of the Main Theorem 

Proof of Theorem 1.1.  Let kr 0 . Since )(zp has all its zeros in ,kz  1k . Therefore 

the polynomial )()( rzpzT =  has all its zeros in 1, 
r

k

r

k
z . 

Applying Lemma 2.2 to the polynomial )(zT  , we get 
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which implies 
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As )(' zp  is a polynomial of degree at most 1−n , we have by maximum modulus principle 

[5, p. 158, problem III 269] we have 
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Combining inequality (3.1) and (3.2) we have 
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Now, we have for  20   
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which implies 
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(3.3) 

Inequality (3.3) on simplification and using the fact that rR   reduces to 
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This is equivalent to inequality (1.7) and thus proof of the Theorem 1.1 is completed. 
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