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Abstract Ill-conditioned problems arise in important areas like geophysics, medical imaging and signal 

processing. The fact that the ill-conditioning is an intrinsic feature of these problems makes 

it necessary to develop special numerical methods to treat them. Regularization methods belong to this class. In 

this paper, we compare some regularization methods. 
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1. Introduction 

Ill-conditioned problems arise in important areas like geophysics, medical imaging and signal processing. 

Common problems in these areas are inverse problems which attempt to determine the structure of a system 

from the system's behavior. 

Inverse problems are a natural source of ill-posed problems. The numerical solution of these problems usually 

involves some kind of discretization which in turn originates a class of problems known as discrete ill-posed 

problems which are very ill-conditioned. 

The fact that the ill-conditioning is an intrinsic feature of these problems makes it necessary to develop special 

numerical methods to treat them. Regularization methods belong to this class. 

A regularization method computes an approximate solution, the regularization solution, to an ill-conditioned 

problem through a regularization parameter. A complete regularization method must address these two aspects. 

When ill-conditioned systems or least squares problems are encountered, the usual recommendation is not to 

trust any computed solution and to try to replace the coefficient matrix by a nearby well-conditioned one. 

According to [1], we can distinguish two main classes of ill-conditioned problems based on the properties of 

their coefficient matrices. 

Rank-deficient problems are characterized by the coefficient matrices A  having a cluster of small singular 

values, and there is a well-determined gap between large and small singular values. This implies that one or 

more rows and columns of A  are nearly linear combinations of some or all of the remaining rows and columns. 

Therefore, the matrix A  contains almost redundant information, and the key to the numerical treatment of such 

problems is to extract the linearly independent information in A , to arrive at another problem with a well-

conditioned matrix. 

Discrete ill-posed problems arise from the discretization of ill-posed problems such as Fredholm integral 

equations of the first kind. Here all the singular values of the coefficient matrix A , as well as the SVD 

components of the solution, on the average, decay gradually to zero, and we say that a discrete Picard condition 

(see in [1]) is satisfied. Since there is no gap in the singular value spectrum, there is no notion of a numerical 

rank for these matrices. For discrete ill-posed problems, the goal is to find a balance between the residual norm 

and the size of the solution that matches the errors in the data as well as one's expectations to the computed 

solution. Here, "size" should be interpreted in a rather broad sense; e.g., size can be measured by a norm, a 

seminorm, or a Sobolev norm. 
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Since standard methods fail to produce a meaningful solution for ill-conditioning, it is necessary to use other 

approaches to treat this kind of problems. One of such approaches is numerical regularization, which attempts to 

compute a more stable (or regularized) approximate solution by using additional information about the unknown 

exact solution. 

The existing numerical regularization methods are designed for rank-deficient and discrete ill-posed problems. 

For other kinds of ill-conditioned problems, these methods are not suitable and we must use other techniques 

like iterative refinement, extended precision iterative refinement or preconditioning for the large-scale case. 

 

2. The SVD and Its Generalizations  

The superior numerical "tools" for analysis of discrete ill-posed problems are the (ordinary) SVD of A  and its 

generalization to two matrices, the generalized SVD (GSVD) of the matrix pair( ,A L ). The SVD reveals all the 

difficulties associated with the ill-conditioning of the matrix A , while the GSVD of ( ,A L ) yields important 

insight into regularization problems involving both the matrix A  and the regularization matrix L . 

2.1. The (ordinary) SVD  

Let 
m nA R   be a rectangular or square matrix, and assume for ease of presentation that m n . Then the 

SVD of A  is a decomposition of the form 

1

n
T T

i i i

i

A U V u v


    ,                                (1) 

where 1( , , ) m n

nU u u R    and  1( , , ) n n

nV v v R    are matrices with orthonormal columns, 

T T

nU U V V I  , and the diagonal matrix 
1( , , )ndiag      has nonnegative elements appearing in 

nonincreasing order such that 

1 2 0n      .                                    (2) 

The numbers i  are called the singular values of A , while the vectors iu  and iv  are the left and right singular 

vectors of A , respectively. The decomposition in (1) is called the "thin SVD" in [2], because U  is rectangular 

when m n . The SVD is defined for any m  and n ; if m n , we can  apply (1)  to 
TA  and  interchange U  

and V . 

Form the relations 
2T TA A V V  and 

2T TAA U U  , we can see that the SVD of A  is strongly linked 

to the eigenvalue decompositions of the symmetric semidefinite matrices 
TA A  and 

TAA . This shows that the 

SVD is unique for a given matrix A , up to a sign change in the pair ( , )i iu v ---except for singular vectors 

associated with multiple singular values, where only the spaces spanned by the vectors are unique. In connection 

with discrete ill-posed problems, Wing and his workers in a series of papers [3], [4] and [5] studied two 

characteristic features of the SVD . 

1. The singular values i  decay gradually to zero with no particular gap in the spectrum. An increase of the 

dimensions of A  will increase the number of small singular values. 

2. The left and right singular vectors iu  and iv  tend to have more sign changes in their elements as the index i  

increases, i.e., as i  decreases. 

2.2. The GSVD   

The GSVD of the matrix pair ( , )A L  is a generalization of the SVD of A  in the sense that the generalized 

singular values of ( , )A L  are essentially the square roots of the generalized eigenvalues of the matrix pair 

( , )T TA A L L . We assume that the dimensions of 
m nA R   and 

p nL R   satisfy m n p  , which is 
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always the case in connection with discrete ill-posed problems. We also assume that ( ) ( ) 0N A N L   and 

that L  has full row rank. Then the GSVD is a decomposition of A  and L  in the form 

1 1
0

, ( ,0) .
0 n p

A U X L V M X
I

 



 
  

 
                          (3) 

Where the columns of 
m nU R   and 

p pV R   are othonormal, 
T

nUU I  and ;T

pV V I n nX R   is 

nonsingular.   and M are p p  diagonal matrices:
1( , )pdiag     . Moreover, the diagonal 

elements of   and M  are nonnegative and ordered such that 

 
1 10 1,1 0,p p           

and  they are normalized such that 

 
2 2 1, 1, , .i i i p       

Then the generalized singular values 
i  of ( , )A L  are defined as the ratios 

, 1, ,i
i

i

i p





   , 

and they obviously appear in nondecreasing order. 

 

3. Methods for Discrete Ill-posed Problems 

Consider the computation of an approximate solution of the minimization problem 

min ,
nx R

Ax b


                                           (4) 

where   denotes the Euclidean vector norm. Let 
me R  denote the (unknown) error in b , and let ˆ mb R  be 

the (unknown) error-free vector associated with b , i.e., 

ˆb b e  . 

We sometimes will refer to the vector e  as "noise". We assume that a bound e   is available and the 

(unavailable) linear system of equations with 

error-free right-hand side, 

ˆAx b , 

is assumed to be consistent; however, we do not require the least-squares problem with error-contaminated data 

b  (3) to be consistent. Let x̂  denote a desired solution of, e.g., the solution of minimal Euclidean norm. We 

seek to determine an approximation of x̂  by computing an approximate solution of the available linear system 

of equations (3).  

 

3.1. Regularization by truncated singular value decomposition 

The Moore-Penrose pseudoinverse of A  is given by 

1

1

, ( )
l

T

j j j

j

A v u l rank A 



  , 

the difficulty of solving (3) without regularization stems from the fact that the matrix A  has "tiny" positive 

singular values and the computation of (3) involves division by these tiny singular values. This results in severe 

propagation of the error e  in b  and of round-off errors introduced during the calculations into the computed 

solution of (3). 

The truncated SVD method uses the singular value decomposition (1) to determine the approximate solution 
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1

, 1,2, , l, l rank( )

Tk
j

k j

j j

u b
x v k A



    ,                           (4) 

here (1 )k k n   is the truncated parameter. 

We note that 
1{ , , }.k kx span v v   The singular values 

j  and the Fourier coefficients 
T

ju b  provide 

valuable insight into the properties of the linear discrete ill-posed problem (3); see, e.g., Hansen [1,7] for a 

discussion on the application of the TSVD to linear discrete ill-posed problems.  

 

3.2. Tikhonov regularization  

Tikhonov regularization replaces the linear system of equations (3) by the minimization problem of the form 

 
22

min .
nx R

Ax b L x


                                     (5) 

Here and throughout this paper   denotes the Euclidean vector norm or the associated induced matrix norm. 

This replacement is commonly referred to as regularization. The matrix ,p nL R p n

  , is referred to as the 

regularization matrix. The scalar 0   is the regularization parameter. The minimization problem (5) is said 

to be in standard form when L I  and in general form otherwise. Many examples of regularization matrices 

can be found in [8,9,10,11,15]. 

The matrix L  is assumed to be chosen so that system of equations (5) by the minimization problem of the 

form 

( ) ( ) 0.N A N L   

Then the Tikhonov minimization problem (5) has the unique solution 

1( )T T Tx A A L L A b  

                                 (6) 

see,e.g., Hansen [1] and Engl et al.[6] for discussions on Tikhonov regularization. 

We apply the discrepancy principle to determine a suitable value of the truncation index k  and the 

regularization parameter  . It prescribes that k  be chosen so that the associated solution (4) satisfies 

,kAx b                                         (7) 

and   be chosen so that the associated solution (6) satisfies 

,Ax b                                         (8)  

where 1   is usually chosen to be fairly close to unity is a user-specified constant independent of  .  Thus, 

k  is such that 

2 2 2

1

( ) ( ) ( ) .
n n

T T

j j

j k j k

u b u b
  

    

Properties of this method are discussed in [6].  

We can use a zero-finder, such as Newton's method to get the desired value of  , further discussion can be 

found in [1,6,12]. 
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