Language of Incidence matrices of X-labeled graphs

Wadhah S. Jassim

Department of Mathematics, Faculty of Science, Soran University, Soran, Erbil, Iraq

Abstract

The aim of this work is to give the definition of the language of the model of incidence matrices of Xlabeled connected graphs and then the up - down language of this model. We deduced that the universal language of the up-down language is a free group generated by the up-down language and then has length function. Moreover the up-down language is an up-down pregroup and their universal language is isomorphic to the universal group of the up-down pregroup of the model.

Keywords Up-down language, universal language of up-down language, length function of universal language and pregroup of up-down language

1. Introduction

We continue to give more applications of the model of incidence matrix of X - labeled connected graph. The basic concepts of the model of incidence matrix of X - labeled connected graph and its applications have been given in [1-4]. This model is a new description of X - labeled connected graphs, to let us write down algorithms and then write computer programs for those algorithms as we have done in [1-4]. Therefore we give a new concept for this model which is called the Language of the incidence matrix of X-labeled connected graph and their up-down language. Moreover the universal language of the up-down language, length function and the updown pregroup and it's universal language will be isomorphic to the universal group of the up-dowon pregroups of the incidence matrix of X-labled connected graph. Therefore this work divides into six sections; In section one we give an introduction, in section two we give basic definitions of graphs free groups and incidence matrices of X-labeled connected graphs that will be use in the rest of this project. In section three we give the definition of language of incidence matrix of X - labeled graph and it's universal language. Moreover we give the definition of up-down language and it's universal language. In section four we define a length function on the universal language of up-down language. In section five we give the definition of an up-down language and it's universal. In section six we give the conclusion.

2. Basic Concepts

Let F be a group and X be a subset of F; then F is said free group on X if and only
if the following two conditions hold:
i) X generates F, ii) there is no non-trivial relation between the elements of X.

A directed graph Γ is called a \boldsymbol{X} - labeled graph, if each directed edge e of Γ is
labeled by an element x of the set X.
Let Γ be any X - Labeled connected graph without loops (where $X=\{a, b\}$), then in [1] we gave the definition of incidence matrix of X - Labeled connected graph Γ which is an $n \times m$ incidence matrix [$x_{i j}$], where $1 \leq i \leq n, 1 \leq j \leq m)$ with $x_{i j}$ entries such that

$$
x_{i j}=\left\{\begin{array}{rcccc}
x \text { if } v_{i}= & i\left(e_{j}\right) & \text { and } \quad e_{j} & \text { lables } & x \in X \\
0 \text { if } v_{i} & \text { is } & \text { not incident } & \text { with } & e_{j} \\
x^{-1} \text { if } v_{i} & = & \tau\left(e_{j}\right) & \text { and } \quad e_{j} & \text { labeles } \\
x \in X
\end{array}\right.
$$

N.B. i) Incidence matrices of X-Labeled graphs Γ will be denoted by $M_{X}(\Gamma)$.
ii) If $X=\{a, b\}$ and the X - Labeled connected graph Γ has loops with labeling a or b, then choose a mid point on all edges labeled a or b to make all of them two edges labeled $a a$ or $b b$ respectively.
iii) in the rest of this work we will assume that all X -

Labeled graphs Γ are without loops.
Now let $M_{X}(\Gamma)$ be an $n \times m$ incidence matrix $\left[x_{i j}\right.$] of X-Labeled graph Γ and let r_{i} and c_{j} be a row and a column in $M_{X}(\Gamma)$ respectively. If $x_{i j}$ is a non - zero entry in the row r_{i}, then r_{i} is called an incidence row with the column c_{j} at the non - zero entry $x_{i j} \in X \cup X^{-1}$ and if $x_{i j} \in X$, then the row r_{i} is called the starting row (denoted by $s\left(c_{j}\right)$) of the column c_{j} and the row r_{i} is called the ending row (denoted by $e\left(c_{j}\right)$) of the column c_{j} if $x_{i j} \in X^{-1}$. If the rows r_{i} and r_{k} are incidence with column c_{j} at the non zero entries $x_{i j}$ and $x_{k j}$ respectively, then we say that the rows r_{i} and r_{k} are adjacent. If c_{j} and c_{h} are two distinct columns in $M_{X}(\Gamma)$ such that the row r_{i} is incidence with the columns c_{j} and c_{h} at the non - zero entries $\quad x_{i j}$ and $x_{i h}$ respectively (where $x_{i j}, x_{h} \in X \cup X^{-1}$), then we say that c_{j} and c_{h} are adjacent columns. For each column c there is an inverse column denoted by \bar{c} such that $s(\bar{c})=e(c), e(\bar{c})=s(c)$ and $\overline{\bar{c}}=c$.
A scale in $M_{X}(\Gamma)$ is a finite sequence of form $S=r_{1}, c_{1}^{\epsilon_{1}}, r_{2}, c_{2}^{\epsilon_{2}}, \ldots, r_{k-1}, c_{k-1}^{\epsilon_{k-1}}, r_{k}$, where $k \geq 1$, $\in=\mp, \quad s\left(c_{j}^{\epsilon_{j}}\right)=r_{j}$, and $e\left(c_{j}^{\epsilon_{j}}\right)=r_{j+1}=s\left(c_{j+1}\right), 1 \leq j \leq k-1$. The starting row of a scale $S=r_{1}, c_{1}^{\epsilon_{1}}, r_{2}, c_{2}^{\epsilon_{2}}, \ldots, r_{k-1}, c_{k-1}^{\epsilon_{k-1}}, r_{k}$ is the starting row r_{1} of the column c_{1} and the ending row of the scale S is the ending row r_{k} of the column c_{k-1} and we say that S is a scale from r_{1} to r_{k} and S is a scale of length k for $1 \leq j \leq k-2$. If $s(S)=e(S)$, then the scale is called closed scale. If the scale S is reduced and closed, then S is called a circuit or a cycle. Two rows r_{i} and r_{k} in $M_{X}(\Gamma)$ are called connected if there is a scale S in $M_{X}(\Gamma)$ containing r_{i} and r_{k}. More over $M_{X}(\Gamma)$ is called connected if any two rows r_{i} and r_{k} in $M_{X}(\Gamma)$ are connected by a scale S. If $M_{X}(\Gamma)$ is a connected and without any closed scale, then $M_{X}(\Gamma)$ is called a tree incidence matrix of X - Labeled graph Γ. Let Ω be a subgraph of Γ, then $M_{X}(\Omega)$ is called a sub incidence matrix of $M_{X}(\Gamma)$, if the set of rows and columns of $M_{X}(\Omega)$ are subsets of $M_{X}(\Gamma)$ and if c is a column in $M_{X}(\Delta)$, then $s(c), e(c)$ and \bar{c} have the same meaning in $M_{X}(\Gamma)$ as they do in $M_{X}(\Omega)$. A component of $M_{X}(\Gamma)$ is a maximal connected sub incidence matrix of $M_{X}(\Gamma)$. If $M_{X}(\Omega)$ is a sub incidence matrix of $M_{X}(\Gamma)$, and every two rows r_{i} and r_{k} in $M_{X}(\Gamma)$ are joined by at least one scale S in $M_{X}(\Omega)$, then $M_{X}(\Omega)$ is called spanning incidence matrix of $M_{X}(\Gamma)$ and $M_{X}(\Omega)$ is called spanning tree of $M_{X}(\Gamma)$ if $M_{X}(\Omega)$ is spanning and tree incidence matrix. The inverse of $M_{X}(\Gamma)$ is incidence matrix of X^{-1} - labeled graph Γ.

Lemma 2.1[4]: If Γ is a connected X - Labeled graph, then $M_{X}(\Gamma)$ is a connected incident matrix of X Labeled graph Γ.

Definition 2.2. Let $M_{X}(\Gamma)$ be an incidence Matrix of X - labeled graph Γ. If $M_{X}(\Gamma)$ does not contain any row r_{i} with non zero entries $x_{i j}$ and $x_{i k}$ in $X \cup X^{-1}$ such that $x_{i j}=x_{i k}$, then $M_{X}(\Gamma)$ is called a folded incidence matrix of X - Labeled graphs Γ. Otherwise it is called non- folded incidence matrix of X-labeled graph.
Lemma 2.3. If Γ is a folded X - Labeled graph, then $M_{X}(\Gamma)$ is a folded incident matrix of X-Labeled graph. Proof. See [4].

3. Language of Incidence matrices of \boldsymbol{X}-labeled connected graphs

In this section we will give the definition of language of Incidence matrix of X-labeled graphs, the up - down language of the incidence matrix of X - labeled graph. Moreover we give the incidence matrix of the universal language of the up-down language.
Definition 3.1: Let $M_{X}(\Gamma)$ be a folded incidence matrix of X-labeled connected graph Γ.
The directed incidence matrix of \boldsymbol{X}-labeled connected graph Γ can be construct as follows,
i) choose a base row $r^{*}=r_{1}$;
ii) choose a maximal tree incidence matrix of X - labeled connected graph
$M_{X}(T)$ from $M_{X}(\Gamma)$
iii) make the direction of all columns of $M_{X}(T)$ be away from the base row $r^{*}=r_{1}$, that if the direction of a column c in $M_{X}(T)$ is down, then make it up c^{-1} with non-zero entry x_{c}^{-1} at the starting row $r_{c}=s\left(c^{-1}\right)$, $x_{c} \in X$ such that $s\left(c^{-1}\right)=x^{-1}, e\left(c^{-1}\right)=x ;$
iv) the direction of all columns $c \in M_{X}(\Gamma) / M_{X}(T)$ be as in $M_{X}(\Gamma)$, away from the base row $r^{*}=r_{1}$.

Note: i) the directed incidence matrix of X-labeled graphs $M_{X}(\Gamma)$ with respect to the base row $r^{*}=r_{1}$ is denoted by $M_{X}\left(\Gamma, r^{*}\right)$.
ii) let $S=c_{j_{1}}, c_{j_{2}}, \cdots, c_{j_{n}}$ be an up reduce scale in $M_{X}\left(\Gamma, r^{*}\right)$ with non - zero entries
$x_{c_{j_{1}}}, x_{c_{j_{2}}}, \cdots, x_{c_{j_{n}}}$, where $x_{c_{j_{t}}} \in X \cup X^{-1}, t=1,2, \cdots, n$, then the non - zero entries $x_{c_{j_{1}}}, x_{c_{j_{2}}}, \cdots, x_{c_{j_{n}}}$, of the up reduce scale S is called the up reduced word of type S.
Therefore choose U to be the set of all up reduced words $w=x_{c_{j_{1}}} x_{c_{j_{2}}} \cdots x_{c_{j_{n}}}$ of type S in $M_{X}\left(\Gamma, r^{*}\right)$ with non-zero entries $x_{c_{j}} \in X \cup X^{-1}$ and starting at the base row $r^{*}=r_{1}$.

Now let $w=x_{c_{j_{1}}} . x_{c_{j_{2}}} \cdots x_{c_{j_{n}}}$ be the up reduced word of type S in $M_{X}\left(\Gamma, r^{*}\right)$ with non-zero entries $x_{c_{j}} \in X \cup X^{-1}$ starting at the base row $r^{*}=r_{1} \operatorname{in} M_{X}\left(\Gamma, r^{*}\right)$. Since $M_{X}\left(\Gamma, r^{*}\right)$ is a finite incidence matrix of X-labeled graph Γ, so all up reduced words $u=x_{c_{j_{1}}} x_{c_{j_{2}}} \cdots x_{c_{j_{n}}}$ of type S in $M_{X}\left(\Gamma, r^{*}\right)$ with nonzero entries $x_{c_{j}} \in X \cup X^{-1}$ are finite sequences of columns directed away from the base row $r^{*}=r_{1}$ such that the rows of the up reduced scale S are $r^{*}=r_{1}, r_{2}, \cdots, r_{n}$.

Note: the column $c_{j_{t}}$ and the non-zero entry $x_{c_{j_{t}}}$ will be denote by c_{t} and $x_{c_{t}}$ respectively.

Therefore a word of type S in $M_{X}(T)$ is a word of form $u=x_{c_{1}} x_{c_{2}} \cdots x_{c_{n}}$, where $x_{c_{j}}$ is the non- zero entry of the starting row r_{t} of the column $c_{j_{t}}$, i.e. $x_{c_{j_{t}}}=s\left(c_{j_{t}}\right)$,
$x_{c_{j_{t}}} \in X \cup X^{-1}$ and $t=1,2, \cdots, n$. Therefore every word $u=x_{c_{1}} x_{c_{2}} \cdots x_{c_{n}}$ must be reduced in $M_{X}\left(\Gamma, r^{*}\right)$.

Definition 3.2. Let $S=c_{j_{2}}, c_{j_{2}}, \cdots, c_{j_{n}}$ and $S^{\prime}=c_{j_{2}}^{\prime}, c_{j_{2}}^{\prime}, \cdots, c_{j_{n}}^{\prime}$ be up-reduced scales in $M_{X}\left(\Gamma, r^{*}\right)$ such that both of them starting at $r^{*}=r_{1}$ and let $u=x_{c_{1}} x_{c_{2}} \cdots x_{c_{n}}$ and $u^{\prime}=x_{c_{1}}^{\prime} x_{c_{2}}^{\prime} \cdots x_{c_{m}}^{\prime}$ be up reduced words of types S and S^{\prime} respectively, where $n \leq m$. If $c_{j}=c_{j}^{\prime}$ and $x_{c_{j}}=x_{c_{j}^{\prime}}^{\prime}$, for $1 \leq j \leq n$, then the word u is said to be the initial subword of the word u^{\prime}, and denoted by $u<u^{\prime}$.
Definition3.3. Let $S=c_{j_{2}}, c_{j_{2}}, \cdots, c_{j_{n}}$ be an up reduced scale in $M_{X}\left(\Gamma, r^{*}\right)$, then S is called a maximal up reduced scale in $M_{X}\left(\Gamma, r^{*}\right)$ if $e(S)=e\left(c_{j_{n}}\right)=r_{i_{n}}$ is maximal row in $M_{X}\left(\Gamma, r^{*}\right)$.
Definition 3.4. The up reduced word $u=x_{c_{1}} x_{c_{2}} \cdots x_{c_{n}}$ of type S is said to be a maximal up reduced word in $M_{X}\left(\Gamma, r^{*}\right)$ if $e(u)=e\left(c_{j_{n}}\right)=x_{c_{n}}$ is a maximal row r_{n} at the non- zero entry $x_{c_{j_{n}}}$ in $M_{X}\left(\Gamma, r^{*}\right)$.

Definition 3.5. Let $u=x_{c_{1}} x_{c_{2}} \cdots x_{c_{n}}$ be an up reduced word of type S in $M_{X}\left(\Gamma, r^{*}\right)$ and let $x_{c_{j_{n}}}$ be the non zero entry of the starting row $r_{n}=s\left(c_{j_{n}}\right)$ of the column $c_{j_{n}}$ in $M_{X}\left(\Gamma, r^{*}\right) / M_{X}\left(T, r^{*}\right)$, such that $s\left(c_{j_{n}}\right)=e\left(c_{j_{n-1}}\right)$, then we define the set
$U^{*}=\left\{u x_{c_{j_{n}}} ; u \in U, u x_{c_{j_{n}}} \in U\right.$ if $c_{j_{n}} \in M_{X}\left(T, r^{*}\right)$ and $u x_{c_{j_{n+1}}} \notin U$ if $c_{j_{n}} \in M_{X}\left(\Gamma^{*}, r^{*}\right) / M_{X}\left(T, r^{*}\right)$ with non-zero entry $x_{c_{j_{n}}} \in X \cup X^{-1}$.
Note: i) It is clear that $U \subseteq U^{*} \subseteq S(X)$ the set of all reduced word generated by $X=\{a, b\}$.
ii) in the rest of this work we will denote the column $c_{j_{n}}$ and the non-zero entry $X_{c_{j_{n}}}$ of
the starting row $r_{n}=s\left(c_{j_{n}}\right)$ of the column $c_{j_{n}}$ by c_{n} and $x_{c_{n}}$ respectively.
Definition 3.6. Let u^{*} and v^{*} be any two up reduced words of types S in U^{*}, then we say that $u^{*} \leq v^{*}$, if u^{*} is an up subword of $v^{*}, u^{*}<v^{*}$, if u^{*} is an up proper subword of v^{*} and $u^{*} \approx v^{*}$ if $u^{*} \leq v^{*}$ and $v^{*} \leq u^{*}$.

Lemma 3.7. The relation \approx defined above is an equivalence relation.
Proof: By direct calculations the result follows.

Lemma 3.8. Let U^{*} be defined as above, then U^{*} has exactly one up reduced word of type S of each element in U^{*} under the equivalence relation \approx defined above.

Proof. Let u^{*} and v^{*} be any two elements in U^{*}, so $u^{*}=u x_{c}$ and $v^{*}=v x_{c^{\prime}}^{\prime}$ and suppose that $u^{*} \approx v^{*}$
.Since $U^{*} \subseteq S(X)$, so each up reduced word of type S is unique in $U^{*}, u x_{c} \leq v x_{c^{\prime}}^{\prime}$ and $v x_{c^{\prime}}^{\prime} \leq u x_{c}$. Hence $u=v, x_{c}=x_{c^{\prime}}^{\prime}$ and $c=c^{\prime}$. Therefore $u^{*}=v^{*}$.

Lemma 3.9. The elements of the set U^{*} form a tree like incidence matrix of X-labeled graph like, that if u^{*}, v^{*} and w^{*} are any elements in U^{*}, such that $u^{*} \leq w^{*}$ and $v^{*} \leq w^{*}$, then $u^{*} \leq v^{*}$ or $v^{*} \leq u^{*}$. Moreover the relation \approx is transitive.
Proof: Let u^{*}, v^{*} and w^{*} be any up reduced words of types S in U^{*}, so $u^{*}=u x_{c}, v^{*}=v x_{c^{\prime}}^{\prime}$ and $w^{*}=w x_{c^{\prime \prime}}^{\prime \prime}$. Since $u^{*} \leq w^{*}$ and $v^{*} \leq w^{*}$, so either u^{*}, v^{*} are both of them in U or one of them is not in U. If $u^{*}, v^{*} \in U$ so $u^{*}<v^{*}$ or $v^{*}<u^{*}$. If $u^{*} \notin U$ or $v^{*} \notin U$, then $u^{*} \approx w^{*}$ or $v^{*} \approx w^{*}$ respectively. Therefore in both cases we get that $v^{*} \leq u^{*}$ or $u^{*} \leq v^{*}$ respectively. By the definition of the equivalence relation \approx we get that \approx is transitive relation.■
Note: i) the up reduced words of types S in U^{*} form a partially ordered tree incidence matrix of X - labeled connected graph with base row $r^{*}=r_{1}=[1]$. It is denoted by $M_{X}^{*}\left(T^{*}, r^{*}\right)$. It is clear that $U \subseteq U^{*}$ and then $M_{X}\left(T, r^{*}\right) \subseteq M_{X}^{*}\left(T^{*}, r^{*}\right)$.
ii) since each up reduced word of type S in $M_{X}^{*}\left(T^{*}, r^{*}\right)$ is unique and the relation \approx defined above is an equivalence relation, so each class is denoted by $u^{*}=\left[u x_{c}\right]$. Therefore the tree incidence matrix $M_{X}^{*}\left(T^{*}, r^{*}\right)$ will be construct as below;
i) Let the rows of $M_{X}^{*}\left(T^{*}, r^{*}\right)$ be the equivalence classes $u^{*}=\left[u x_{c}\right]$ of the set U^{*} and let the base row be the class $r^{*}=r_{1}=[e]$;
ii) Join two rows $r=u^{*}=\left[u x_{c}\right]$ and $r^{\prime}=v^{*}=\left[v x_{c^{\prime}}^{\prime}\right]$ by a column c^{\prime} with non-zero entries x_{c}^{\prime} and $x_{c}^{\prime-1}$, such that $x_{c}^{\prime} \in X \cup X^{-1}$, if $u^{*} \prec v^{*}$ and $u^{*}, v^{*}=u^{*} x_{c}^{\prime}$ are of heights $n-1$ and n respectively, such that x_{c}^{\prime} is the non-zero entry of the starting row $r=u^{*}$ of the column c.

Definition 3.10. For any two reduced words $u^{*}=\left[u x_{c}\right], w^{*}=\left[w x_{c^{\prime}}^{\prime}\right]$ of types S associated with two rows r_{i} and r_{j} respectively in $M_{X}^{*}\left(T^{*}, r^{*}\right)$, then we say that $u^{*} \cong w^{*}$ if and only if $u^{*}=u x_{c} \notin U$ and $w^{*}=w x_{c^{\prime}}^{\prime} \in U$, such that $e(c)=e\left(c^{\prime}\right)$ in $M_{X}\left(\Gamma, r^{*}\right)$.

Lemma 3.11. If $u^{*}=\left[u x_{c}\right], w^{*}=\left[w x_{c^{\prime}}^{\prime}\right]$ are defined as above in $M_{X}^{*}\left(T^{*}, r^{*}\right)$, then $u^{*} \cong w^{*}$ if and only if $u^{*} \cdot w^{*-1}$ forms a cycle in $M_{X}\left(\Gamma, r^{*}\right)$.
Proof: $u^{*} \cong w^{*}$ if and only if $u^{*}=u x_{c} \notin U$ and $w^{*}=w x_{c^{\prime}}^{\prime} \in U$, such that $e(c)=e\left(c^{\prime}\right)$ in $M_{X}\left(\Gamma, r^{*}\right)$ if and only if $u^{*} \cdot w^{*-1}$ forms a cycle in $M_{X}\left(\Gamma, r^{*}\right)$.

Lemma 3.12. The relation \cong defined above is an equivalence relation.
Proof: It is clear that \cong is an equivalence relation.

Lemma 3.13. For any reduced word $u^{*}=\left[u x_{c}\right]$ of type S in $M_{X}\left(T^{*}, r^{*}\right) / M_{X}\left(T, r^{*}\right)$, there is a unique reduced word $w^{*}=\left[w x_{c^{\prime}}^{\prime}\right]$ of type S in $M_{X}\left(T, r^{*}\right)$ such that $u^{*} . w^{*^{-1}}$ is a cycle and $u^{*} \cong w^{*}$.

Proof: Since $M_{X}\left(T, r^{*}\right)$ is Maximal tree incidence matrix of X-labeled connected graph Γ, with $X=\{a, b\}$, so each row r associated with a reduced word $w^{*}=\left[w x_{c^{\prime}}^{\prime}\right]$ of type S in $M_{X}\left(T, r^{*}\right)$ is of a different class. Since $u^{*}=\left[u x_{c}\right]$ is a reduced word of type S in $M_{X}\left(T^{*}, r^{*}\right) / M_{X}\left(T, r^{*}\right)$, so $u^{*}=\left[u x_{c}\right]$ is associated with a row r which is a terminal row of a column $c \notin M_{X}\left(T, r^{*}\right)$ with the labeled x_{c}. Hence $u^{*} \cong w^{*}$. We now suppose that there exists a n other redued word $z^{*}=\left[z x_{c^{\prime \prime}}^{\prime \prime}\right]$ in $M_{X}\left(T, r^{*}\right)$ such that $u^{*} \cong z^{*}$. Since \cong is an equivalence relation, so $z^{*} \cong w^{*}$ and then $z^{*} w^{*-1}$ forms a non trivial cycle in $M_{X}\left(\Gamma, r^{*}\right)$ a contradiction.
Note: If $u^{*} \cong w^{*}$, then the reduced word $w^{*}=\left[w x_{c^{\prime}}^{\prime}\right]$ defined above will be denote by $\overline{u x_{c}}$.

Definition3.14. For any two columns c and c^{\prime} in $M_{X}\left(T^{*}, r^{*}\right)$, we say that $c \sim c^{\prime}$
If and only if (i) c and c^{\prime} have the same non-zero entrices, (ii) $i(c) \approx i\left(c^{\prime}\right)$ and $t(c) \approx t\left(c^{\prime}\right)$.
Lemma3.15. The relation \sim defined above is an equivalence relation.

Lemma 3.16. $M_{X}\left(T^{*}, r^{*}\right)$ has exactly one column of each column class under the relation \sim.
Proof. Let c and c^{\prime} be any two columns in $M_{X}\left(T^{*}, r^{*}\right)$, such that $c \sim c^{\prime}$.
Since $M_{X}\left(T, r^{*}\right)$ has exactly one row of each row class under the relation \approx, so c and c^{\prime} are not in $M_{X}\left(T, r^{*}\right)$. Therefore either c and c^{\prime} are in $M_{X}\left(T^{*}, r^{*}\right) / M_{X}\left(T, r^{*}\right)$ or one of them in $M_{X}\left(T^{*}, r^{*}\right) / M_{X}\left(T, r^{*}\right)$ and the other in $M_{X}\left(T, r^{*}\right)$.
Case 1. if c and c^{\prime} are in $M_{X}\left(T^{*}, r^{*}\right) / M_{X}\left(T, r^{*}\right)$, then $i(c) \approx i\left(c^{\prime}\right)$. But $i(c), i\left(c^{\prime}\right)$ are in $M_{X}\left(T, r^{*}\right)$, hence $i(c)=i\left(c^{\prime}\right), t(c)=t\left(c^{\prime}\right)$ and $\quad x_{c}=x_{c^{\prime}}$, otherwise we get an unfolded incidence matrices of X labeled core graph. Hence $c=c^{\prime}$.
Case 2. If $c \in M_{X}\left(T^{*}, r^{*}\right) / M_{X}\left(T, r^{*}\right)$ and $c^{\prime} \in M_{X}\left(T, r^{*}\right)$, then $i(c) \approx i\left(c^{\prime}\right), t(c) \approx t\left(c^{\prime}\right)$ and $x_{c}=x_{c^{\prime}}$. Moreover $i(c), i\left(c^{\prime}\right)$ and $t\left(c^{\prime}\right)$ are in $M_{X}\left(T, r^{*}\right)$. Hence $i(c)=i\left(c^{\prime}\right), x_{c}=x_{c^{\prime}}$, and then $M_{X}\left(T^{*}, r^{*}\right)$ is an unfolded incidence matrices of X-labeled connected graph Which is a contradiction. Hence $c=c^{\prime}$.

Lemma 3.17. If $u^{*}=\left[u x_{c}\right]$ and $v^{*}=\left[v x_{c^{\prime}}\right]$ are two reduced words of types S in $M_{X}\left(T^{*}, r^{*}\right)$, such that $\left[u x_{c}\right]<\left[v x_{c^{\prime}}\right]$ and $\left[u x_{c}\right] \cong\left[v x_{c^{\prime}}\right]$, then $v^{*}=\left[v x_{c^{\prime}}\right] \notin M_{X}\left(T, r^{*}\right)$ and $x_{c^{\prime}}$ is a non-zero entry of initial row of a column $c^{\prime} \notin M_{X}\left(T, r^{*}\right)$ and x_{c} is a non-zero entry of initial row of a column $c \in M_{X}\left(T, r^{*}\right)$.
Proof. The proof will be by contradiction. Therefore suppose that $v^{*}=\left[v x_{c^{\prime}}\right] \in M_{X}\left(T, r^{*}\right)$. Since $\left[u x_{c}\right] \cong\left[v x_{c^{\prime}}\right]$, so. Since $\left[u x_{c}\right]<\left[v x_{c^{\prime}}\right]$, so $\left[u x_{c}\right] \cdot\left[v x_{c^{\prime}}\right]^{-1}$ forms a cycle and $u^{*}=\left[u x_{c}\right] \in M_{X}\left(T, r^{*}\right)$. Hence $u^{*}=\left[u x_{c}\right]$ and $v^{*}=\left[v x_{c^{\prime}}\right]$ are both in $M_{X}\left(T, r^{*}\right)$ and form a cycle a contradiction. Therefore $v^{*}=\left[v x_{c^{\prime}}\right] \in M_{X}\left(T^{*}, r^{*}\right) / M_{X}\left(T, r^{*}\right) \quad, \quad x_{c^{\prime}}$ is a non-zero entry of initial row of a column $c^{\prime} \notin M_{X}\left(T, r^{*}\right)$ and x_{c} is a non -zero entry of initial row of a column $c \in M_{X}\left(T, r^{*}\right)$.

Corollary 3.18. If $u^{*}=\left[u x_{c}\right]$ and $v^{*}=\left[v x_{c^{\prime}}\right]$ are two reduced words of type S in $M_{X}\left(T, r^{*}\right)$, such that $u^{*}<v^{*}$ and then $v^{*}=\left[v x_{c^{\prime}}\right]$ is a non - zero entry of a reduced word of type S not in $M_{X}\left(T, r^{*}\right)$.
Proof. By above lemma 3.17 the result follows.

Lemma 3.19. Let $u^{*}=x_{c_{1}} x_{c_{2}} \cdots x_{c_{n}}$ be a reduced word of type S in $M_{X}\left(T, r^{*}\right)$, with non-zero entries $x_{c_{j}}$ in $X=\{a, b\}, n \geq 1$. If $u^{*}=x_{c_{1}} x_{c_{2}} \cdots x_{c_{n}}$ is a reduced word of type S in $M_{X}\left(T, r^{*}\right)$, then $v^{*}=x_{c_{1}} x_{c_{2}} \cdots x_{c_{n-1}}$ is a reduced word of type S in $M_{X}\left(T, r^{*}\right)$.(where $x_{c_{i}}$ means $\left.x_{c_{k_{i}}}, i=1,2, \cdots, n\right)$.

Proof: Since $v^{*}=x_{c_{1}} x_{c_{2}} \cdots x_{c_{n-1}}$ is a subword of type S in $M_{X}\left(T, r^{*}\right)$ and $\ell\left(v^{*}\right)<\ell\left(u^{*}\right)$ so $v^{*}<u^{*}$. Since $v^{*}=x_{c_{1}} x_{c_{2}} \cdots x_{c_{n-1}}$ is a reduced word of type S in $M_{X}\left(T, r^{*}\right)$, so $v^{*}=x_{c_{1}} x_{c_{2}} \cdots x_{c_{n-1}}$ is a reduced word of type S in $M_{X}\left(T, r^{*}\right)$ and then in U.

Definition3.20: Let $M_{X}\left(\Gamma, r^{*}\right)$ be a directed incidence matrix of X-labeled connected graph Γ with the base row r^{*} of $M_{X}\left(\Gamma, r^{*}\right)$. The language of $M_{X}\left(\Gamma, r^{*}\right)$ with respect to the base row r^{*} is the set of all reduced words of type S which are starting and ending at the row r^{*}.
Note: The language of $M_{X}\left(\Gamma, r^{*}\right)$ with respect to the row r^{*} is denoted by $L\left(M_{X}\left(\Gamma, r^{*}\right)\right)$ The following example is the incidence matrix of the X-labeled connected graph in Fig. 3 in [5] page 614.

	e_{1}	e_{2}	e_{3}
r_{1}	a	0	b
r_{2}	a^{-1}	c	b^{-1}
r_{3}	0	c^{-1}	0

Fig.1. the incidence matrix of the X-labeled graph that in Fig. 3 in [Ilya] page 614.
Therefore the Language of the directed Incidence matrix of X-labeled connected graph $L\left(M_{X}\left(\Gamma, r^{*}\right)\right)$ is the set of all non-zero reduced words of type S at rows r_{1}, r_{2} and r_{3}.

Definition 3.21: If $u x_{c}$ is a reduced word of type S in $M_{X}\left(T^{*}, r^{*}\right)$ and $\overline{u x_{c}}$ is a reduced word of type S in $M_{X}\left(T, r^{*}\right)$, such that $u x_{c} \overline{u x}_{c}^{-1}$ is a cycle starting and ending at the row $r^{*}=r_{1}$,. Then the set ${ }^{\uparrow} U_{\downarrow}^{*}=\left\{u x_{c} \overline{u x}_{c}{ }^{-1} ; u\right.$ is a reduced word of type S in $\left.M_{X}\left(T, r^{*}\right)\right\}$ is called the set of up-down languages of type S in $M_{X}\left(\Gamma, r^{*}\right)$. It's denoted by $\bar{L}\left(^{\uparrow} U_{\downarrow}^{*}, r^{*}\right)$. Therefore $M_{X} \bar{L}\left({ }^{\uparrow} U_{\downarrow}^{*}, r^{*}\right)$ is called the directed incidence matrix of the up-down language of X - labeled connected graph.

Definition 3.22. For any two elements u^{*}, v^{*} in $M_{X} \bar{L}\left({ }^{\uparrow} U_{\downarrow}^{*}, r^{*}\right)$, such that $u^{*}=u x_{c} \overline{u x}_{c}^{-1}$ and $v^{*}=v x_{c^{\prime}}{\overline{v x_{c^{\prime}}}}^{-1}$, then we say that $u^{*} . v^{*}$ is defined, whenever $u^{*} \cdot v^{*}=u^{\prime} x_{c}^{\prime} v^{\prime} x_{c^{\prime}}^{\prime} \bar{v}^{\prime} x_{c^{\prime}}^{\prime}-1$ is of form up-down language of the directed incidence matrix of X - labeled graph in reduced form. It's denoted by $u^{*} v^{*}$ and then $u^{*} v^{*} \in \bar{L}\left({ }^{\uparrow} U_{\downarrow}^{*}, r^{*}\right)$.

Note: Since the product of the elements of $\bar{L}\left({ }^{\uparrow} U_{\downarrow}^{*}, r^{*}\right)$ is a partially product, so $\bar{L}\left({ }^{\uparrow} U_{\downarrow}^{*}, r^{*}\right)$ is not a group in general.

Theorem 3.23. If $u x_{c}$ is a reduced word of type S in $M_{X}\left(T^{*}, r^{*}\right)$ and $\overline{u x_{c}}$ is a reduced word of type S in $M_{X}\left(T, r^{*}\right) \quad$ such that $u^{*}=u x_{c}{\overline{u x_{c}}}^{-1} \in M_{X} \bar{L}\left({ }^{\uparrow} U_{\downarrow}^{*}, r^{*}\right)$. Let $\bigcup\left(\bar{L}\left({ }^{\uparrow} U_{\downarrow}^{*}, r^{*}\right)\right)=\left\{u_{1}^{*} \cdot u_{2}^{*} \cdots . u_{n}^{*} ; u_{i}^{*} \in \bar{L}\left({ }^{\uparrow} U_{\downarrow}^{*}, r^{*}\right), 1 \leq i \leq n\right\}$ be the set of all reduced words of up-down languages in $\bar{L}\left({ }^{\uparrow} U_{\downarrow}^{*}, r^{*}\right)$, then $\bigcup\left(\bar{L}\left({ }^{\uparrow} U_{\downarrow}^{*}, r^{*}\right)\right)$ is a group generated by $\bar{L}\left({ }^{\uparrow} U_{\downarrow}^{*}, r^{*}\right)$.
Proof. It is easy to show that $\bigcup\left(\bar{L}\left({ }^{\uparrow} U_{\downarrow}^{*}, r^{*}\right)\right)$ is a group.
We now show that the group $\bigcup\left(\bar{L}\left({ }^{\uparrow} U_{\downarrow}^{*}, r^{*}\right)\right)$ generates by $\bar{L}\left({ }^{\uparrow} U_{\downarrow}^{*}, r^{*}\right)$.
Let $x=x_{c_{1}} \cdot x_{c_{2}} \cdots \cdot x_{c_{n}}$ be a reduced word in $\bigcup\left(\bar{L}\left({ }^{\uparrow} U_{\downarrow}^{*}, r^{*}\right)\right)$ starting and ending at the base row $r^{*}=r_{1}$ with non- zero entries $x_{c_{i}} \in X \cup X^{-1}, 1 \leq i \leq n$.
Now, for each element of type S in $M_{X}\left(T, r^{*}\right)$ starting at $r^{*}=r_{1}$, such that $u_{j+1}=\overline{u_{j} x_{c_{j}}}$, if $u_{1}^{*} \cdot u_{2}^{*} \cdot \cdots \cdot u_{n}^{*}$ is a reduced up-down scales in $M_{X}\left(\bar{L}\left({ }^{\uparrow} U_{\downarrow}^{*}, r^{*}\right)\right)$, where $u_{j}^{*}=u_{j} x_{c_{j}} \overline{u_{j} x_{c_{j}}}{ }^{-1}, 1 \leq j \leq n$ and u_{j}^{*} in $M_{x}\left(\bar{L}\left({ }^{\uparrow} U_{\downarrow}^{*}, r^{*}\right)\right)$ for all $\mathrm{j}, 1 \leq j \leq n$.
Hence $u_{1}^{*} \cdot u_{2}^{*} \cdots \cdot u_{n}^{*}=u_{1} x_{c_{1}}{\overline{u_{1} x_{c_{1}}}}^{-1} \cdot u_{2} x_{c_{2}}{\overline{u_{2} x_{c_{2}}}}^{-1} \cdot u_{3} x_{3}{\overline{u_{3} x_{c_{3}}}}^{-1} \cdots u_{n} x_{c_{n}}{\overline{u_{n} x_{c_{n}}}}^{-1}$

$=u_{1} x_{c_{1}} \cdot x_{c_{2}} \cdot x_{c_{3}} \cdot x_{c_{3}} \cdots \cdot x_{c_{n}}{\overline{u_{n} x_{c_{n}}}}^{-1}=u_{1} x_{c_{1}} x_{c_{2}} \cdots \cdot x_{c_{n}} u_{n+1}^{-1}$.
Since $e\left(u_{n+1}^{-1}\right)=r^{*}=r_{1}=1, \overline{e\left(c_{1}\right)}=r^{*}=r_{1}=\overline{e\left(u_{n} x_{c_{n}}\right)} \quad$ and $\quad s\left(c_{1}\right)=r_{n}=s\left(u_{1} x_{c_{1}}\right)=s\left(u_{1}\right)$ so the maximal common reduced word of type S between u_{1} and $c_{j_{1}}$ is $r^{*}=r_{1}$, and also the maximal common reduced word of type S between $c_{j_{1}}$ and u_{n+1} is $r^{*}=r_{1}$. Therefore $u_{1}=1$ and $u_{n+1}=1$. Hence $x=u_{1}^{*} \cdot u_{2}^{*} \cdots \cdot u_{n}^{*}$ is a reduced word generated by the set of all up-down laguages $M_{X}\left(\bar{L}\left({ }^{\uparrow} U_{\downarrow}^{*}, r^{*}\right)\right)$ of incidence matrix of X-labeled graph■
Note: $M_{X}\left(\bigcup\left(\bar{L}\left({ }^{\uparrow} U_{\downarrow}^{*}, r^{*}\right)\right)\right)$ is called the directed incidence matrix of the universal language of the up down languages in $\bar{L}\left({ }^{\uparrow} U_{\downarrow}^{*}, r^{*}\right)$ of X - labeled graph.

Lemma 3.24. If $x=u_{1}^{*} \cdot u_{2}^{*} \cdots \cdot u_{n}^{*}$ is a reduced word of the universal language of the up - down languages in $M_{X}\left(\left(\bar{L}\left({ }^{\uparrow} U_{\downarrow}^{*}, r^{*}\right)\right)\right)$ of type S in $M_{X}\left(T, r^{*}\right)$ and $x_{c} \in X \cup X^{-1}$ is a non zero entry of column c in $M_{X}\left(\bar{L}\left({ }^{\uparrow} U_{\downarrow}^{*}, r^{*}\right)\right)$, then
(i) $u x_{c}{\overline{u x_{c}}}^{-1}=e$ if and only if $u x_{c} \in M_{X}\left(T, r^{*}\right)$ (ii) $u=\overline{\overline{u x_{c}} x_{c}^{-1}}$.

Proof: Since $M_{X}\left(T, r^{*}\right)$ has exactly one row of each row class, so $\overline{u x_{c}}$ is the only reduced word of type S of the row r in $M_{X}\left(T, r^{*}\right)$, such that $u x_{c}{\overline{u x_{c}}}^{-1}$ is a cycle in $M_{X}\left(\bar{L}\left({ }^{\uparrow} U_{\downarrow}^{*}, r^{*}\right)\right)$, so $u x_{c} \overline{u x}_{c}{ }^{-1}=e$ if and only
if $u x_{c}{\overline{u x_{c}}}^{-1}$ is the trivial cycle in $M_{X}\left(\bar{L}\left({ }^{\uparrow} U_{\downarrow}^{*}, r^{*}\right)\right)$ if and only if $u x_{c}=\overline{u x_{c}}$ if and only if $u x_{c} \in M_{X}\left(T, r^{*}\right)$.
ii) Since $u x_{c} \in M_{X}\left(T^{*}, r^{*}\right)$ and $\overline{u x_{c}} \in M_{X}\left(T, r^{*}\right)$, so $\overline{u x_{c}} x_{c}^{-1}$ is an up - down reduced subword of type S of the reduced word $\overline{u x_{c}} x_{c}^{-1} u^{-1}$ of type S in $M_{X}\left(\bar{L}\left({ }^{\uparrow} U_{\downarrow}^{*}, r^{*}\right)\right)$, such that $t\left(\overline{u x_{c}} x_{c}^{-1}\right)=t(u)$, therefore u is the unique reduced word of type S in $M_{X}\left(T, r^{*}\right)$, such that $\overline{u x_{c}} x_{c}^{-1} u^{-1}$ is a cycle in $M_{X}\left(\bar{L}\left({ }^{\uparrow} U_{\downarrow}^{*}, r^{*}\right)\right)$.

Hence $u=\overline{u x_{c}} x_{c}^{-1} . ■$

Lemma 3.25. If $u x_{c}$ and $v x_{c^{\prime}}$ are two reduced words of types S in $M_{X}\left(T^{*}, r^{*}\right) / M_{X}\left(T, r^{*}\right)$, then either (i) $x_{c}{\overline{u x_{c}}}^{-1} v x_{c^{\prime}}=e$ in which case $v=\overline{u x_{c}}, x_{c^{\prime}}=x_{c}^{-1}$ and $u=v x_{c^{\prime}}$ or
(ii) $x_{c}\left(\overline{u x_{c}}\right)^{-1} v x_{c^{\prime}}$ is a reduced word of type S of length at least 2 such that $s\left(x_{c}\left(\overline{u x_{c}}\right)^{-1} v x_{c^{\prime}}\right)=s\left(x_{c}\right)$ and $e\left(x_{c}\left(\overline{u x_{c}}\right)^{-1} v x_{c^{\prime}}\right)=e\left(x_{c}\right)$.

Proof: Since $u x_{c}$ and $v x_{c^{\prime}}$ are two reduced words of types S in $M_{X}\left(T^{*}, r^{*}\right) / M_{X}\left(T, r^{*}\right)$ and x_{c} and $x_{c^{\prime}}$ are the non-zero entries of columns c and c^{\prime} respectively. Therefore there are unique reduced words $\overline{u x_{c}}$ and $\overline{v x_{c^{\prime}}}$ of types S in $M_{X}\left(T, r^{*}\right)$ such that $u x_{c}\left(\overline{u x_{c}}\right)^{-1}$ and $v x_{c}\left(\overline{v x_{c^{\prime}}}\right)^{-1}$ are non-trivial cycles in $M_{X}\left(\bar{L}\left({ }^{\uparrow} U_{\downarrow}^{*}, r^{*}\right)\right)$. Thus the maximal common reduced word of type S between $\overline{u x_{c}}$ and v is w, therefore either
(1) $\overline{u x_{c}}=w=v$, (2) $w=\overline{u x_{c}}, w<v$, (3) $w=v$, or (4) $w<v, w<\overline{u x_{c}}$ holds.

If (1) holds, then either $x_{c} x_{c^{\prime}}=e$, then $x_{c}=x_{c^{\prime}}^{-1}, \overline{u x_{c}}=v, u=\overline{v x_{c^{\prime}}}$, and hence $x_{c} \overline{u x}_{c}^{-1} v x_{c^{\prime}}=e$, or $x_{c} x_{c^{\prime}} \neq e$, then $x_{c} x_{c^{\prime}}$ is a reduced word of type S and of length 2 , and then $x_{x}\left(\overline{u x_{c}}\right)^{-1} v x_{c^{\prime}}$ is a reduced word of type S and it is of length at least 2 . Now if (2), (3) or (4) holds, then ${\overline{u x_{c}}}^{-1} v \neq e$, hence $x_{x}\left(\overline{u x_{c}}\right)^{-1} v x_{c^{\prime}}$ is a reduced word of type S and it's of length at least 2, such that $s\left(x_{c}\left(\overline{u x_{c}}\right)^{-1} v x_{c^{\prime}}\right)=s(c)$ which is the non-zero entry x_{c} of the column c and $e\left(x_{c}\left(\overline{u x_{c}}\right)^{-1} v x_{c^{\prime}}\right)=e(c)$ which is the non-zero entry x_{c} of the column c.

Lemma 3.26. If $u x_{c}$ is a reduced word of type S in $M_{X}\left(T^{*}, r^{*}\right) / M_{X}\left(T, r^{*}\right)$ then all reduced up - down words $u x_{c}\left(\overline{u x_{c}}\right)^{-1}$ of types S are distinct and the set of them is equal to the disjoined union of the set $L^{*}=\left\{u x_{c} \overline{u x}_{c}^{-1} ; u\right.$ is a reduced word of type S in $M_{X}(T)$ and x_{c} is a non-zero entry in the starting row of the column c in $\left.M_{X}\left(T^{*}, r^{*}\right) / M_{X}\left(T, r^{*}\right), x_{c} \in X\right\}$ and $L^{*^{-1}}=\left\{\left(u x_{c}{\overline{u x_{c}}}^{-1}\right)^{-1} ; u x_{c} \overline{u x}_{c}^{-1} \in L^{*}\right\}$.

Proof: Since $u x_{c} \in M_{X}\left(T^{*}, r^{*}\right) / M_{X}\left(T, r^{*}\right), x_{c}$ is a non-zero entry in the starting row of the column c in $M_{X}\left(T^{*}, r^{*}\right) / M_{X}\left(T, r^{*}\right)$, so by lemma 3.14 there exists a unique reduced word of type S in $M_{X}(T)$ such that $u x_{c} \overline{u x}_{c}^{-1}$ is a cycle, so $u x_{c}{\overline{u x_{c}}}^{-1}$ is an element in $M_{X}\left(\bar{L}\left({ }^{\uparrow} U_{\downarrow}^{*}, r^{*}\right)\right)$. Since all columns c with non-zero entries x_{c} are distinct in $M_{X}^{*}\left(T^{*}\right) / M_{X}(T)$, so all reduced words $u x_{c}{\overline{u x_{c}}}^{-1}$ of type S in L^{*} are distinct. Since
$L^{*-1}=\left\{\left(u x_{c}{\overline{u x_{c}}}^{-1}\right)^{-1} ; u x_{c}{\overline{u x x_{c}}}^{-1} \in L^{*}\right\} \quad$ and $\quad\left(u x_{c} \overline{u x}_{c}^{-1}\right)^{-1}$ is the inverse of $u x_{c} \overline{u x}_{c}^{-1}$, so $\left(u x_{c}\left(\overline{u x_{c}}\right)^{-1}\right)^{-1}=\overline{u x_{c}}\left(u x_{c}\right)^{-1}=\overline{u x_{c}} x_{c}^{-1} u^{-1}$ is a non-trivial cycle in $M_{X}\left(\bar{L}\left({ }^{\uparrow} U_{\downarrow}^{*}, r^{*}\right)\right)$. Hence all elements of L^{*-1} are distinct, and then all elements of $L^{*} \cup L^{*-1}$ are distinct.

4. Length function of universal language of the up- down language

In this section we show that the universal language $M_{X}\left(U\left(\bar{L}\left({ }^{\uparrow} U_{\downarrow}^{*}, r^{*}\right)\right)\right)$ of the up-down language $M_{X}\left(\bar{L}\left({ }^{\uparrow} U_{\downarrow}^{*}, r^{*}\right)\right)$ of incidence matrix of X - labeled graph has length function. Therefore we start with the basice definition of length function of a group.

In [6] Lyndon gave the definition of integer - valed length function on a group H to be a function $\ell: H \rightarrow Z$ satisfying the following axioms:
$A 1^{\prime}: \ell(e)=0$, where e is the identity element of H;
$A 2: \ell(x)=\ell\left(x^{-1}\right), \forall x \in H$;
A4: if $\alpha(x, y)<\alpha(y, z)$, then $\alpha(x, y)=\alpha(x, z), \forall x, y, z \in H$, where
$2 \alpha(x, y)=\ell(x)+\ell(y)-\ell\left(x y^{-1}\right)$
We now define a length on the reduced words of $M_{X}\left(\bigcup\left(\bar{L}\left({ }^{\uparrow} U_{\downarrow}^{*}, r^{*}\right)\right)\right.$) as below.

Definition 4.1: For any reduced word $g=u_{1}^{*} \cdot u_{2}^{*} \cdots \cdot u_{n}^{*}$ of type S in $M_{X}\left(\cup\left(\bar{L}\left({ }^{\uparrow} U_{\downarrow}^{*}, r^{*}\right)\right)\right)$, defines a length $\ell(g)=\ell\left(u_{1}^{*} \cdot u_{2}^{*} \cdot \cdots \cdot u_{n}^{*}\right)=\sum_{i=1}^{n+1}\left(\# C\left(\overline{u_{i-1} x_{c_{i-1}}}-1\right)+\# C\left(u_{i} x_{c_{i}}\right)-2 \# C\left(w_{i-1}\right)\right)$, where
$u_{i}^{*}=u_{i} x_{c_{i}}{\overline{u_{i}} x_{c_{i}}}^{-1}$, \#C is the number of columns, $x_{c_{i}}$ is a non-zero entry in a column $c_{i}, x_{c_{i}} \in X \cup X^{-1}$, $x_{c_{0}}=e=x_{c_{n+1}}, \forall i, 1 \leq i \leq n, \# C\left(w_{i-1}\right)$ is the number of columns in the maximal common subword w_{i-1} between $\overline{u_{i-1} x_{c_{i-1}}}-1$ and $u_{i} x_{c_{i}}$.

Lemma 4.2. ℓ define a function on $M_{X}\left(\cup\left(\bar{L}\left({ }^{\uparrow} U_{\downarrow}^{*}, r^{*}\right)\right)\right)$.
Proof. Let $u^{*}=u_{1}^{*} \cdot u_{2}^{*} \cdots \cdot u_{n}^{*}, v^{*}=v_{1}^{*} \cdot v_{2}^{*} \cdots \cdot v_{m}^{*}$ be reduced words in $M_{X}\left(\cup\left(\bar{L}\left({ }^{\uparrow} U_{\downarrow}^{*}, r^{*}\right)\right)\right)$. Suppose that $u^{*}=v^{*}$, so $u_{1}^{*} \cdot u_{2}^{*} \cdots \cdot u_{n}^{*},=v_{1}^{*} \cdot v_{2}^{*} \cdots \cdot v_{m}^{*}$. Since $u_{i}^{*}=u_{i} x_{c_{i}}{\overline{u_{i} x_{c_{i}}}}^{-1}, v_{j}^{*}=v_{j} y_{c_{j}}{\overline{v_{j}} y_{c_{j}}}^{-1}, \forall i, j$, $1 \leq i \leq n$, and $1 \leq j \leq m$, and each class u_{i}^{*} is unique, so $u_{i} x_{c_{i}}=v_{j} y_{c_{j}}$ and ${\overline{u_{i} x_{c_{i}}}}^{-1}={\overline{v_{j}} y_{c_{j}}}^{-1}, n=m$. Hence $\# C\left(u^{*}\right)=\# C\left(v^{*}\right)$ and then $\ell\left(u^{*}\right)=\ell\left(v^{*}\right)$.

Theorem 4.3. ℓ is a length function on $M_{X}\left(\cup\left(\bar{L}\left({ }^{\uparrow} U_{\downarrow}^{*}, r^{*}\right)\right)\right)$.
Proof. It is clear that $A 1^{\prime}$ and $A 2$ hold. We now show that $A 4$ holds.
let $\quad u^{*}=u_{1}^{*} \cdot u_{2}^{*} \cdots \cdot u_{n}^{*} \quad, \quad v^{*}=v_{1}^{*} \cdot v_{2}^{*} \cdot \cdots \cdot v_{m}^{*} \quad$ and $\quad z^{*}=z_{1}^{*} \cdot z_{2}^{*} \cdots \cdot z_{t}^{*} \quad$, be \quad reduced \quad words \quad in $M_{X}\left(\cup\left(\bar{L}\left({ }^{\uparrow} U_{\downarrow}^{*}, r^{*}\right)\right)\right)$. Then $u^{*} v^{*-1}=u_{1}^{*} \cdot u_{2}^{*} \cdots \cdot u_{n-1}^{*} \cdot u_{n}^{*} v_{m}^{-1} \cdot v_{m-1}^{*-1} \cdots \cdot v_{2}^{*-1} \cdot v_{1}^{*-1}$.

Since each reduced word is unique, so $u_{i} x_{c_{i}}{\overline{u_{i} x_{c_{i}}}}^{-1}=.\left(v_{i} y_{c_{i}}{\overline{v_{i} y_{c_{i}}}}^{-1}\right), u_{i}^{*}=v_{i}^{*} \forall i, i=1,2, \cdots, j$. Then $u_{i} x_{c_{i}}{\overline{u_{i} x_{c_{i}}}}^{-1} \cdot\left(v_{i} y_{c_{i}}{\overline{v_{i} y_{c_{i}}}}^{-1}\right)^{-1}=e, \# C\left(w_{i-1}^{\prime}\right)$ is the number of columns in the maximal common subword w_{i-1}^{\prime} between ${\overline{u_{i-1}} x_{c_{i-1}}}^{-1}$ and $u_{i} x_{c_{i}}$ for all $i=1,2,3, \cdots, j$, plus the number of columns in maximal common subwords between $\overline{u_{j-1} x_{c_{j-1}}}-1$ and $\overline{v_{j-1} y_{c_{j-1}}}$ will be delete.
Therefore $u^{*} v^{*-1}=u_{1}^{*} \cdot u_{2}^{*} \cdots \cdot u_{j-1}^{*^{\prime}} \cdot v_{j-1}^{*^{\prime}-1} \cdots \cdot v_{2}^{*-1} \cdot v_{1}^{*-1}$ in reduced form.
Now let w_{j}^{*} be the maximal common proper ending subword between u^{*} and v^{*-1}.
Since $\ell\left(u^{*} v^{*-1}\right)=\ell\left(u^{*}\right)+\ell\left(v^{*-1}\right)-2 \# C\left(w_{j}^{*}\right)$ and $2 \alpha\left(u^{*}, v^{*}\right)=\ell\left(u^{*}\right)+\ell\left(v^{*}\right)-\ell\left(u^{*} v^{*-1}\right)$, so $2 \alpha\left(u^{*}, v^{*}\right)=2 \# C\left(w_{j}^{*}\right)$.
. Therefore w_{j}^{*} is the maximal proper ending subword of u^{*} and v^{*}.
Now suppose that $z^{*}=z_{1}^{*} \cdot z_{2}^{*} \cdots \cdot z_{t}^{*}, u^{*}=u_{1}^{*} \cdot u_{2}^{*} \cdot \cdots \cdot u_{n}^{*}$ and $v^{*}=v_{1}^{*} \cdot v_{2}^{*} \cdot \cdots \cdot v_{m}^{*}$ are reduced words in $M_{X}\left(\cup\left(\bar{L}\left({ }^{\uparrow} U_{\downarrow}^{*}, r^{*}\right)\right)\right)$, such that $\alpha\left(u^{*}, v^{*}\right)<\alpha\left(v^{*}, z^{*}\right)$.
We now show that $\alpha\left(u^{*}, v^{*}\right)=\alpha\left(u^{*}, z^{*}\right)$.
Similarly $2 \alpha\left(v^{*}, z^{*}\right)=2 \# C\left(s_{k}^{*}\right)$, where s_{k}^{*} is the maximal common a proper ending subword between ending of v^{*} and z^{*}. Since $\alpha\left(u^{*}, v^{*}\right)<\alpha\left(v^{*}, z^{*}\right)$, so $\# C\left(w_{j}^{*}\right)<\# C\left(s_{k}^{*}\right)$. Since w_{j}^{*}, s_{k}^{*} are proper ending subwords of v^{*},so w_{j}^{*} is a proper subword of s_{k}^{*}. Since s_{k}^{*} is a proper subword of z^{*}, so w_{j}^{*} is a proper subword of z^{*}. Hence w_{j}^{*} is the maximal common proper ending subword between u^{*} and z^{*}, and then $2 \# \alpha\left(u^{*}, z^{*}\right)=2 \# C\left(w_{j}\right)$. Therefore $\alpha\left(u^{*}, v^{*}\right)=\alpha\left(u^{*}, z^{*}\right)$ and then ℓ is length function on $M_{X}\left(\cup\left(\bar{L}\left({ }^{\uparrow} U_{\downarrow}^{*}, r^{*}\right)\right)\right)$

5. Up-down Language and Pregroups

In this section we show that the up-down language is an up-down pregroup.
The definition of pregroup was given by Stallings in [7] that in 1971 as a generalizion of free product with amilagmation. In [8] Stallings defined the up-down pregroup of free groups and show that the universal group of up-dowm pregroup is isomorphic to free group generated by X. In [9] we proved that any group with length function comes from an up-down pregroup.

Definition 5.1.[7]. A pregroup P consists of :
a) set P,
b) An element 1 in P,
c) A map $P \rightarrow P$, denoted by $x \mapsto x^{-1}$,
d) A subset D of $P \times P$,
e) A map $D \rightarrow P$, denoted by $(x, y) \mapsto x y$,
(we shall say that $x y$ is defined instead of $(x, y) \in D$), such that the following axioms are true:
$P 1$: for all $x \in P, x 1=1 x=x$,
$P 2$: for all $x \in P, x x^{-1}=x^{-1} x=1$,
$P 4:$ for all x, y and z in P, if $x y$ and $y z$ are defined, then $x(y z)$ is defined if and only
if $(x y) z$ is defined in which case they are equal.
P5: For any w, x, y and z in $P, w x, x y$ and $y z$ are defined in P, then $w x y$ or $x y z$ is
defined in P.
Hoare [10] showed that we could prove axiom P3 above by using the following proposition, P1, P2 and P4.

Proposition 5.2: If $x y$ is defined, then $(x y) y^{-1}$ is defined and equal to x.

Definition 5.3 [10]: For any $x \in P$, put $L(x)=\{a \in P: a x$ is defined $\}$. We write $x \leq y$ if $L(y) \subseteq L(x), x<y$ if $L(y) \subset L(x)$ and $L(x) \neq L(y)$, and $x \sim y$ if $L(x) \neq L(y)$. It is clear that \sim is an equivalence relation compatible with \leq.
The following results are taken from Stallings [7] and Rimlinger [11]. (See [10] for shorter proofs).

Proposition 5.4:

(i) If $x \leq y$ or $y \leq x$, then $x^{-1} y$ and $y^{-1} x$ are defined.
(ii) If $x a$ and $a^{-1} y$ are defined, then $(x a)\left(a^{-1} y\right)$ is defined if and only if $x y$ is defined in which case they are equal.
By using axiom P5 above (will be denoted by P5(i)) Rimlinger [11] proved conditions
P5(ii) and P5(iii) of Lemma5.5 below.

Lemma 5.5: [10] . The following conditions on elements of P are equivalent :
$\mathrm{P}(\mathrm{i})$. If $w x, x y$ and $y z$ are defined, then either $w x y$ or $x y z$ is defined.
P(ii). If $x^{-1} a$ and $a^{-1} y$ are defined but $x^{-1} y$ is not, then $a<x$ and $a<y$.
P (iii). If $x^{-1} y$ is defined, then $x \leq y$ or $y \leq x$.
Therefore we will say P is a pregroup, if it satisfies axioms P1, P2. P4 and the conditions of Lemma 5.5. The universal group of pregroup P has the following presentation $<P ; x . y=x y$ whenever $x y$ is defined, for $x, y, \in P>$.
Definition 5.6: For any two elements $u^{*}, v^{*} \in \bar{L}\left({ }^{\uparrow} U_{\downarrow}^{*}, r_{1}\right)$, such that $u^{*}=u_{i} x_{c_{i}}{\overline{u_{i}} x_{c_{i}}}^{-1}$, $v^{*}=v_{j} y_{c_{j}}{\overline{v_{j}} y_{c_{j}}}^{-1}$, then we say that $u^{*} v^{*}$ is definend if and only if $\overline{u_{i} x_{c_{i}}}$ is a subword of $v_{j} y_{c_{j}}$ or $v_{j} y_{c_{j}}$ is a subwoed of $\overline{u_{i} x_{c_{i}}}$.
Lemma 5.7: Axioms P1, P2 and P4 hold in $\bar{L}\left({ }^{\uparrow} U_{\downarrow}^{*}, r_{1}\right)$.
Proof: Since $u^{*}=u_{i} x_{c_{i}}{\overline{u_{i} x_{c_{i}}}}^{-1}=e$ if and only if $\overline{u_{i} x_{c_{i}}}=u_{i} x_{c_{i}}$ by lemma $3.25(\mathbf{i})$, so $e \in \bar{L}\left({ }^{\uparrow} U_{\downarrow}^{*}, r_{1}\right)$. Hence P1 holds.
Since e is the empty word, so e subword of any subword $u_{i} x_{c_{i}}$ or $\overline{u_{i} x_{c_{i}}}$, so $e u^{*}=u^{*}=u^{*} e$ $\forall x \in \bar{L}\left({ }^{\uparrow} U_{\downarrow}^{*}, r_{1}\right)$.Hence P 2 holds.
Since $\bar{L}\left({ }^{\uparrow} U_{\downarrow}^{*}, r_{1}\right)$ is a subset of $\bigcup\left(\bar{L}\left({ }^{\uparrow} U_{\downarrow}^{*}, r_{1}\right)\right)$ and $\bigcup\left(\bar{L}\left({ }^{\uparrow} U_{\downarrow}^{*}, r_{1}\right)\right)$ is a group, so
P 4 holds. Therefor P1, P2 and P4 hold in $\bar{L}\left({ }^{\uparrow} U_{\downarrow}^{*}, r_{1}\right)$
We now prove P 5 in the following lemma.

Lemma 5.8. for any u^{*}, v^{*}, w^{*} in $\bar{L}\left({ }^{\uparrow} U_{\downarrow}^{*}, r_{1}\right)$, such that if, $u^{*-1} w^{*}, w^{*-1} v^{*}$ are defined and $u^{*-1} v^{*}$ is not defined in $\bar{L}\left({ }^{\uparrow} U_{\downarrow}^{*}, r_{1}\right)$, then $w^{*}<u^{*}$ and $w^{*}<v^{*}$.
Proof: Let $u^{*}=u_{i} x_{c_{i}}{\overline{u_{i} x_{c_{i}}}}^{-1}, v^{*}=v_{j} y_{c_{j}}{\overline{v_{j} y_{c_{j}}}}^{-1}$ and $w^{*}=w z_{c_{t}}{\overline{w z_{c_{t}}}}^{-1}$.
Since $u^{*-1} w^{*}$ is defined, so either $w z_{c^{\prime \prime}}$ is a subword of $u x_{c} \cdots(1)$ or $u x_{c}$ is a subword of $w z_{c^{\prime \prime}} \cdots(2)$

Since $w^{*-1} v^{*}$ is defined, so either $w z_{c^{\prime \prime}}$ is a sub word of $v y_{c^{\prime}} \cdots$ (3) or
$v y_{c^{\prime}}$ is a subword of $w z_{c^{\prime \prime}} \cdots$ (4).
Since $u^{*-1} v^{*}$ is not defined, so neither $u x_{c}$ is a subword of $v y_{c^{\prime}}$ nor $v y_{c^{\prime}}$ is a subword of $u x_{c}$.Therefore we have four cases.
Case 1: If relation (1) and (3) hold,
then $w^{*} \leq u^{*}$ and $w^{*} \leq v^{*}$. Therefore $L\left(u^{*}\right) \subseteq L\left(w^{*}\right)$ and $L\left(v^{*}\right) \subseteq L\left(w^{*}\right)$.
Since neither $u x_{c}$ is a subword of $v y_{c^{\prime}}$ nor $v y_{c^{\prime}}$ is a subword
of $\quad u x_{c}$, so $L\left(u^{*}\right) \not \subset L\left(v^{*}\right)$ and $L\left(v^{*}\right) \not \subset L\left(u^{*}\right)$. Therefore there exist $a, b \in \bar{L}\left({ }^{\uparrow} U_{\downarrow}, r^{*}\right)$, such that $a \in L\left(u^{*}\right)$ and $a \notin L\left(v^{*}\right)$. Also $b \in L\left(v^{*}\right)$ and $b \notin L\left(u^{*}\right)$.
Hence $a \in L\left(w^{*}\right)$ and $a \notin L\left(v^{*}\right)$, and then $L\left(v^{*}\right) \subset L\left(w^{*}\right)$. Also $b \in L\left(w^{*}\right)$ and
$b \notin L\left(u^{*}\right)$, then $L\left(v^{*}\right) \subset L\left(w^{*}\right)$. Hence $w^{*}<u^{*}$ and $w^{*}<v^{*}$.
Other cases give us contradictions. Hence P5 holds■
Theorem 5.9: $\bar{L}\left({ }^{\uparrow} U_{\downarrow}^{*}, r_{1}\right)$ is an up-down pregroup.
Proof: By Lemmas 5.7 and 5.8 the result follows.

6. Conclusion

This work and the previous works that we have done in [1-4] appear the flexibility of the model of incidence matrix of X - labeled graph. This model provides a powerful tool to write computer program for any X- labeled graph which appears that any X-labeled graph has an up-down pregroup and length function. Moreover this model compatible with group action on trees.

References

[1]. Jassim, W.S." Incidence Matrices of X-labeled Graphs and an application",
[2]. Abdu K.A.;" Representing Core graphs and Nickolas's Algorithm", M. Sc. Thesis Baghdad University, 1999.
[3]. Jassim,W.S., "Incidence Matrices of Directed Graph of groups and their Up-down pregroup",
[4]. Jassim,W.S. and Farman, M. "On incidence Matrices of X-labeled graphs",
[5]. Kapovich, I. and Myasnikov, A. ; " Stallings foldings and subgroups of free Groups":608-668, 2002.
[6]. Lyndon, R.C.; "Length functions in groups". Math, Scand., 1963,209-234.
[7]. Stallings, J.P.;" Group theory and Three dim. Manifolds". 1971 Yale Monographs
[8]. Stallings, J.P.; "Adyan Groups and Pregroups", Essays in group Theory, MSRI Publications 8 ed. By S. M. Gersten.
[9]. Hoare, A.H.M.\& Jassim, W.S. ;" Directed graphs of groups and their Up-down Pregroups", Faculty of Science Bulletin, Sana'a University,2004, Vol.17, 137-154.
[10]. Hoare, A.H.M. ; "Pregroups and Length functions". Math Proc. Cambridge Philos. Soc. 1988, 21-30.
[11]. Rimlinger, F. ; "Pregroups and Bass - Serre theory". 1987, Amer. Math. Soc. Memoirs.
[12]. Hoare A.H.M. and Jassim, W.S.;"Directed graphs of groups and their up-down pregroups", Faculty of Science Bulletin, Sana'a University, 2004, 17,137-154.

