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Abstract: This paper addresses the challenges of managing supply chains in the semiconductor equipment 

manufacturing industry, where demand and supply uncertainties are prevalent. The study proposes an integrated 

approach incorporating stochastic programming, fuzzy logic models, Demand-Driven MRP (DDMRP), Rolling 

Horizon Planning (RHP), and dynamic lot-sizing techniques. These methods are designed to handle the 

complexities of long lead times, intricate Bills of Material (BOMs), and fluctuating demand. The proposed 

method aims to optimize inventory levels, improve operational efficiency, and enhance responsiveness to 

market changes by leveraging real-time data analytics and advanced modeling techniques. Integrating these 

methods within Python and ERP systems further facilitates their practical application, allowing manufacturers to 

achieve greater flexibility and competitiveness. Ultimately, this paper provides a comprehensive solution for 

managing supply and demand uncertainties, offering significant benefits for both large enterprises and SMEs in 

the semiconductor equipment industry. 
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Introduction 

In the semiconductor equipment manufacturing industry, managing supply chains under uncertainty is critical 

due to the inherent complexity and unpredictability of demand and supply factors. Demand uncertainty arises 

from rapidly changing technological advancements, volatile customer requirements, and dynamic market 

conditions. On the supply side, uncertainties such as long lead times for critical components, variability in 

supplier performance, and global supply chain disruptions further complicate planning. Additionally, 

geopolitical factors and trade regulations can exacerbate these uncertainties, making accurate forecasting and 

efficient planning essential for maintaining competitiveness (Gupta and Maranas, 2003; Dolgui and Prodhon, 

2007). 

One of the key challenges in semiconductor equipment manufacturing is the complexity of Bills of Material 

(BOMs), which often involve multiple levels of sub-assemblies and components. These BOMs include a mix of 

standard parts, custom-designed components, and critical materials sourced from specialized suppliers. Any 

disruption in the supply of lower-level components can significantly impact the production of final equipment. 

Moreover, due to the high degree of customization, BOMs must be flexible to accommodate changes in design 

specifications and customer requirements. Flexible BOMs allow for substitutions or adjustments in components 

when shortages occur, minimizing disruptions to production schedules. This flexibility is crucial for maintaining 
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production continuity and meeting delivery deadlines in an industry where delays can lead to substantial 

financial losses and missed market opportunities (Ram, Naghshineh-Pour, and Yu, 2006). 

To address these challenges, several techniques can be applied to manage demand planning under uncertainties 

in semiconductor equipment manufacturing. Stochastic programming, as explored by Gupta and Maranas 

(2003), incorporates probabilistic scenarios of demand fluctuations, allowing manufacturers to make robust 

decisions under various future states and reducing the risk of stockouts or excess inventory. Fuzzy logic models 

provide flexibility in decision-making by accommodating the vagueness and ambiguity associated with demand 

forecasts, enabling more adaptable planning processes (Dolgui and Prodhon, 2007). Demand-Driven MRP 

(DDMRP) shifts the focus from forecast-driven planning to real-time demand-driven planning, reducing 

inventory levels and improving responsiveness to market changes by adjusting production schedules based on 

real-time consumption data (Kortabarria et al., 2018). Rolling Horizon Planning (RHP) supports continuous 

updates to production plans, allowing manufacturers to dynamically adjust to evolving demand and supply 

conditions, which is particularly useful for managing long-term projects with multiple stages (Sahin, Narayanan, 

and Robinson, 2013). 

In addition to these techniques, specific MRP planning methods, such as dynamic lot-sizing rules (e.g., 

Economic Order Quantity (EOQ) and Periodic Order Quantity (POQ)), can be used to balance holding and setup 

costs, optimizing inventory levels under uncertainty (Dolgui, Louly, and Prodhon, 2005). Adjusting safety 

stocks and safety lead times based on historical data and forecast accuracy further mitigates risks associated 

with demand and supply variability, providing a buffer against unexpected changes (Dolgui and Prodhon, 2007). 

Backward and forward scheduling techniques also play a crucial role in optimizing production timelines, 

ensuring that production stays on track even when uncertainties arise (Ram, Naghshineh-Pour, and Yu, 2006). 

Given the dynamic nature of the semiconductor equipment industry, a novel approach to demand planning under 

uncertainty involves integrating stochastic programming with dynamic lot-sizing and safety stock adjustments. 

This approach allows for more flexible and adaptive planning, enabling manufacturers to evaluate a range of 

demand scenarios and optimize their decisions accordingly. By integrating real-time data analytics, these 

methods help reduce costs, improve service levels, and maintain flexibility in the face of uncertainty, ultimately 

enhancing competitiveness in a highly dynamic market. 

 

Literature Review 

In managing supply chains within uncertain industries like semiconductor equipment manufacturing, addressing 

demand uncertainty is crucial. The work by Gupta and Maranas (2003) explores the incorporation of demand 

uncertainty into midterm supply chain planning through a stochastic programming framework. Their bilevel 

framework involves making manufacturing decisions upfront, with logistics decisions optimized post-demand 

realization. This approach effectively balances customer satisfaction with production costs, providing a robust 

tool for managing inventory levels and profit margins under uncertain market conditions. Their findings 

emphasize that neglecting demand uncertainty can lead to underutilization of capacity and increased costs, 

making stochastic modeling a vital component of supply chain planning (Gupta and Maranas, 2003). 

Dolgui and Prodhon (2007) further delve into supply planning under uncertainties, particularly within Material 

Requirements Planning (MRP) environments. Their review highlights the significant impact of lead time 

uncertainties on supply planning, an area that has been relatively neglected in previous research. They 

emphasize the importance of simultaneously considering both demand and lead time uncertainties, as most 

existing models address these factors separately. By adjusting safety stocks and safety lead times, the risks 

associated with uncertainties can be mitigated, although more efficient solutions are needed. The authors also 

suggest that advanced methodologies, such as fuzzy models, hold promise for dealing with the complexities of 

supply planning under uncertainty (Dolgui and Prodhon, 2007). 

Expanding on this theme, Dolgui, Louly, and Prodhon (2005) provide a comprehensive review of supply 

planning strategies under uncertainties in MRP environments. Their work highlights the challenges posed by 

demand and lead time fluctuations, particularly in assembly systems with interdependent component 

inventories. The authors advocate for the simultaneous consideration of demand and lead time uncertainties to 

develop more robust supply planning strategies. They also examine the effectiveness of various lot-sizing rules 

and master production scheduling (MPS) adjustments in stabilizing MRP systems under uncertain conditions. 
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Their findings suggest that integrating these factors can significantly improve system performance and reduce 

costs (Dolgui, Louly, and Prodhon, 2005). 

The transition from traditional MRP to Demand Driven MRP (DDMRP) is another strategy explored by 

Kortabarria et al. (2018). Their case study demonstrates how DDMRP can enhance visibility and operational 

efficiency in supply chains by shifting from forecast-based planning to real-time demand-driven planning. The 

implementation of DDMRP led to a significant reduction in on-hand inventory while maintaining high service 

levels, highlighting its effectiveness in reducing uncertainty and aligning inventory with actual market demand. 

The authors also note that DDMRP allows for more frequent planning, which helps prevent stock-outs and 

improves material turnover (Kortabarria et al., 2018). 

In small- and medium-sized enterprises (SMEs), integrating lean production practices with Enterprise Resource 

Planning (ERP) systems presents unique challenges, as explored by Powell, Riezebos, and Strandhagen (2013). 

Their research finds that many SMEs struggle to align ERP systems with lean production, particularly pull 

production. ERP systems often lack functionalities necessary for lean practices, such as demand smoothing and 

production leveling. The authors recommend improving ERP integration with lean methodologies by adopting 

more advanced functionalities and fostering a culture of continuous improvement. They also suggest that SMEs 

consider custom solutions or bolt-on applications to address specific lean requirements (Powell, Riezebos, and 

Strandhagen, 2013). 

The concept of flexible Bills-of-Material (BOM) within MRP systems is explored by Ram, Naghshineh-Pour, 

and Yu (2006). Their study introduces a flexible BOM approach to manage unexpected shortages of dependent 

demand items, allowing for substitutions within predefined limits. This flexibility helps reduce system 

nervousness and stabilizes production schedules, making it a practical solution for addressing component 

shortages in real-world scenarios. However, the authors also highlight the increased complexity of scheduling 

computations associated with flexible BOMs and suggest that future research should focus on extending the 

approach to multi-level BOMs (Ram, Naghshineh-Pour, and Yu, 2006). 

Storage system management under uncertainty is another critical area, as explored by Mahootchi (2009). His 

thesis investigates the application of Reinforcement Learning (RL) and Nonlinear Modeling Techniques (NMT) 

to optimize storage management policies. The study finds that RL techniques, enhanced by Opposition-Based 

Learning (OBL), significantly improve the speed and robustness of solutions. The application of these 

techniques to reservoir and warehouse management demonstrates their effectiveness in adapting to changing 

environmental conditions and optimizing resource utilization without requiring explicit system models 

(Mahootchi, 2009). 

Finally, Sahin, Narayanan, and Robinson (2013) review rolling horizon planning (RHP) systems in supply 

chains, focusing on lot-sizing, replenishment policies, and planning stability. Their review underscores the 

importance of coordinating RHP across multiple planning layers in supply chains, particularly in multi-echelon 

systems. The authors highlight the challenges of integrating RHP with other planning systems and emphasize 

the need for empirical research to better understand industry practices. They also identify promising areas for 

future research, including the development of models that account for both demand and supply uncertainties in 

complex supply chain structures (Sahin, Narayanan, and Robinson, 2013). 

 

Motivation 

While Gupta and Maranas (2003) emphasize the need for incorporating demand uncertainty into midterm supply 

chain planning, their focus remains primarily on demand-side uncertainties. A significant gap lies in the need for 

comprehensive models that address both demand and supply uncertainties simultaneously. This is especially 

relevant in semiconductor equipment manufacturing, where both demand volatility and supply disruptions are 

common. Future research should aim to integrate these factors into a unified framework, providing a more 

realistic approach to decision-making and improving supply chain resilience (Gupta and Maranas, 2003). 

Dolgui and Prodhon (2007) highlight that lead time uncertainties have been neglected in previous research, 

particularly within MRP environments. This is a critical gap, especially in semiconductor equipment 

manufacturing, where lead times are often long and unpredictable. Future research should develop models that 

explicitly account for lead time variability and explore how this uncertainty interacts with demand fluctuations. 
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Such models could improve inventory management and production scheduling strategies, leading to more robust 

supply chains (Dolgui and Prodhon, 2007). 

 Dolgui, Louly, and Prodhon (2005) argue that most existing models address demand and lead time uncertainties 

separately, even though these factors are often interrelated. In semiconductor equipment manufacturing, 

unexpected demand surges can exacerbate lead time variability. Research investigating the interplay between 

these uncertainties could yield more effective supply chain strategies, particularly in multi-echelon systems, 

where dependencies between production and distribution stages are critical (Dolgui, Louly, and Prodhon, 2005). 

The transition from traditional MRP to Demand Driven MRP (DDMRP) explored by Kortabarria et al. (2018) 

shows promise in reducing inventory levels and improving operational efficiency. However, semiconductor 

equipment manufacturing presents unique challenges due to high complexity and long lead times. Future 

research should explore how DDMRP can be adapted to handle these complexities, particularly in managing 

critical components with long lead times and high demand variability. Integrating DDMRP with real-time data 

analytics and AI-driven demand forecasting could further enhance its effectiveness in such industries 

(Kortabarria et al., 2018). 

Powell, Riezebos, and Strandhagen (2013) highlight the challenges faced by small- and medium-sized 

enterprises (SMEs) when aligning ERP systems with lean production practices. This is particularly relevant in 

the semiconductor equipment manufacturing sector, where SMEs often play crucial roles as suppliers. Future 

research could focus on developing ERP systems that better support lean methodologies in SMEs, allowing for 

real-time production and inventory management adjustments in response to demand fluctuations. Customizable 

ERP modules that integrate lean practices with advanced forecasting techniques could provide SMEs the 

flexibility to navigate uncertain environments (Powell, Riezebos, and Strandhagen, 2013). 

Ram, Naghshineh-Pour, and Yu (2006) introduce the flexible Bills-of-Material (BOM) concept to manage 

component shortages. However, their study focuses on single-level BOMs, leaving a gap in applying flexible 

BOMs to multi-level and more complex systems, common in semiconductor equipment manufacturing. Future 

research should aim to extend the flexible BOM approach to multi-level systems, addressing the challenges of 

common components and dependencies between different production levels. This would help stabilize 

production schedules and reduce the impact of component shortages on the overall supply chain (Ram, 

Naghshineh-Pour, and Yu, 2006). 

Mahootchi (2009) explores the application of Reinforcement Learning (RL) and Nonlinear Modeling 

Techniques (NMT) to optimize storage management policies. In semiconductor equipment manufacturing, 

where storage and inventory management are critical due to components' high value and long lead times, 

integrating advanced learning techniques with predictive analytics could optimize storage policies under 

uncertainty. Future research could explore how these techniques can be applied to real-time inventory 

management, particularly in fluctuating demand and supply disruptions (Mahootchi, 2009). 

Sahin, Narayanan, and Robinson (2013) identify the challenges of coordinating Rolling Horizon Planning 

(RHP) across multi-echelon supply chains. In semiconductor equipment manufacturing, where supply chains are 

global and involve multiple production and distribution stages, effective coordination of RHP is essential. 

Future research should focus on developing models that facilitate better integration of RHP with other planning 

systems, such as demand forecasting and inventory management. Additionally, exploring the use of digital twins 

and AI-driven simulations could enhance the accuracy and flexibility of RHP in complex supply chains (Sahin, 

Narayanan, and Robinson, 2013). 

 

Methodology 

In the semiconductor equipment manufacturing industry, uncertainties arise from both demand and supply sides. 

Demand uncertainties stem from fluctuating customer requirements, driven by rapid technological 

advancements and changing market conditions. Supply-side uncertainties include long lead times for critical 

components, supplier performance variability, and global supply chain disruptions. Additionally, geopolitical 

factors and trade regulations can exacerbate these uncertainties, leading to unpredictability in both supply and 

demand. These factors create a complex environment where accurate forecasting and efficient planning are 

challenging but critical for maintaining competitiveness (Gupta and Maranas, 2003; Dolgui and Prodhon, 2007). 
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In semiconductor equipment manufacturing, Bills of Material (BOMs) are highly complex, often involving 

multiple levels of sub-assemblies and components. These BOMs typically include a mix of standard parts, 

custom-designed components, and critical materials sourced from specialized suppliers. The hierarchical 

structure of BOMs in this industry means that any disruption in the supply of lower-level components can 

significantly impact the production of final equipment. Moreover, due to the high degree of customization, 

BOMs need to be flexible to accommodate changes in design specifications and customer requirements (Ram, 

Naghshineh-Pour, and Yu, 2006). 

Given the industry's focus on reducing time-to-market, flexible BOMs are essential. A flexible BOM allows for 

substitutions or adjustments in components when shortages occur, minimizing disruptions to production 

schedules. For example, if a critical component is unavailable, a flexible BOM would enable the use of an 

alternative part, provided it meets the necessary specifications. This flexibility is crucial for semiconductor 

equipment manufacturers to maintain production continuity and meet delivery deadlines, especially in an 

industry where delays can lead to significant financial losses and missed market opportunities (Ram, 

Naghshineh-Pour, and Yu, 2006). Several techniques can be applied to manage demand planning under 

uncertainties in semiconductor equipment manufacturing: 

• Stochastic Programming: As explored by Gupta and Maranas (2003), this approach involves creating 

models that incorporate probabilistic scenarios of demand fluctuations. Stochastic programming allows 

manufacturers to make robust decisions under a range of possible future states, reducing the risk of 

stockouts or excess inventory. 

• Fuzzy Logic Models: Fuzzy logic can handle the vagueness and ambiguity associated with demand 

forecasts. By accommodating uncertainty in demand estimates, fuzzy models allow for more flexible 

decision-making, leading to more adaptable planning processes (Dolgui and Prodhon, 2007). 

• Demand-Driven MRP (DDMRP): This technique shifts the focus from forecast-driven planning to real-

time demand-driven planning. By using real-time data on consumption rates and adjusting production 

schedules accordingly, DDMRP helps semiconductor manufacturers reduce inventory levels and respond 

more quickly to changes in demand (Kortabarria et al., 2018). 

• Rolling Horizon Planning (RHP): RHP continuously updates production plans as new information 

becomes available. This technique is particularly useful in managing long-term projects with multiple 

stages, as it allows manufacturers to adjust their plans dynamically in response to evolving demand and 

supply conditions (Sahin, Narayanan, and Robinson, 2013). 

• Lot-Sizing Rules: Techniques such as economic order quantity (EOQ), periodic order quantity (POQ), 

and Wagner-Whitin (WW) can be used to determine the optimal order quantities under uncertainty. 

These rules help balance the trade-off between holding costs and setup costs, ensuring that inventory 

levels are optimized (Dolgui, Louly, and Prodhon, 2005). 

• Safety Stocks and Safety Lead Times: Adjusting safety stocks and lead times based on historical data 

and forecast accuracy can mitigate the risks associated with demand and supply variability. This 

approach provides a buffer against uncertainties, ensuring that production schedules are not disrupted by 

unexpected changes in demand or delays in supply (Dolgui and Prodhon, 2007). 

• Backward and Forward Scheduling: Depending on the BOM's complexity and the components' 

criticality, manufacturers can use backward scheduling (starting from the delivery date) or forward 

scheduling (starting from the current date) to optimize production timelines. These techniques help 

ensure that production stays on track despite uncertainties (Ram, Naghshineh-Pour, and Yu, 2006). 

A novel approach to demand planning under uncertainty could involve integrating stochastic programming with 

dynamic lot-sizing and safety stock adjustments. The following formulas could be used: Expected Demand 

Calculation: 

 

𝐸(𝐷) =∑  

𝑛

𝑖=1

𝑝𝑖 ⋅ 𝐷𝑖  
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where E(D) is the expected demand, p_i is the probability of demand scenario i, and D_i is the demand in 

scenario i. Safety Stock Level: 

 

𝑆𝑆 = 𝑍 ⋅ 𝜎𝐷 ⋅ √𝐿𝑇 

 

where SS is the safety stock, Z is the service level factor, σ_D is the standard deviation of demand, and LT is the 

lead time. Optimal Lot Size (Modified EOQ Formula under Uncertainty): 

 

𝑄∗ = √
2𝐷𝑆

𝐻(1 −  Stockout Probability )
 

 

where Q^* is the optimal lot size, D is the demand, S is the setup cost, and H is the holding cos⁡ 𝑡. 

 

The proposed approach integrates stochastic programming to handle demand uncertainty, dynamic lot-sizing to 

optimize order quantities, and safety stock adjustments to buffer against supply disruptions. This methodology 

allows for more flexible and adaptive planning, which is crucial in semiconductor equipment manufacturing, 

where both demand and supply can be highly volatile. By using stochastic models, manufacturers can evaluate a 

range of demand scenarios and optimize their decisions accordingly. The integration of dynamic lot-sizing 

ensures that inventory levels are kept at optimal levels, reducing holding costs without compromising service 

levels. Safety stock adjustments based on real-time data allow for quick responses to unforeseen changes, 

maintaining production continuity. This approach offers a comprehensive solution for managing supply and 

demand uncertainties, leading to more resilient supply chains in the semiconductor equipment manufacturing 

industry. It helps manufacturers reduce costs, improve service levels, and maintain flexibility in the face of 

uncertainty, ultimately enhancing their competitiveness in a highly dynamic market. 

 

Results And Conclusions 

The research conducted in this study presents an integrated approach to managing supply and demand 

uncertainties in the semiconductor equipment manufacturing industry. The methods proposed include stochastic 

programming, fuzzy logic models, Demand-Driven MRP (DDMRP), Rolling Horizon Planning (RHP), and 

dynamic lot-sizing rules. These techniques address the industry's unique challenges, such as long lead times, 

complex Bills of Material (BOMs), and fluctuating demand. Stochastic programming enables manufacturers to 

model demand fluctuations and make optimized decisions across various scenarios, ensuring efficient resource 

allocation despite uncertainties.  

Fuzzy logic models introduce flexibility in decision-making, accommodating the inherent vagueness in demand 

forecasts. Meanwhile, DDMRP enhances visibility and operational efficiency by focusing on real-time demand-

driven planning rather than traditional forecast-based methods, effectively reducing inventory levels and 

improving responsiveness to market changes. Rolling Horizon Planning supports continuous updates to 

production plans, enabling dynamic adjustments as new information becomes available, which is critical for 

managing long-term projects with multiple stages. 

The research also highlights the effectiveness of MRP planning techniques, such as dynamic lot-sizing rules, 

including Economic Order Quantity (EOQ) and Periodic Order Quantity (POQ), in balancing holding and setup 

costs to optimize inventory levels. Real-time safety stock adjustments further mitigate risks associated with 

demand and supply variability, providing a buffer against unexpected changes. The integration of these methods 

within Python and ERP systems offers practical applications for semiconductor equipment manufacturers. 

Python's flexibility, with libraries for stochastic modeling, fuzzy logic handling, and optimization, allows for 

real-time data analytics integration, enabling continuous updates to production plans and inventory levels. 

ERP systems, such as SAP and Oracle, can incorporate these advanced planning techniques by integrating 

custom modules or plug-ins that support stochastic programming, DDMRP, and RHP. This automation within 

ERP systems enhances efficiency and responsiveness to market changes. By applying these methods, 

semiconductor equipment manufacturers can improve forecast accuracy, reduce inventory costs, increase 
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flexibility and responsiveness, and ultimately enhance their competitiveness in a dynamic market. The proposed 

approach provides a comprehensive solution for managing supply and demand uncertainties and offers 

scalability and adaptability, making it suitable for both large enterprises and small- to medium-sized enterprises. 

In conclusion, the integration of advanced supply chain planning methods using Python and ERP systems can 

significantly improve the efficiency, flexibility, and resilience of semiconductor equipment manufacturers. 

Addressing both demand and supply uncertainties through these methods helps optimize operations and 

maintain a competitive advantage in the semiconductor industry. 

 

References 

[1]. Gupta, A. and Maranas, C.D., 2003. Managing demand uncertainty in supply chain planning. 

Computers and Chemical Engineering, 27(8-9), pp.1219-1227. 

[2]. Dolgui, A. and Prodhon, C., 2007. Supply planning under uncertainties in MRP environments: A state 

of the art. Annual Reviews in Control, 31(2), pp.269-279. 

[3]. Dolgui, A., Louly, M.A., and Prodhon, C., 2005. A survey on supply planning under uncertainties in 

MRP environments. 16th Triennial World Congress, Prague, Czech Republic. 

[4]. Kortabarria, A., Apaolaza, U., Lizarralde, A., and Amorrortu, I., 2018. Material management without 

forecasting: From MRP to demand-driven MRP. Journal of Industrial Engineering and Management, 

11(4), pp.632-650. 

[5]. Powell, D., Riezebos, J., and Strandhagen, J.O., 2013. Lean production and ERP systems in small- and 

medium-sized enterprises: ERP support for pull production. International Journal of Production 

Research, 51(2), pp.395-409. 

[6]. Ram, B., Naghshineh-Pour, M.R., and Yu, X., 2006. Material requirements planning with flexible bills-

of-material. International Journal of Production Research, 44(2), pp.399-415. 

[7]. Mahootchi, M., 2009. Storage system management using reinforcement learning techniques and 

nonlinear models. Doctoral thesis, University of Waterloo. 

[8]. Sahin, F., Narayanan, A., and Robinson, E.P., 2013. Rolling horizon planning in supply chains: review, 

implications, and directions for future research. International Journal of Production Research, 51(18), 

pp.5413-5436. 


