
Available online www.jsaer.com

Journal of Scientific and Engineering Research

249

Journal of Scientific and Engineering Research, 2020, 7(7):249-252

Research Article

ISSN: 2394-2630

CODEN(USA): JSERBR

Exploring the Sidecar Container Pattern in Kubernetes

Bhargav Bachina

Abstract This paper presents an overview of Kubernetes, an open-source container orchestration engine

facilitating automated deployment, scaling, and management of containerized applications. Central to

Kubernetes' architecture are pods, serving as the foundational unit for application deployment and management.

Pods encapsulate containers alongside associated resources such as storage, IP addresses, and runtime

configurations. While single-container pods are prevalent, multi-container pods, such as those employing the

sidecar container pattern, offer enhanced functionality and flexibility. This paper delves into the sidecar

container pattern, detailing its implementation through an illustrative project, thereby providing readers with

comprehensive insights into Kubernetes' architecture and practical application within containerized

environments.

Keywords Kubernetes, Docker, DevOps, Software Development, Software Engineering

1. Introduction

KUBERNETES is an open-source container orchestration engine for automating deployment, scaling, and

management of containerized applications. A pod is the basic building block of Kubernetes application.

Kubernetes manages pods instead of containers and pods encapsulate containers. A pod may contain one or

more containers, storage, IP addresses, and options that govern how containers should run inside the pod.

A pod that contains one container refers to a single container pod and it is the most common Kubernetes use

case. A pod that contains multiple co-related containers refers to a multi-container pod. There are a few patterns

for multi-container pods one of them is the sidecar container pattern. In this post, we will see this pattern in

detail with an example project.

• What is Sidecar Container

• Other Patterns

• Example Project

• Test With Deployment Object

• How to Configure Resource Limits

• When should we use this pattern?

• Summary

• Conclusion

2. What Is Sidecar Container

Sidecar containers are the containers that should run along with the main container in the pod. This sidecar

pattern extends and enhances the functionality of current containers without changing it. Nowadays, We know

that we use container technology to wrap all the dependencies for the application to run anywhere. A container

does only one thing and does that thing very well.

Imagine that you have a pod with a single container working very well and you want to add some functionality

to the current container without touching or changing, how can you add the additional functionality or extending

the current functionality? This sidecar container pattern really helps exactly in that situation.current container

Bachina B Journal of Scientific and Engineering Research, 2020, 7(7):249-252

Journal of Scientific and Engineering Research

250

without touching or changing, how can you add the additional functionality or extending the current

functionality? This sidecar container pattern really helps exactly in that situation.

If you look at the above diagram, you can define any number of containers for Sidecar containers and your main

container works along with it successfully. All the Containers will be executed parallelly and the whole

functionality works only if both types of containers are running successfully. Most of the time these sidecar

containers are simple and small that consume fewer resources than the main container.

3. Other Patterns

There are other patterns that are useful for everyday Kubernetes workloads.

• Init Container Pattern

• Adapter Container Pattern

• Ambassador Container Pattern

4. Example Project

Here is an example project you can clone and run it on your machine. You need to install Minikube as a

prerequisite.

https://github.com/bbachi/k8s-sidecar-container-pattern.git

Let’s implement a simple project to understand this pattern. Here is a simple pod that has main and sidecar

containers. The main container is nginx serving on port 80 that takes the index.html from the volume

mount workdir location. The Sidecar container with the image busybox creates logs in the same location with a

timestamp. Since the Sidecar container and main container run parallel Nginx will display the new log

information every time you hit in the browser.

https://gist.github.com/bbachi/7e1a5896e60606d18a5303813a97d577#file-pod-yml

// create the pod kubectl create -f pod.yml// list the pods kubectl get po// exec into pod kubectl exec -it sidecar-

container-demo -c main-container -- /bin/sh# apt-get update && apt-get install -y curl # curl localhost

You can install curl and query the local host and check the response.

Figure 1: Testing Sidecar Container

https://github.com/bbachi/k8s-sidecar-container-pattern.git
https://gist.github.com/bbachi/7e1a5896e60606d18a5303813a97d577#file-pod-yml

Bachina B Journal of Scientific and Engineering Research, 2020, 7(7):249-252

Journal of Scientific and Engineering Research

251

5. Test with Deployment Object

Let’s create a deployment object with the same pod specification with 5 replicas. I have created a service with the

port type NodePort so that we can access the deployment from the browser. Pods are dynamic here and the

deployment controller always tries to maintain the desired state. That’s why you can’t have one static IP Address

to access the pods so that you have to create a service that exposes the static port to the outside world. Internally

service maps to port 80 based on the selectors. You will see that in action in a while.

Let’s look at the below deployment object where we define one main container and two sidecar containers. All

the containers run in parallel. The two sidecar containers create logs in the location /var/log. The main container

Nginx serves those log files as when we hit the NGINX web server from port 80. You will see that in action in a

while.

https://gist.github.com/bbachi/7d6c40fc8f660eed243f7e9cd31d99c8#file-manifest-yml

Let’s follow these commands to test the deployment.

// create a deployment kubectl create -f manifest.yml// list the deployment, pods, and service kubectl get deploy -o wide

kubectl get po -o widekubectl get svc -o wide

Figure 3: Deployment in action

In the above diagram, you can see 5 pods running in different IP addresses and the service object maps the

port 32123 to port 80. You can access this deployment from the browser from the Kubernetes master IP

address 192.168.64.2 and the service port 32123.

http://192.168.64.2:32123

You can even test the pod with the following commands.

// exec into main container of the pod kubectl exec -it nginx-webapp-7c8b4d4f8d-9qmdm -c main-container -- /bin/sh//

install curl # apt-get update && apt-get install -y curl # curl localhost

Figure 4: Sidecar Pattern in action

6. How to Configure Resource Limits

Configuring resource limits is very important when it comes to Sidecar containers. The main point we need to

understand here is all the containers run in parallel so when you configure resource limits for the pod you have to

take that into consideration.

• The sum of all the resource limits of the main containers as well as sidecar containers (Since all the

containers run in parallel)

https://gist.github.com/bbachi/7d6c40fc8f660eed243f7e9cd31d99c8#file-manifest-yml
http://192.168.64.2:32123/

Bachina B Journal of Scientific and Engineering Research, 2020, 7(7):249-252

Journal of Scientific and Engineering Research

252

7. When Should We Use This Pattern

These are some of the scenarios where you can use this pattern.

• Whenever you want to extend the functionality of the existing single container pod without touching

the existing one.

• Whenever you want to enhance the functionality of the existing single container pod without touching

the existing one.

• You can use this pattern to synchronize the main container code with the git server pull.

• You can use this pattern for sending log events to the external server.

• You can use this pattern for network-related tasks.

8. Summary

• A pod that contains one container refers to a single container pod and it is the most common Kubernetes

use case.

• A pod that contains Multiple co-related containers refers to a multi-container pod.

• The Sidecar container pattern is one of the patterns that we use regularly for extending or enhancing

pre-existing containers.

• Sidecar containers run in parallel with the main container. So that you need to consider resource limits

of sidecar containers while defining request/resource limits for the pod.

• The application containers and Sidecar containers run in parallel which means all the containers run at

the same time. So that you need to sum up all the request/resource limits of the containers while

defining request/resource limits for the pod.

• You should configure health checks for sidecar containers as main containers to make sure they are

healthy.

• All the pods in the deployment object don’t have static IP addresses so that you need a service object to

expose yourself to the outside world.

• The service object internally maps to the port container port based on the selectors.

• You can use this pattern where your application or main containers need extending or enhancing the

current functionality.

9. Conclusion

It is invaluable to comprehend established Kubernetes patterns, particularly regarding sidecar containers. When

implementing sidecar containers, it is essential to ensure their simplicity and small footprint, as resource

utilization is aggregated when defining resource limits for the pod. Furthermore, configuring health checks for

sidecar containers is imperative to maintain overall pod health. Consequently, understanding the appropriate

scenarios for consolidating functionality within the main container versus employing separate containers is

crucial for effective application deployment and management in Kubernetes environments.

References

[1]. Official Docker Guides https://docs.docker.com/get-started/overview/

[2]. Official Kubernetes Docs https://kubernetes.io/docs/home/

[3]. Container Design Patterns https://kubernetes.io/blog/2016/06/container-design-patterns/

https://docs.docker.com/get-started/overview/
https://kubernetes.io/docs/home/
https://kubernetes.io/blog/2016/06/container-design-patterns/

