
Available online www.jsaer.com

Journal of Scientific and Engineering Research

41

Journal of Scientific and Engineering Research, 2020, 7(8):41-48

Research Article

ISSN: 2394-2630

CODEN(USA): JSERBR

An Agent-based Algorithm for Conversion of UML Models to SQL by

Means of XML

Bennett E.O.
1
, Onwuegbuchulem Gift

2
, Sako, D. J. S.

3

Department of Computer Science, Rivers State University, Port Harcourt, Nigeria

E-mails:
1
bennett.okoni@ust.edu.ng,

2
giftonwuegbuchulem@gmail.com,

3
sunday.sako@ust.edu.ng

Abstract The emergence of the Unified Modeling Language (UML) as a quality for modeling systems has

supported the use of automated software tools that ease the conversion of UML models to software codes that

make system development very simple and fast. However, these automated tools have problems of inefficient

memory management and longer conversion time which causes irrelevant conversion hold up. This research is

aimed at designing an agent-based tool that will have memory efficient algorithm with minimal conversion time

which will convert UML classes directly to SQL code through XML as an intermediary language. The research

simply adopted experimental research design approach and object-oriented methodology to generate an efficient

conversion algorithm. The design was implemented using Java programming language tools. Comparing the

results of our implementation with the existing conversion tools shows that our objectives were met in terms of

quality and efficiency of the process.

Keywords Intelligent Agent, UML Models, SQL, XML

1. Introduction

Agent-based computing represents a novel software engineering paradigm that has emerged from merging two

technologies, namely Artificial Intelligence (AI) and object- oriented distributed computing [1]. Agent-based

systems aim to strike a balance between artificial intelligence and computational utility. Agents are intelligent,

autonomous, software components capable of interacting with others within an application, attaining a common

goal and thereby contributing to the resolution of some given problems. They are important because they inter-

operate within modern applications like electronic commerce and information retrieval.

Most software engineering paradigms are unable to provide structures and techniques that make it easier to

handle this complexity. Thus, there is a reason to develop a framework of software engineering that accounts for

the intentional dimensions, namely intents and motivations, goals and reasons, alternatives, beliefs, and

assumptions, in its methodologies. Against this background, one will argue that analyzing, designing, and

implementing software as a collection of interacting intelligent agents represents a promising approach [2] to

software engineering. An agent is an encapsulation of goals, know-how and resources. Agent-oriented

techniques provide a natural way for modeling complex systems, by decomposing its problem space into

autonomous agents and their interactions.

The Unified Modeling Language (UML), is a standardized modeling language consisting of an integrated set of

diagrams, developed to help systems and software developers for specifying, visualizing, constructing, and

documenting the artifacts of software systems, as well as for business modeling and other non-software systems.

Extensible Markup Language (XML) data maps best onto trees. Structured Query Language (SQL) data maps

best onto arrays. These approaches are two totally different ways of looking at the world. Likewise, both

relational databases and more object-oriented views of data such as XML can be applied to make sense of and

mailto:1bennett.okoni@ust.edu.ng
mailto:2giftonwuegbuchulem@gmail.com

Bennett EO et al Journal of Scientific and Engineering Research, 2020, 7(8):41-48

Journal of Scientific and Engineering Research

42

process the vast amounts of information around us. Both approaches are useful in the process of delivering

information to a user. XML is great at structuring data. Relational databases are great at storing and relating

data. How do you get the best out of these two different ways of looking at data? You can create a table that

contains a row for each part of your XML document.

The aim of this paper is to design a mechanism for the conversion of UML models to SQL through XML as

intermediate software in order to identify the correlation between the class diagrams of UML and XML.

2. Literature Review

Some database packages implement a "persistent parse tree" database schema to store XML. What this means is

that the entire XML document is decomposed, element by element, into individual nodes, and each node is

stored as a separate row in a database table, a table not specific to any particular XML language but able to

accept any XML data.

Another method for integrating XML with a SQL database is XML decomposition. An XML decomposition

database schema takes the opposite approach to persistent parse trees by creating a schema that entirely

encompasses your XML documents. Every element, as well as every single attribute of each element, has a

separate table. Rigid relational integrity is maintained, but at the price of flexibility. Both persistent parse trees

and decomposition are misguided attempts to integrate XML and SQL tightly.

(a) Overview of Software Agent: This article describes that though there is a rapid growth in the field of agent

technology, it is not satisfactory in terms of a software engineering [3].

(b) Conversion of UML models to XML Schema: This explained that the logical-level is a direct one-to-one

representation of the XML schema data structures in terms of a UML profile [4].

(c) UML to SQL Present Methodology: The present methodology works with two algorithms – algorithm 1

and algorithm 2. The methodology used the UML design to generate the nested tables of Nested Normal Form

(NNF) from UML class diagram by application of the algorithms [5].

(d)Unified Modeling Language (UML): This provides graphical constructs (elements) to build a model of an

application, which define the various components of the application, their structure, relationships and behavior

[6].

(e) Extensible Markup Language (XML): This comprises a set of tags that defines the dependent meaning of

data. XML overcomes some of the disadvantages of the more popular markup language, HTML (Hypertext

Markup Language) by simply permitting the user to generate and expound his own tags, this gives the user the

flexibility to precisely code and search documents [7].

(f) Goal Oriented Agent Modeling: The desires of agents are completely interpreted in the agent’s operations.

Not long ago, there is a growing effort in labelling goal modeling publications [8]

3. System Design

This exposes the structure of the architecture, elements, coherence, and data for a system to satisfy

specified requirements. Figure 3.1 shows the architecture of the proposed system and Figure 3.2 elaborates more

on the sequences of our approach towards generating an SQL code from the UML class diagram.

Validator

This is the first component of our system. We present the codified class diagram in a well-defined structure in

the form of mathematical formulation to the validator to validate its correctness using stored validation

algorithm

Schema

Hence the validator validates the class diagram; the validated file will be imported into the Transformer

component with the stored markup language schema definition (XSD).

Transformator

This component transforms the imported file into XML and further explain the shape of the class diagram using

the schema and transfers the XML to the generator component

Bennett EO et al Journal of Scientific and Engineering Research, 2020, 7(8):41-48

Journal of Scientific and Engineering Research

43

Generator

The generator component uses its algorithm to generate SQL code from the XML file.

(a) UML Class Diagram

This is the first step in our sequence. The Unified modeling Language (UML) class diagram is drawn using

Microsoft Visio application. The application possesses all the tools for making the UML model. Tools such as

Class, Member, Separator, Association, Aggregation, Composition, inheritance and separator etc are all there.

All these tools are used in Microsoft Visio to create our required UML class diagram

UML

CLASS

DIAGRAM

XSD

Schema

Codification of Class

diagram

Validation of the diagram

Transformation

Algorithm

Generating

Algorithm

XML File

SQL File

SQL CODE

Validator

Transformator

Generator

Schema

Figure 3.1: Architectural Design of the Proposed System

Bennett EO et al Journal of Scientific and Engineering Research, 2020, 7(8):41-48

Journal of Scientific and Engineering Research

44

.

(b) Codified UML - INPUT

This is the second stage where the UML class diagram is changed to text form by knowing the different entities,

their attributes and their relationship with each other that make up the class diagram.

(c) Mapping Process

Here the UML class is mapped to an XML element (<xs:element>) and a matching complex type declaration

(<xs:complexType>) in XML schema. The XML complexType will be able to carry attributes, method,

composition aggregation and generation.

(d) SQL Generator Algorithm

This is the algorithm that generates the SQL code equivalent to the XML mapped from the given UML codified

diagram. The output from here is the SQL code.

Algorithm for generation XML Document

 Here, an algorithm that assembles XML framework as regards stored XSD was designed.

The system draws out the features and techniques of each class in the algorithm then, go through all the classes

to know the kinds of associations that exist between that class and other classes in the schema.

The general algorithm for our approach is:

Algorithm ConvertUMLClass (Main Module)

ReadUML()

ValidateClassDiagram()

GenerateXML()

ValidateXMLDocument()

END.

Algorithm GenerateSQLfile

ReadXML()

GenerateSQL

END

Figure 3.2: Sequences of our Approach

Read UML Diagram

Codify UML Diagram to Text

Apply mapping rules for UML to XML

transformation

Apply XML file to SQL code generator

SQL code

UML Class Diagram- Ms Visio

viio

 Visio

Codified UML – INPUT

Mapping Process

 SQL Generator Algorithm

SQL code - OUTPUT

Bennett EO et al Journal of Scientific and Engineering Research, 2020, 7(8):41-48

Journal of Scientific and Engineering Research

45

(a) Algorithm ConvertUMLClass(Transformation Module)

C=first Class

While C!=Null

C=C.Next

Create New Element E

Create New Attribute Name

E.Name=CN

NbA=Number of attributes of the Class C

For i=1 to NbA do

Create New Attribute Attr(i).Name

Attr(i).Name=CA(i).An

Create New Element A

A(i).type= CA(i).At

A(i).visibility= CA(i).Av

A(i).defaultvalue= CA(i).Ad

End for

NbM=Number of methods of the Class C

For i=1 to i=NbM do

Create New Attribute Method(i).Name

Method(i).Name=CM(i).Mn

Create New Element M

M(i).type= CM(i).Mt

M(i).visibility= CM(i).Mv

End For

Create New Element Composition

Composition.type= CR(i).Rt

Composition.cardinality= CR(i).Rc

Composition.ClassRelation= CR(i).Rr

Elseif Rel(i) is Aggregation then

Aggregation.type= CR(i).Rt

Aggregation.cardinality= CR(i).Rc

Aggregation.ClassRelation= CR(i).Rr

Elseif Rel(i) is Generalization then

Generalization.ClassRelation= CR(i).Rr

End If

End For

End While

(b) Algorithm GenerateSQLfile(Generator)

Input: Path XML file

Output: SQL-Query sql

Begin

 Let P = a1n1a2n2...amnm

FromClause=“From”

WhereClause=“Where”

 For i=1 to m do /* Construct From Clause */

FromClause += “$σ (ni) as Ti”

 End For

Bennett EO et al Journal of Scientific and Engineering Research, 2020, 7(8):41-48

Journal of Scientific and Engineering Research

46

 For i=2 to m do /* Construct Where Clause */

 If (ai = „//‟) then

WhereClause += “Ti-1.(ni−1.ID) ≤Ti.(ni.ID)

AND Ti-1.(ni−1.endID) ≥ Ti.(ni.endID)”

 Else /* ai is „/‟ */

WhereClause += “Ti−1.(ni−1.ID) = Ti.(ni.parentID)”

 End If

 End For

sql=“Select Tm.(nm.ID)” + FromClause + WhereClause

 Return sql

End

Analysis of Algorithm

Our algorithm was analyzed based on time complexity during the conversion from UML classes to SQL code.

Supposedly we have only one UML class, the time complexity for it to be converted to SQL code:

 =𝑡𝑖𝑚𝑒 𝑎𝑡𝑡𝑟 + 𝑡𝑦𝑝𝑒𝑠 + 𝑡𝑖𝑚𝑒 𝑟𝑒𝑙 + 𝑐𝑎𝑟𝑑𝑖 + 𝑡𝑖𝑚𝑒 𝑚𝑒𝑡ℎ𝑜𝑑𝑠 + 𝑡𝑖𝑚𝑒(𝑘𝑒𝑦𝑠)

This signifies that it touches each element in the input which means that its time complexity is linear and can be

denoted as 𝑛

𝐓𝐨𝐭𝐚𝐥 𝐭𝐢𝐦𝐞 𝐭𝐚𝐤𝐞𝐧 𝐟𝐨𝐫 𝐨𝐧𝐞 𝐔𝐌𝐋 𝐜𝐥𝐚𝐬𝐬 = n µs (Micro seconds) - - - - - - (1)

This means that if we have more than one UML classes, the time it takes our algorithm to complete its code

conversion is the summation of individual times for each UML class of the input.

𝐼𝑓 𝑓 𝑛 = 𝑓1 𝑛 + 𝑓2 𝑛 + … + 𝑓𝑚 𝑛 𝑎𝑛𝑑 𝑓 𝑛 ≤ 𝑓𝑖+1 𝑛 ∀ 𝑖 = 1, 2,…𝑚,

Then

𝑂 𝑓 𝑛 = 𝑂 max 𝑓1 𝑛 , 𝑓2 𝑛 , … , 𝑓𝑚 𝑛 .

𝑊ℎ𝑒𝑟𝑒 𝑓𝑖 𝑛 = 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑡𝑖𝑚𝑒 𝑎𝑛𝑑 𝑓 𝑛 = 𝑡𝑜𝑡𝑎𝑙 𝑡𝑖𝑚𝑒

Therefore, our algorithm time complexity is:

𝑂 𝑓 𝑛 = 𝑂 max 𝑓1 𝑛 , 𝑓2 𝑛 , … , 𝑓𝑚 𝑛 − − − − − − − (2)

= O(n)

4. Implementation and Results

4.1. Minimum Hardware Requirements

The minimum hardware requirements of the system are as follows:

 Intel Pentium processor not less than speed of 266HZ – 566HZ , 512MB RAM, 14” super video graphic adapter

monitor (SVGA), 160GB of hard disk, A mouse or mouse sensitive used on laptops, CD ROM or USB port,

Power or Voltage surge, Uninterrupted power supply (UPS).

4.2. Minimum Software Requirements

The following are the minimum software requirements of the system;

 XP or later versions, Jdk6.0 Tool Kit, Microsoft Visio, Visual studio dot net.

4.3. Results

We tested our system with a sample UML class diagram of Fig. 4.1.

Bennett EO et al Journal of Scientific and Engineering Research, 2020, 7(8):41-48

Journal of Scientific and Engineering Research

47

The input to our software is the codified UML class diagram which is

Comparative Analysis of our result with Existing Algorithm

To get a feel for the time complexity of our algorithm during the conversion processes, we adopted experimental

analysis. We considered our BIG (O) analysis of time complexity which is of the linear order “n” and the

existing algorithm time complexity which its order is Linearithmic “n log n” (Breaking up a large problem into

smaller problems, solving them independently, and combining the solutions). Table 4.1 shows the comparative

analysis of the time complexity of our algorithm to convert UML classes to SQL code and the existing

algorithm to convert UML classes to XML code on different time intervals in micro seconds.

Table 4.1: Complexity analyses of two algorithms for UML class conversion

No of classes (Input Size) Our algorithm (s) Algorithm mapping UML models to XML schema (s)

5 25 35

10 57 65

15 75 93

20 123 146

25 138 183

30 150 203

35 165 271

40 200 293

45 225 305

50 393 437

Person

Name: String

Age: Int

Qualification: String

Working (): String

Company

Name: String

Address: String

Recruiting (): Void

Department

Name: String

Director

Manage (): Void

Project

Number: Int

Name: String

1…* Working

Manage

1...*

1…*

Figure 4.1: Sample UML class Diagram

Person;3;Matricule:String:Public:;Name:String:Public:;Age:Int:Protected:;1;Working:String:public;1;1..*:Company;0;0;0;

Company;2;Name:String:Public:;Adress:String:Public:;1;Recruiting:Void:Protected;1;1..1:Person;0;0;0;

Department;1;Name:String:Public:;0;0;1;1..*:Company;0;0;

Director;0;1;Manage:Void:Private;1;1..1:Project;0;0;1;Person;

Project;2;Number:Int:Public:;Name:String:Protected:;0;1;1..*: Director;0;0;0;

Bennett EO et al Journal of Scientific and Engineering Research, 2020, 7(8):41-48

Journal of Scientific and Engineering Research

48

Figure 4.2 shows the graphical representation of the data in table 4.1.

Figure 4.2: Graph displaying the execution time of the two algorithms

The graph shows clearly that our algorithm performs better in time complexity during execution with additional

advantage of direct conversion to SQL code compared to what is currently obtainable to takes time in execution

and also stops its conversion at XSD.

5. Conclusion

This research has introduced a straightforward clarification for mapping UML object-oriented model into SQL

code through XML document using XSD technique. The scheme and the procedure of mapping application

were discussed in this research. We have also presented a new approach that produces automatic code from

UML class diagram with XML Schema transformation. We have converted UML diagram to text UML and this

UML text is converted to XML schema through a tool. The tool also generated the SQL code equivalence of the

XML file. We have implemented this approach through a prototype. Then this generated SQL code can be

exported to any database management system for database development. This automatic code generation can

reduce efforts and development time by reducing coding efforts.

References

[1]. Odell, J., & Burkhart, R. (1998). Beyond objects: Unleashing the power of adaptive agents. Tutorial

presented at OOPSLA, Vancouver, B.C.

[2]. Wooldridge, M., & Jennings, N. R. (2000). Agent-oriented software engineering. In J Bradshaw (Ed.),

Handbook of agent technology. AAAI/MIT Press.

[3]. Bernon, Carole Cossentino, Massimo Pavon (2005). An Overview of current trends in European Agent

oriented software engineering research, Informatica 29(4).

[4]. Carlson, D. (2001) Modeling XML Applications with UML: Practical e-Business Applications,

Addison-Wesley.

[5]. Mok, A., et al (2010) Converting Relational Databases into Object relational Database.

[6]. Booch, G. et al (2013) The Unified Modeling Language User Guide. Addison-Wesley, Reading, MA

[7]. Kurtev, I et al (2003) UML to XML-Architectural Modification.

[8]. Park, S. M (2010). The effects of personnel reform systems on Georgia state employees’ attitudes: An

empirical analysis from a principal-agent theoretical perspective. Public management review, 12(3),

403-437.

0

50

100

150

200

250

300

350

400

450

500

0 10 20 30 40 50 60

R
u

n
 t

im
e

No of Classes (n)

Time Complexity Graph

A1 A2

