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Abstract This work analytically investigates the problem of natural convection which develops in a vertical 

rectangular porous saturated cavity subjected to solar radiation. The porous medium is anisotropic in 

permeability whose principal axes are oriented in a direction that is oblique to the gravity. The generalized 

Darcy’s law within the boundary layer approximations and the Rosseland approximation are used in the 

formulation of the problem. Scale analysis is applied to predict the orders of magnitudes involved in the 

boundary-layer regime for which the condition of validity are presented. Effects of anisotropy parameters and 

the thermal radiation on the heat transfer are analyzed using an integral approach in the limiting case for high 

Rayleigh numbers. It was found that the anisotropic permeability ratio, the orientation angle of the principal 

axes of permeability and the radiation parameter affected significantly the flow regime and the heat transfer. 

 

Keywords Natural convection, anisotropic porous medium, vertical rectangular cavity, Nusselt number, thermal 

radiation parameter 

1. Introduction 

The problem of natural convection caused by the buoyancy forces coupled with radiation in rectangular cavities 

filled with porous medium is motivated by a wide range of industrial applications. Examples include electric 

heaters, solar energy collectors, the cooling of radioactive waste containers, geophysical systems, the migration 

of moisture through the air contained in fibrous insulation, the underground diffusion of contaminant, heat 

transfer within cereal storage facilities and regenerative heat exchangers in porous materials. In most of these 

applications involving natural convection as a mechanism, the transfer of radiative heat within porous cavities is 

neglected for low temperatures. Recent works by various authors Vafai [1], Nield and Bejan [2]; Bejan [3] have 

documented research on natural convection in a two-dimensional rectangular enclosure. For example, Baytas 

and Pop [4] presented detailed numerical calculations of natural convection in an inclined porous cavity and 

saturated by fluid. They adopted the Alternating Direction Implicit (ADI) method of finite differences and 

analyzed the effects of the inclination angle and aspect ratio of the cavity on the streamlines, isotherms and the 

average Nusselt number. These results were compared to those obtained the past by [5], analyzed numerically 

and analytically the thermal transfers by natural convection in a rectangular cavity filled with an anisotropic 

porous medium that is permeable and saturated by the fluid. The side walls of the cavity are heated and cooled 

at constant temperature and the horizontal walls are adiabatic. These two authors adopted the approach based on 

integral relations [6], to develop a boundary layer solution. They found that the anisotropic properties and 

orientation of the main axes of the porous medium greatly influence the flow pattern and the rate of heat transfer 
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compared to the results of obtained for isotropic medium. The buoyancy-driven convection in an open-ended 

cavity with an obstructing medium such as a porous material is analyzed by [7]. They investigated the effects of 

important variables such as the aspect ratio, the temperature difference, and the Darcy-Rayleigh number on the 

flow field and the cavity Nusselt number. However, the transfer of radiative heat is still very important, even for 

small temperature differences. The literature review indicates that natural convection coupled with radiation in a 

porous cavity received little attention compared to natural convection. Badruddin and al. [8] studied numerically 

the natural convection with thermal radiation inside a porous cavity using the Darcy model. The authors showed 

that the average Nusselt number for porous media increases with the increase of the radiation parameter, 

whereas the average Nusselt number for fluid media decreases with the increase of the radiation parameter. 

Ahmed and al. [9] investigated the effects of viscous dissipation and radiation on the laminar magneto-

hydrodynamic natural convection in a square enclosure filled with a porous medium by numerical two-

dimensional analysis using finite difference approach. They showed that the heat transfer increases with the 

radiation parameter and decreases as the Darcy number decreases. An analysis of the combined effects of 

thermal radiation and heat source on natural convection was undertaken by [10]. The authors showed that the 

vertical velocity and the average Nusselt number increases as the radiation parameter increases. Zahmatkesh 

[11] studied numerically the influence of thermal radiation on natural convection within a porous cavity 

saturated by fluid. They indicate that, thermal radiation makes the temperature distribution almost uniform near 

the vertical walls inside the cavity and makes the streamlines almost parallel to the vertical walls. In addition, 

the average Nusselt number increases almost linearly with the increase of the radiation parameter. Rani and 

al.[12] analyzed the combine influence of radiation and dissipation on the convective heat and mass transfer 

flow of a viscous fluid through a porous medium in a rectangular cavity using Darcy model. The Galerkin finite 

element method with linear triangular elements is adopted for the study. The effects of the different parameters 

governing the problem are discussed. Mansour and al.[13] studied numerically the influence thermal radiation 

on steady convection in Wavy porous cavities using thermal non-equilibrium model. These authors examined 

the effects of thermal radiation, modified conductivity ratio and Rayleigh number on flow and temperature 

fields. The present work is devoted to the study of coupled fluid flow and heat transfer by natural convection 

and radiation in a vertical cavity filled with a fluid-saturated porous medium whose horizontal walls are 

considered permeable. The vertical walls are respectively heated and cooled at a constant temperature. The 

effects of hydrodynamic anisotropy of the porous medium and the influence of radiation will be investigated, 

since the physical problem is of significant importance to many engineering-related applications. 

2. Physical and Mathematical Modelling 

 
Figure 1: Schematic diagram of the 2-D vertical porous cavity 
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Fig 1 illustrates a two-dimensional cross-sectional section of the porous cavity saturated by an incompressible 

fluid. Fluid flow in the vertical cavity is stable, laminar and thermo-physical properties are assumed to be 

constant except for density in the buoyancy term. The porous medium is hydrodynamically anisotropic in 

permeability. The main directions of permeability noted 1K  and 2K  form respectively with the axes of 

horizontal coordinate )(y  and vertical coordinate )(x  , an angle and rotates around the origin point. The 

anisotropy ratio 21/KK  and orientation angle   characterize the anisotropy of the porous medium on the fluid 

flow. The porous medium subjected to a solar thermal radiation, can emit, absorb and diffuse in an isotropic way 

the radiative energy. The Rosseland approximation is used to describe the radiative heat flux in the energy 

equation. The radiative heat flux in the x direction is assumed to be negligible compared to the y direction. The 

movement of the fluid through the anisotropic porous medium obeys the generalized Darcy law. The vertical 

walls of the cavity are assumed to be impermeable and one heated 
'

hT  and 
'

cT  the other cooled . The horizontal 

walls are permeable. On the basis of the thermal balance between the porous medium and the fluid and taking 

into account the approximation of Boussinesq, the equations governing the flow can be written in the following 

ways: 
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Where the second order permeability tensor is defined in the Cartesian coordinates ),,( OyOxO  as: 
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The radiant heat flux is simplified using the Rosseland approximation which can be written: 
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where s  is the Stefan-Boltzmann constant and r  is the average absorption coefficient. 

In the case of the Boussinesq approximation, where the temperature differences inside the cavity during the flow 

are sufficiently small, the non-linear term 
4'T  can be expressed as a linear function of temperature using the 

Taylor series for 
4'T  around 

'

cT  . By neglecting higher order terms, we find: 
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It is important to note that the equation (6) is widely used in the fluid flow involving the radiation absorption 

problem by expressing the non-linear term 
4'T  as a linear function. 

By introducing the equation (6) into (5), we obtain: 
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By eliminating the pressure in the equation of motion and using the scaling factors 
'L , 

'L/ , 
'

c

'

h

' TTT  =  

and /
2'L  respectively for length, velocity, temperature and time, dimensionless governing equations can be 

written as follows: 
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and 
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The continuity equation can be satisfied automatically when the stream function   is defined as following: 
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The dimensionless boundary conditions on the walls of the cavity give: 
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Where 
'' LHA /=  is the cavity shape ratio, Ra  is the Rayleigh number and Rd  is the radiation parameter. 
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The average Nusselt number measuring the total heat transfer through the porous layer is evaluated on the hot 

wall by the relation: 
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The present problem is controlled by the following dimensionless parameters: the Rayleigh number Ra  , the 

aspect ratio A  , the anisotropy ratio 
*K  , the orientation angle   and the radiation parameter Rd  . 

 

3. Boundary Layer Analysis 

When the movement of the fluid induced by the buoyancy force inside the cavity is sufficiently strong enough, 

the movement of the fluid is restricted to a thin boundary layer along each vertical wall oriented on the 

ascending vertical. The movement of the fluid is limited by a boundary layer of thickness 
'  and height 

)( ''' HH   . In this region the following conditions are valid. 
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Scale analysis is used to find the order of magnitude of the parameters of interest of the problem. The 

temperature variation is of the order of unity 1)( ~T  in the region of the boundary layer, by analyzing the 

thermal boundary conditions. The analysis gives the following equivalences for motion and energy conservation 

equations in the boundary layer region. 
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The resolution of equations (22) to (24) in the region of the boundary layer give respectively for vu,,  and  
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The average Nusselt number that reflects the heat transfer is defined by the quotient of the amount of total heat 

from one vertical wall to another 
'q  over the amount of heat exchanged in pure conduction 

'

cq  .The order of 

magnitude of the average Nusselt number is given by: 
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The previously established orders of magnitude are valid when the boundary layer is thin )( Ra  and 

distinct. Under these conditions, the coefficients b  and c  give: 
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The relations (25) allow to define the scales of normalization of the different functions in the region of the 

boundary layer. When the dimensionless variables used in the boundary layer are: 
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The approximate forms of equations (8) and (9) are given by the following differential equations: 

 
y

T

y

u








=  (29) 



Degan G et al                                            Journal of Scientific and Engineering Research, 2020, 7(8):185-200 

 

Journal of Scientific and Engineering Research 

190 

 

 

 
2

2

=
y

T

y

T
v

x

T
u













 (30) 

According to Gill [14], the centro-symmetrical of the studied physical problem leads to considering a single 

boundary layer along the vertical walls. Thus in the layer region we will introduce the Gill variables which are 

written: 
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 where   and 0  when y  

The associated boundary conditions become: 

 0=0,=0, Ty   (32) 

 )(=),(=, xTTxy    (33) 

  and T  represent respectively the adimensional form of the stream function and the temperature 

distribution in the central cavity region very far from the vertical walls. In the past, Weber [15] and Simpkins 

and Blythe [6] solved the system of non-linear differential equations by considering the isotropic porous 

medium ( 1=*K  and 0=Rd  ). Recently Degan and Vasseur [5] continued the work by assuming permeable 

anisotropic porous medium ( 0=Rd  ). The analytical solution resulting from the work done in the past by 

adopting the integral relations is in agreement with the numerical results, provided that the chosen boundary 

layer profile presents the correct asymptotic behavior [5]. 

The solutions obtained in the present work, the stream function and the distribution of the temperature in the 

central region of the cavity by considering the profile of two vertical boundary layers give: 
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The value of the stream function at the center of the cavity gives: 
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The average Nusselt number, characterizing the contributions of natural convection and solar radiation and 

taking into account the two permeabilities is written: 
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In all of these equations, the modified Rayleigh number is given by the following expression: 
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4. Results and Discussion 

Indeed, to analyze the impact of these parameters on the flow in this cavity, we have evaluated the distributions 

of the temperature and stream function in the central region of the cavity and the average heat transfer rate, the 

respective expressions of which are given by equations (34); (36) and (37). 
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(a) 

 
(b) 

Figure  2:  The core solution along a vertical plane through the center of the cavity for * .K 0 25 and 45   ; 

(a) temperature profile; (b) stream function distribution  

Figures 2 (a) and 2 (b) show the effects of the radiation parameter Rd  respectively on the temperature and 

stream function distributions in the core structure, for a porous medium with an anisotropic orientation   and a 

permeability ratio 
*K  . The temperature profile in the central region )(xT  shown in figure 2 (a) increases 
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based on the Ax/  distance from zero to unit.On the one hand, there is a symmetry of the temperature 

distribution with respect to the center of the cavity. On the other hand, it can be seen that the thermal 

temperature gradient at the top horizontal wall is not zero contrary to the boundary condition. This behavior is 

justified by the approximations made in the analysis equation (14). At the lower boundary, the temperature T  

takes the value zero, which satisfies the boundary condition imposed on the lower horizontal wall. 

 
(a) 

 
(b) 

Figure  3:  Effects of the permeability ratio 
*K  and the orientation angle   on Nusselt number (a) and stream 

function (b) at the center of the cavity for 0;1;10=Rd  . 
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Bejan [16] who the same result is found by carried out a detailed analysis of the importance of this 

approximation on the solution by considering an isotropic porous medium 1)=( *K  . He indicated that the 

zero flow condition applied to the horizontal walls proposed by Weber [15] does not confirm the argument 

based on the impermeability and adiabacity of those walls. 

The effects of the radiation parameter Rd  on the average heat transfer rate Nu  and the stream function c  in 

the center of the cavity through the parameters 
1/2*1/2 )/(RaNuA  and 

1/2*)/(ARac  varying as a function of 

the permeability anisotropy ratio of the porous medium 
*K  for different values of the angle of orientation   of 

the main axes, are illustrated in figure 3 (a) and 3 (b). 

 

As discussed by Aboubi and al. [17], Degan and Vasseur [5], the modified Rayleigh number defined by 

equation (38) is more appropriate to describe the present phenomenon, since the extreme permeabilities 1K  and 

2K  are among the effects normally associated with any change in Rayleigh number. Indeed from equations 

(36) and (37), we observe that the parameters 
1/2*1/2 )/(RaNuA  and 

1/2*)/(ARac  depend only on the 

radiation parameter Rd  given by equation (17) and the anisotropic properties of the porous medium, namely 

the ratio of anisotropy in permeability
*K  and the orientation angle   across the constant 

 sincos= 2*2 Ka   . Moreover, for a given value of the radiation parameter Rd  and the modified 

Rayleigh number 
*Ra , we can deduce that if ),( yx  and ),( yxT  are solutions for ),,,( ** KARa   , then 

they are also solutions for ),/2,,( ** KARa    . This remark is illustrated in figure3a and figure3b, where 

the symmetry obtained with respect to the vertical line at 1=*K  results from the logarithmic scale which was 

used for the ratio of anisotropy 
*K  . 

When 
o45=  ,   equals  /2  and the corresponding curves are perfectly symmetrical to 

*K  so that the 

results obtained for a given value of 
*K  , are identical to those for 

*1/K . However, when is varphi  different 

from 
o45  , the symmetry observed for a given set of anisotropic properties   , is achieved for and . In 

addition, figure 3 (a) and 3 (b) show that for a given value of the angle of orientation , an increase in the 

radiation parameter causes a decrease in the average Nusselt number and the value of the stream function at the 

center of the cavity. 

Figure 4 (a) and 4 (b) show the effects of the anisotropy ratio in permeability 
*K  , and the radiation parameter 

Rd  respectively on the average Nusselt number Nu  and the stream function c  in the center of the cavity for 

o45=  . 
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(a) 

 
(b) 

Figure  4:  Effects of the permeability ratio 
*K  and the radiation parameter Rd  for 

o45=  on Nusselt 

number (a) and stream function (b) at the center of the cavity. 
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(a) 

 
(b)   

Figure  5:  Effects of the radiation parameter Rd  and the orientation angle   on Nusselt number (a) and 

stream function (a) at the center of the cavity. 

For reasons mentioned in the previous paragraph, we note that the obtained curves are symmetrical with respect 

to the vertical line 1=*K  . We can also easily deduce from the governing equations that for a given value of the 

radiation parameter Rd  , the solution obtained for 
o45=  and for a particular value of 

*K  , corresponds to 

that obtained for 
o45=  and 

*1/K . For a given value of the anisotropy ratio in permeability, it is noted that 

the Nusselt number and the stream function increases with a decrease in the value of the radiation parameter 

Rd . 

The influence of the orientation angle   of the permeability axes on the main average heat transfer rate Nu  

and the stream function at the center of the cavity is illustrated in figures 5 (a) and 5 (b), respectively 
*K  equal 

to 0.25  and 4  .The results show that Nu  and c  both highly depend on the permeability orientation angle   
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of the porous medium. These figures indicate that for 0.25=*K  , heat transfer by natural convection is 

maximum when 
o90=  the angle of orientation for which the permeability in the vertical direction is 

maximum, but is minimum 
o0=  at 

o180=  and when the permeability in the vertical direction is 

minimal. 

The opposite situation is observed for 4=*K  . In this case, the intensity of single-celled convective motion 

and the resulting heat transfer are minimal at 
o90=  , and maximum at 

o0=  and 
o180=  . The fact 

that for 1>*K  ( 1<*K  ), Nu  is maximum (minimum) at 
o0=  and

o180=  ; minimum (maximum) at 

o90=  can easily be deduced from the first and second derivatives of Nu  compared to   (equation 37). It 

follows from these observations that heat transfer is maximum (minimal) when the orientation of the principal 

axis of the medium with the highest permeability is parallel (perpendicular) to the gravitational field. These 

results are similar to those obtained numerically in the past by Zhang [18]; Degan and al. [19]; Degan and 

Vasseur [5;20] who have studied the influence of the orientation angle of the main permeability axes on heat 

transfer in a vertical cavity heated by the vertical walls. 

 
(a) 

 

 
(b) 

Figure 6: Variation of Nusselt number (a) and stream function (b) at the center of the cavity according to the 

radiation parameter Rd for 45    
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Figures 6 (a) and 6 (b) show the influence of the radiation parameter Rd  on the heat transfer rate and the stream 

function at the center of the cavity for different values of the ratio of anisotropy to permeability, respectively 

and 
o45=  . The curves show that the average Nusselt number and the stream function at the center of the 

cavity are decreasing functions of the number of radiation parameters Rd . The results found in figures 6 (a) 

and 6 (b) show that the corresponding curves for 0.1=*K  and 10  on the one hand, 0.25=*K  and 4  on 

the other hand are confused for 
o45=  . This finding, which is a consequence of the standardization adopted 

in this study, is verified only for
o45=  . 

 
(a) 

 
(b) 

Figure  7:  Variation of Nusselt number (a) and stream function (b) at the center of the cavity according to the 

radiation parameter Rd  for 0.25=*K  

  On figures 7 (a) and 7 (b), the variation of the average Nusselt number Nu  and the stream function c  at the 

center of the cavity is represented by the radiation parameter Rd  for different values of the orientation angle of 
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anisotropy   and 0.25=*K  . As the radiation parameter Rd  becomes increasingly important, the heat 

transfer rate Nu  and the stream function at the center of the cavity c  decreases from its maximum. In 

addition, an increase of   , from 
o0  to 

o90  for 0.25=*K  , corresponds to an increase in the value of the 

heat transfer rate and the value of the stream function at the center of the cavity. 

 

Figure  8:  Effects of the Rayleigh number
*Ra  and the radiation parameter Rd  for 0.25=*K  and on 

Nusselt number. 

Figure 8 illustrates the variation of the average heat transfer rate Nu  in porous media as a function of the 

Rayleigh number modified 
*Ra  for different values of the solar radiation parameter when 0.25=*K  and 

o45=  . It can be seen that when the anisotropic parameters and the radiation parameter Rd  are kept 

constant, the average Nusselt number through the parameter is a linear function of the modified number of 

Rayleigh Ra  . In addition, an Rd  increase from 0  to 10  for 0.25=*K  and 
o45=  , corresponds to a 

decrease in the average rate of heat transfer in porous medium. It is important to note that in boundary layer 

conditions, as reported by Degan and Vasseur [5], heat transfer is proportional to 
1/2*Ra  . 

 

5. Conclusion 

In this paper, we have studied the problem of the influence of solar radiation on the natural convection heat 

transfer, in steady state in a vertical cavity confining a porous anisotropic medium and isothermally heated by 

the side walls. The governing equations were established using generalized Darcy’s law taking into account 

boundary layer approximations. We have considered permeability anisotropy, having its principal axes oriented 

arbitrarily with respect to the gravitational field. The following conclusions emerge from this study: 

     • The anisotropic parameters and the solar radiation parameters have a significant influence on the 

flow structure and on the average rate of heat transfer by natural convection. The intensity of the flow and the 

transfer rate are improved for the low values of the radiation parameter Rd . The heat transfer rate tends 

asymptotically towards unity for large values of Rd .  

    • The intensity of the convective flow and the average rate of heat transfer advance at the same 

direction. Moreover, for an anisotropy ratio value 1<*K  , the latter are maximal when the orientation angle 

o90=  and minimum when 
o0=  and 

o180= . In the case where 1>*K  , the intensity of the flow and 

the Nusselt number are maximum when
o0=  and 

o180=  , and minimum when 
o90=  .  
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    • The results found show that the convective flow and the average heat transfer number, for an 

orientation angle Ï† of the principal axes, the solution for a given set of control parameters ( ,,,* ARdRa  and 

*K  ) is equivalent to that corresponding to the parameters(  /2,,,* ARdRa  and 
*1/K  ). Moreover for 

o45=  the solutions for fixed values of 
*K  , and are perfectly symmetrical with respect to 1=*K , so that 

the results for a value of 
*K  are equivalent to those obtained for 

*1/K  .  
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