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Abstract The aim of this work is to give the definition of the language of the model of incidence matrices of X-

labeled connected graphs and then the up – down language of this model. We deduced that the universal 

language of the up-down language is a free group generated by the up-down language and then has length 

function. Moreover the up-down language is an up-down pregroup and their universal language is isomorphic to 

the universal group of the up-down pregroup of the model. 
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1. Introduction 

We continue to give more applications of the model of incidence matrix of X- labeled connected graph. The 

basic concepts of the model of incidence matrix of X- labeled connected graph and its applications have been 

given in [1-4]. This model is a new description of X- labeled connected graphs, to let us write down algorithms 

and then write computer programs for those algorithms as we have done in [1-4]. Therefore we give a new 

concept for this model which is called the Language  of the incidence matrix of X-labeled connected graph and 

their up-down language. Moreover the universal language of the up-down language, length function and the up-

down pregroup and it's universal language will be  isomorphic to the universal group of the up-dowon pregroups 

of the incidence matrix of X-labled connected graph. Therefore this work divides into six sections; In section 

one we give an introduction, in section two we give basic definitions of graphs free groups  and incidence 

matrices of X-labeled connected graphs that will be use in the rest of this project. In section three we give the 

definition of language of incidence matrix of X – labeled graph and it's universal language . Moreover we give 

the definition of up-down language and it's universal language. In section four we define a length function on 

the universal language of up-down language. In section five we give the definition of an up-down language and 

it's universal. In section six we give the conclusion. 

 

2. Basic Concepts 

Let F be a group and X be a subset of F; then F is said free group on X if and only  

if  the following two conditions hold: 

i) X generates F, ii) there is no non-trivial relation between the elements of X. 

A directed graph  is called a X- labeled graph, if each directed edge e of  is  

labeled by an element x of the set X.  

Let  be any X – Labeled connected graph without loops (where },{ baX  ), then  in [1] we gave the 

definition of  incidence matrix of X – Labeled connected graph  which is an mn  incidence matrix ][ ijx , 

where mjni  1,1 ) with 
ijx   entries such that   
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N.B. i) Incidence matrices of X – Labeled graphs  will be denoted by )(XM .  

ii) If },{ baX   and the X – Labeled  connected graph  has loops with labeling a or b, then choose a mid 

point on all edges labeled a or b to make all of them two edges labeled aa or bb respectively . 

iii) in the rest of this work we will assume that all X –  

Labeled graphs  are without loops.  

Now let )(XM be an mn  incidence matrix  ][ ijx   of X – Labeled graph  and let  ir  and 
jc  be a row 

and a column in )(XM  respectively. If 
ijx  is a non – zero entry in the row ir , then ir  is called  an incidence 

row with  the column 
jc  at the non – zero entry 

ijx
1 XX  and if Xxij   , then the row ir  is called 

the starting row ( denoted by ))( jcs of the column 
jc and the row ir  is called the ending row ( denoted by 

)( jce  )  of the column 
jc  if 

1 Xxij . If the rows ir  and kr  are incidence with column 
jc  at the non – 

zero entries 
ijx  and 

kjx  respectively, then we say that the rows ir  and kr  are adjacent. If 
jc  and hc are two 

distinct columns in )(XM  such that the row ir  is incidence with the columns 
jc  and hc   at the non – zero 

entries  
ijx  and ihx respectively (where 

1,  XXxx hij ), then we say that 
jc  and hc  are adjacent 

columns. For each column c there is an inverse column denoted by c  such that )()(),()( cscececs  and 

cc  . 

A scale in )(XM  is a finite sequence of form 
kkk rcrcrcrS k ,,,,,,, 121

112211





  , where ,1k  

,  jj rcs j 


)(  , and 11),()( 11  


kjcsrce jjj

j
. The starting row of a scale

kkk rcrcrcrS k ,,,,,,, 121

112211





   is the starting row 1r of the column 1c  and the ending row of the scale S 

is the ending row kr of the column 1kc   and we say that S is a scale from 1r  to kr  and S is a scale of length k 

for   21  kj . If )()( SeSs  , then the scale is called closed scale. If the scale S is reduced and closed , 

then S is called a circuit or a cycle. Two rows  ir  and kr in )(XM  are called connected if there is a scale S 

in )(XM  containing ir  and kr . More over )(XM  is called connected if any two rows ir  and kr  in 

)(XM are connected by a scale S. If )(XM  is a connected  and without any closed scale, then )(XM is 

called a tree incidence matrix of X – Labeled graph Γ. Let   be a subgraph of  Γ, then )(XM is called  a 

sub incidence matrix of )(XM , if the set of rows and columns of )(XM   are subsets of )(XM  and if 

c is a column in )(XM , then )(),( cecs  and c have the same meaning  in )(XM  as they do in )(XM .  

A component of )(XM is a maximal connected sub incidence matrix of )(XM . If )(XM  is a sub 

incidence matrix of )(XM , and every two rows ir  and kr in )(XM  are joined by at least one scale S in 

)(XM , then )(XM is called spanning incidence matrix of )(XM  and )(XM  is called spanning 

tree of )(XM  if )(XM  is spanning and tree incidence matrix. The inverse of )(XM is incidence 

matrix of 
1X  - labeled graph Γ.  
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Lemma 2.1[4]: If  is a connected X- Labeled graph, then )(XM is a connected incident matrix of X-

Labeled graph .  

Definition 2.2. Let )(XM  be an incidence Matrix of X- labeled graph. If )(XM  does not contain  any 

row ir  with non zero entries 
ijx and ikx  in 

1 XX  such that  
ikij xx  , then )(XM  is called  a folded 

incidence matrix of X – Labeled graphs . Otherwise it is called non- folded incidence matrix of X-labeled 

graph. 

Lemma 2.3 . If  is a folded X- Labeled graph, then )(XM is a folded incident matrix of X-Labeled graph. 

Proof. See [4]. 

 

3. Language of Incidence matrices of X-labeled connected graphs 

In this section we will give the definition of language of Incidence matrix of X-labeled graphs, the up – down 

language of the incidence matrix of  X- labeled graph. Moreover we give the incidence matrix of the universal 

language of the up-down language . 

Definition 3.1: Let  )(XM be a folded incidence matrix of X-labeled connected graph . 

The directed incidence matrix of X-labeled connected graph  can be construct as follows,  

i) choose a base row 1rr 
;  

ii) choose a maximal tree incidence matrix of X- labeled connected graph     

)(TM X from )(XM  

iii) make the direction of all columns of )(TM X be away from the base row 1rr 
, that if the  direction of a 

column c in )(TM X  is down, then make it up 
1c with non-zero entry 

1

cx at the starting row )( 1 csrc , 

Xxc  such that 
11)(   xcs , xce  )( 1

; 

iv) the direction of all columns )(/)( TMMc XX  be as in )(XM , away from the base row 1rr 
.  

Note: i) the directed incidence matrix of X-labeled graphs )(XM  with respect to the base row 1rr 
is 

denoted by ),(  rM X . 

ii) let 
njjj cccS ,,,

21
 be an up reduce scale in ),(  rM X  with non – zero entries   

njjj ccc xxx ,,,
21

 , where 
1 XXx

tj
c , nt ,,2,1  , then the non – zero entries 

njjj ccc xxx ,,,
21

 , 

of the up reduce scale S is called the up reduced word of type S.    

Therefore choose U to be the set of all up reduced words 
njjj ccc xxxw 

21

.  of type S in ),(  rM X   with 

non-zero entries
1 XXx

jc and starting at the base row 1rr 
 . 

Now let
njjj ccc xxxw 

21

.  be the up reduced word of type S in ),(  rM X  with non-zero entries

1 XXx
jc  starting at the base row 1rr 

in ),(  rM X . Since ),(  rM X  is a finite incidence 

matrix of X-labeled graph , so all up reduced words 
njjj ccc xxxu 

21

.  of type S in ),(  rM X with non-

zero entries
1 XXx

jc  are finite sequences of columns directed away from the base row 1rr 
 such 

that the rows of the up reduced scale S are nrrrr ,,, 21 
.  

Note: the column 
tj

c   and the non-zero entry 
tj

cx will be denote by tc and 
tcx respectively. 
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Therefore a word of type S in )(TM X is a word of form 
nccc xxxu 

21
  , where 

jcx is the non- zero entry 

of the starting row tr of the column 
tjc , i.e. )(

ttj
jc csx  ,   

1 XXx
tj

c  and nt ,,2,1   . Therefore every word 
nccc xxxu 

21
 must be reduced in 

),(  rM X .  

Definition 3.2. Let 
njjj cccS ,,,

22
  and 

njjj cccS  ,,,
22
 be up-reduced scales in ),(  rM X such 

that both of them starting at 1rr 
and let 

nccc xxxu 
21

 and 
mccc xxxu  

21
be up reduced words of 

types S and S   respectively, where mn  . If jj cc  and 
jj cc xx 
 , for nj 1 , then the word u is said 

to be the initial subword of the word u , and denoted by uu  . 

Definition3.3. Let 
njjj cccS ,,,

22
 be an up reduced scale in ),(  rM X , then S is called a maximal up 

reduced scale in ),(  rM X if 
nn ij rceSe  )()( is maximal row in ),(  rM X .  

Definition 3.4. The up reduced word
nccc xxxu 

21
 of type S is said to be a maximal up reduced word in 

),(  rM X if 
nn cj xceue  )()( is a maximal row nr at the non- zero entry 

nj
cx in ),(  rM X . 

Definition 3.5. Let 
nccc xxxu 

21
 be an up reduced word of type S in ),(  rM X and let 

nj
cx be the non 

zero entry of the starting row )(
njn csr  of the column 

nj
c in ),(/),(  rTMrM XX , such that 

)()(
1


nn jj cecs , then we define the set  

UuxUuuxU
njnj

cc  ,;{ if ),(  rTMc Xjn
 and Uux

nj
c 

1

if 

),(/),(  rTMrMc XXjn
with non-zero entry 

1 XXx
nj

c . 

Note: i) It is clear that )(XSUU  
the set of all reduced word generated by },{ baX  . 

ii) in the rest of this work we will denote the column
nj

c and the non-zero entry
nj

cx of  

the starting row )(
njn csr  of the column

nj
c by nc and 

ncx respectively. 

Definition 3.6. Let 
u and 

v be any two up reduced words of types S in 
U , then we  

say that
  vu  , if 

u is an up subword of
v , 

  vu , if 
u is an up proper subword of

v and 
  vu if 

  vu and 
  uv . 

 

Lemma 3.7. The relation  defined above is an equivalence relation. 

Proof: By direct calculations the result follows.■ 

 

Lemma 3.8. Let
U be defined as above, then 

U has exactly one up reduced word of type S of each element in 

U under the equivalence relation   defined above. 

Proof. Let 
u and 

v be any two elements in 
U , so cuxu 

 and cxvv 
   and suppose that 

  vu

.Since )(XSU 
, so each up reduced word of type S is unique in

U , cc xvux 
  and  cc uxxv  . Hence 

vu  , cc xx 
 and cc  . Therefore 

  vu .■ 



Jassim WS et al                                         Journal of Scientific and Engineering Research, 2020, 7(7):146-158 

 

Journal of Scientific and Engineering Research 

150 

 

Lemma 3.9. The elements of the set 
U  form a tree like incidence matrix of X-labeled graph like, that if 

u , 

v  and 
w are any elements in 

U , such that 
  wu and 

  wv , then 
  vu or 

  uv . Moreover 

the relation   is transitive. 

Proof: Let 
u , 

v  and
w  be any up reduced words of types S in 

U , so cuxu 
, cxvv 

  and 

cxww 
  . Since 

  wu and 
  wv , so either 

u , 
v are both of them in U or one of them is not in U . 

If 
u , 

v U so
  vu or

  uv . If Uu 
or Uv 

, then
  wu  or 

  wv   respectively. 

Therefore in both cases we get that 
  uv or 

  vu respectively. By the definition of the equivalence 

relation  we get that  is transitive relation.■ 

Note: i) the up reduced words of types S in 
U form a partially ordered tree incidence matrix of X- labeled 

connected graph with base row ]1[1  rr . It is denoted by ),(  rTM X
. It is clear that 

UU  and then

),(),(   rTMrTM XX . 

ii) since each up reduced word of type S in ),(  rTM X  is unique and  the relation   defined above is an 

equivalence relation, so each class is denoted by ][ cuxu 
. Therefore the tree incidence matrix

),(  rTM X  will be construct as below;  

i) Let the rows of ),(  rTM X be the equivalence classes ][ cuxu 
of the set 

U  and let the base row be 

the class ][1 err 
;  

ii) Join two rows r = ][ cuxu 
 and  ][ cxvvr 

  by a column cwith non-zero entries cx  and ,1
cx

such that
1 XXxc , if 

 vu   and
u , cxuv  

 are of  heights 1n and n  respectively, such that 

cx  is the non-zero entry of the starting row 
 ur of the column c .  

 

Definition 3.10. For any two reduced words  ][ cuxu 
, ][ cxww 

  of types S associated with two rows 

ir  and jr respectively in ),(  rTM X , then we say that 
  wu  if and only if Uuxu c 

and 

Uxww c  


, such that )()( cece  in ),(  rM X . 

 

Lemma 3.11. If ][ cuxu 
, ][ cxww 

   are defined as above in ),(  rTM X , then 
  wu  if and only 

if 
1

.
 wu forms a cycle in ),(  rM X . 

Proof: 
  wu  if and only if  Uuxu c 

and Uxww c  


, such that )()( cece  in ),(  rM X  

if and only if 
1

.
 wu forms a cycle in ),(  rM X .■ 

 

Lemma 3.12. The relation   defined above is an equivalence relation .  

Proof: It is clear that   is an equivalence relation. ■ 

 

Lemma 3.13. For any reduced word ][ cuxu 
 of type S in ),(/),(  rTMrTM XX , there is a unique 

reduced word ][ cxww 

   of type S in ),( rTM X  such that 
1

.
 wu is a cycle and 

  wu . 
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Proof: Since ),( rTM X is Maximal tree incidence matrix of X-labeled connected graph  , with 

},{ baX  , so each row r associated with a reduced word  ][ cxww 

   of type S in ),( rTM X is of a 

different class. Since ][ cuxu 
is a reduced word of type S in ),(/),(  rTMrTM XX , so ][ cuxu 

is 

associated with a row r which is a terminal row of a column ),(  rTMc X with the labeled cx . Hence

  wu  . We now suppose that there exists a n other redued word ][ cxzz 
  in ),( rTM X such that 

  zu . Since  is an equivalence relation , so 
  wz   and then 

1wz forms a non trivial cycle in 

),(  rM X  a contradiction.■  

Note: If 
  wu , then the reduced word ][ cxww 

  defined  above will be denote by cux . 

 

Definition3.14. For any two columns c and c in ),(  rTM X , we say that cc ~  

If and only if  (i) c and c have the same non-zero entrices , (ii) )()( cici   and )()( ctct  .  

 

Lemma3.15. The relation ~ defined above is an equivalence relation.■ 

 

Lemma 3.16. ),(  rTM X has exactly one column of each column class under the relation ~ . 

Proof. Let  c and c be any two columns in ),(  rTM X , such that cc ~ . 

Since ),( rTM X has exactly one row of each row class under the relation  , so   c and c are not in 

),( rTM X . Therefore either  c and c are in ),(/),(  rTMrTM XX or one of them in 

),(/),(  rTMrTM XX and the other in ),( rTM X .  

Case 1. if  c and  c are in ),(/),(  rTMrTM XX , then )()( cici  . But )(),( cici  are in ),( rTM X
,  

hence )()( cici  , )()( ctct  and  cc xx  , otherwise we get an unfolded incidence  matrices of X-

labeled core graph. Hence cc  . 

Case 2. If ),(/),(  rTMrTMc XX and ),(  rTMc X , then )()( cici  , )()( ctct   and

cc xx  . Moreover  )(),( cici   and )(ct  are in ),( rTM X . Hence )()( cici  , cc xx  , and then 

),(  rTM X is an unfolded incidence  matrices of X-labeled connected graph Which is a contradiction. Hence 

cc  .■ 

 

Lemma 3.17. If  ][ cuxu 
and ][ cvxv 

  are two reduced words of types S in ),(  rTM X , such that 

][][ cc vxux  and ][][ cc vxux  , then ),(][ 


  rTMvxv Xc and cx  is a non-zero entry of initial row 

of a column ),(  rTMc X and cx  is a non –zero entry of initial row of a column ),(  rTMc X . 

Proof.  The proof will be by contradiction. Therefore suppose that ),(][ 


  rTMvxv Xc . Since 

][][ cc vxux  , so. Since ][][ cc vxux  , so 
1]].[[ 

cc vxux forms a cycle and ),(][   rTMuxu Xc . 

Hence   ][ cuxu 
and ][ cvxv 

  are both in ),( rTM X  and form a cycle a contradiction. Therefore 

),(/),(][ 



  rTMrTMvxv XXc  , cx  is a non-zero entry of initial row of a column

),(  rTMc X  and cx  is a non –zero entry of initial row of a column ),(  rTMc X . ■ 
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Corollary 3.18. If  ][ cuxu 
and ][ cvxv 

   are two reduced words of type S in ),( rTM X , such that

  vu  and then ][ cvxv 
   is a non – zero entry of a reduced word of type S not in ),( rTM X .  

Proof.  By above lemma 3.17 the result follows. ■ 

 

Lemma 3.19. Let 
nccc xxxu 

21


 be a reduced word of type S in ),( rTM X , with non-zero entries 
jcx

in },{ baX  , .1n If 
nccc xxxu 

21


is a reduced word of type S in ),( rTM X , then

121 


nccc xxxv  is a reduced word of type S in ),( rTM X .(where 
icx means 

ikcx , ),,2,1 ni  . 

Proof: Since 
121 



nccc xxxv   is a subword of type S in ),( rTM X  and )()(   uv   so
  uv . 

Since  
121 



nccc xxxv  is a reduced word of type S in ),( rTM X , so 
121 



nccc xxxv  is a reduced 

word of type S in ),( rTM X and then in U. ■ 

 

Definition3.20: Let ),(  rM X be a directed incidence matrix of X-labeled connected graph  with the base 

row
r  of ),(  rM X . The language of ),(  rM X  with respect to the base row

r  is the set of all reduced 

words of type S which are starting and ending at the row
r . 

Note: The language of ),(  rM X with respect to the row
r is denoted by )),((  rML X   The following 

example is the incidence matrix of the X-labeled connected graph in Fig. 3 in [5] page 614. 

00

0

1

3

11

2

1

321





cr

bcar

bar

eee

 

Fig.1. the incidence matrix of the X-labeled graph that in Fig. 3 in [Ilya] page 614. 

Therefore the Language of the directed Incidence matrix of X-labeled connected graph )),((  rML X is the 

set of all non-zero reduced words of type S at rows 21 , rr  and 3r . 

 

Definition 3.21: If cux  is a reduced word of type S in ),(  rTM X  and cux  is a reduced word of type S in

),( rTM X , such that 
1

cc uxux  is a cycle starting and ending at the row 1rr 
,. Then the set 

uuxuxU cc ;{
1



  is a reduced word of type S in ),( rTM X }is called the set of up-down languages of 

type S in ),(  rM X .It's denoted by ),( 



 rUL . Therefore ),( 



 rULM X is called the directed 

incidence matrix of the up-down language of X- labeled connected graph. 

 

Definition 3.22. For any two elements 
 vu , in ),( 



 rULM X , such that 
1  cc uxuxu   and

1



  cc vxvxv , then we say that 
 vu .  is defined , whenever 

 vu . =
1



ccc xvxvxu  is of form up-down 

language of the  directed incidence matrix of X- labeled graph in reduced form. It's denoted by 
vu and then 

),( 



  rULvu . 



Jassim WS et al                                         Journal of Scientific and Engineering Research, 2020, 7(7):146-158 

 

Journal of Scientific and Engineering Research 

153 

 

Note: Since the product of the elements of ),( 



 rUL is a partially product, so ),( 



 rUL  is not a group in 

general. 

 

Theorem 3.23. If cux  is a reduced word of type S in ),(  rTM X
 and cux  is a reduced word of type S in

),( rTM X , such that ),(
1 



  rULMuxuxu Xcc . Let 

}1),,(;...{)),(( 21 nirULuuuurUL in  







  be the set of all reduced words of up-down 

languages in ),( 



 rUL , then )),(( 



 rUL is a group generated by ),( 



 rUL . 

Proof. It is easy to show that )),(( 



 rUL is a group.  

We now show that the group )),(( 



 rUL  generates by ),( 



 rUL . 

 Let 
nccc xxxx ..

21
  be a reduced word in )),(( 



 rUL  starting and ending at the base row 1rr 
  

with non- zero entries 
1 XXx

ic , ni 1 .  

Now,  for each element of  type S in ),( rTM X  starting at 1rr 
, such that ,1 jcjj xuu  if 



nuuu ... 21   

is a reduced up-down scales in )),(( 



 rULM X , where
1 

jj cjcjj xuxuu  , nj 1 and 


ju in 

)),(( 



 rULM
X

for all j, nj 1 .  

Hence 
11

333

1

22

1

1121 .......
32211

 
nn cncncccccn xuxuxuxuxuxuxuxuuuu                      

1

1

1

1

1

32

1

21

1

11 ......
1133222111














nnnn cnccncncccccccc xuxxuxuxuxxuxuxxuxuxu   

 
1

1 .....
3321




nn cnccccc xuxxxxxu  1

11 ..
21



 nccc uxxxu
n

 . 

Since 1)( 1

1

1  

 rrue n  )()(, 11 ncn xuerrce  
 and  )()()( 111 1

usxusrcs cn  so the 

maximal common reduced word of type S between 1u  and 
1j

c is 1rr 
, and also the maximal common 

reduced word of type S between 
1j

c and 1nu is 1rr 
. Therefore 11 u and 11 nu . Hence 

 nuuux ... 21   is a reduced word generated by the set of all up-down laguages )),(( 



 rULM X of 

incidence matrix of X-labeled graph■ 

Note: ))),((( 



 rULM X  is called the directed incidence matrix of  the universal language of the up – 

down languages in ),( 



 rUL of X- labeled graph. 

 

Lemma 3.24. If 
 nuuux ... 21    is a reduced word of the universal language of the up – down languages in 

))),((( 



 rULM X  of type S in ),( rTM X and 
1 XXxc   is a non zero entry of column c in 

)),(( 



 rULM X , then  

(i) euxux cc 
1

 if and only if ),(  rTMux Xc  (ii) u = 
1

____


cc xux . 

Proof: Since ),( rTM X has exactly one row of each row class, so cux  is the only  reduced word of type S of 

the row r in ),( rTM X , such that 
1

cc uxux is a cycle in )),(( 



 rULM X , so euxux cc 
1

 if and only 
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if 
1

cc uxux is the trivial cycle in )),(( 



 rULM X  if and only if cc uxux  if and only if 

),(  rTMux Xc . 

ii) Since ),(  rTMux Xc and ),(  rTMux Xc , so 
1

cc xux is an up - down reduced subword of type S 

of the reduced word 
11  uxux cc of type S in )),(( 



 rULM X , such that )()( 1
____

utxuxt cc 
, therefore u is 

the unique reduced word of type S in ),( rTM X , such that 
11  uxux cc is a cycle in )),(( 



 rULM X . 

Hence u = 
1

____


cc xux .■ 

 

Lemma 3.25. If cux and cvx  are two reduced words of types S in ),(/),(  rTMrTM XX , then either (i) 

evxuxx ccc 
1

in which case cuxv  , 
1

  cc xx  and cvxu   or 

 (ii) ccc vxuxx 
1)(  is a reduced word of type S of length at least 2 such that )())(( 1

cccc xsvxuxxs 


and 

)())(( 1

cccc xevxuxxe 


. 

Proof: Since  cux and cvx  are two reduced words of types S in ),(/),(  rTMrTM XX    and cx and cx 

are the non-zero entries of columns c  and c respectively. Therefore there are unique reduced words  cux  and 

cvx  of types S in ),( rTM X such that 
1)( 

cc uxux  and 
1)( 

cc vxvx are non-trivial cycles in

)),(( 



 rULM X . Thus the maximal common reduced word of type S between cux  and v is w, therefore 

either  

(1)  vwuxc  , (2) ,cuxw  ,vw   (3) ,vw   or (4) ,vw  cuxw   holds.  

If (1) holds, then either exx cc  , then 
1
 cc xx , vuxc  , ,cvxu  and hence evxuxx ccc 

1

, or 

exx cc  , then cc xx  is a reduced word of type S and of length 2, and then ccx vxuxx 
1)( is a reduced word 

of type S and it is of length at least 2. Now if (2) , (3) or (4) holds, then evuxc 
1

 , hence ccx vxuxx 
1)( is a 

reduced word of type S and it's of length at least 2, such that )())(( 1 csvxuxxs ccc 


 
which is the non-zero 

entry cx of the column c and )())(( 1 cevxuxxe ccc 


 
which is the non-zero entry cx  of the column c.■ 

 

Lemma 3.26. If cux is a reduced word of type S in ),(/),(  rTMrTM XX  then all reduced up – down 

words 
1)( 

cc uxux of types S are distinct and the set of them is equal to the disjoined union of the set 

uuxuxL cc ;{
1  is a reduced word of type S in )(TM X  and cx is a non-zero entry in the starting row of 

the column c in ),(/),(  rTMrTM XX  , }Xxc   and };){(
1111  



LuxuxuxuxL cccc  . 

Proof: Since ),(/),(  rTMrTMux XXc , cx is a non-zero entry in the starting row of the column c in 

),(/),(  rTMrTM XX , so by lemma 3.14 there exists a unique reduced word of type S in )(TM X such 

that
1

cc uxux is a cycle, so
1

cc uxux  is an element in )),(( 



 rULM X . Since all columns c with non-zero 

entries cx  are distinct in ),(/)( TMTM XX


so all reduced words

1

cc uxux  of type S in 
L are distinct. Since
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};){(
1111  



LuxuxuxuxL cccc and 
11

)( 

cc uxux is the inverse of 
1

cc uxux , so 

11111 )())((   uxuxuxuxuxux cccccc is a non-trivial cycle in )),(( 



 rULM X . Hence all elements 

of  
1L  are distinct, and then all elements of

1  LL are distinct.■ 

 

4. Length function of universal language of the up- down language  

In this section we show that the universal language ))),((( 



 rULM X  of the up-down language

)),(( 



 rULM X of incidence matrix of X – labeled graph has length function. Therefore we start with the 

basice definition of length function of a group.  

     In [6] Lyndon gave the definition of integer -  valed length function on a group H to be  a function 

ZH : satisfying the following axioms:  

0)(:1  eA  , where e is the identity element of H; 

),()(:2 1 xxA   ;Hx  

:4A if ),(),( zyyx   , then  ),(),( zxyx   , Hzyx  ,, , where    

)()()(),(2 1 xyyxyx   

We now define a length on the reduced words of ))),((( 



 rULM X   as below.  

 

Definition 4.1: For any reduced word 
 nuuug ... 21   of type S in ))),((( 



 rULM X  , defines a length  

))(#2)(#)((#)...()( 1

1

1

1

1

21 1 









 
 icici

n

i

n wCxuCxuCuuug
ii

 , where  

1 
ii cicii xuxuu , #C is the number of columns,

icx  is a non-zero entry in a column ic ,
1 XXx

ic , 

,
10 


ncc xex ,i  ni 1 , )(# 1iwC is the number of columns in the maximal common subword 1iw

between 
1

1 1



 ici xu and
ici xu .  

 

Lemma 4.2.  define a function on ))).,((( 



 rULM X  

Proof. Let 
  nuuuu ... 21  , 

  mvvvv ... 21   be reduced words in ))).,((( 



 rULM X  Suppose 

that
  vu , so 



nuuu ... 21  , 
 mvvv ... 21  . Since 

1 
ii cicii xuxuu , 

1 
jj cjcjj yvyvv , ji, , 

ni 1  , and mj 1 , and each class 


iu   is unique, so 
ji cjci yvxu  and 

11 


ji cjci yvxu , mn  . 

Hence )(#)(#   vCuC and then )()(   vu  .■ 

 

Theorem 4.3.   is a length function on ))),((( 



 rULM X .  

Proof. It is clear that 1A and 2A hold. We now show that 4A holds. 

let 
  nuuuu ... 21  , 

  mvvvv ... 21   and 
  tzzzz ... 21  ,be reduced words in 

))).,((( 



 rULM X Then 
1

1

1

2

1

1

1

121

1
........ 







  vvvvuuuuvu mmnn  .  
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Since each reduced word is unique, so ).(
11 


iiii cicicici yvyvxuxu ,  

  ii vu i , ji ,,2,1  . Then

eyvyvxuxu
iiii cicicici  111

).( , )(# 1

iwC is the number of columns in the maximal common subword 

1

iw between 

1

1 1



 ici xu and
ici xu for all ji ,,3,2,1  , plus the number of columns in maximal common 

subwords between 
1

1 1



 jcj xu  and 
11  jcj yv  will be delete. 

Therefore 
1

1

1

2

1

1121

1
....... 







  vvvuuuvu jj   in reduced form.                                

Now let 


jw be the maximal common proper ending subword between 
u and 

1v . 

Since )(#2)()()(
11   jwCvuvu  and )()()(),(2

1  vuvuvu  , so 

)(#2),(2   jwCvu . 

. Therefore 


jw is the maximal proper ending subword of 
u and 

v . 

Now suppose that 
  tzzzz ... 21  ,

  nuuuu ... 21   and 
  mvvvv ... 21  are reduced words in 

))),((( 



 rULM X , such that ),(),(   zvvu  . 

We now show that ),(),(   zuvu  . 

Similarly )(#2),(2   ksCzv , where 


ks is the maximal common a proper ending subword between  

ending of 
v  and 

z . Since ),(),(   zvvu   , so )(#)(#   kj sCwC . Since 


jw , 


ks are proper 

ending subwords of 
v  ,so 



jw  is a proper subword of 


ks . Since 


ks is a proper subword  of
z , so 



jw  is a 

proper subword of 
z . Hence 



jw  is the maximal common proper ending subword between 
u and 

z , and 

then )(#2),(#2 jwCzu  . Therefore ),(),(   zuvu   and then   is length function on 

))),((( 



 rULM X  .■ 

 

5. Up-down Language and Pregroups 

In this section we show that the up-down language is an up-down pregroup.  

The definition of pregroup was given by Stallings in [7] that in 1971 as a generalizion of  free product with 

amilagmation. In [8] Stallings defined the up-down pregroup of free groups and show that the universal group of 

up-dowm pregroup is isomorphic to free group generated by X. In [9] we proved that any group with length 

function comes from  an  up-down pregroup. 

 

Definition 5.1.[ 7 ]. A pregroup P consists of :  

a)  set P, 

b) An element 1 in P, 

c) A map PP , denoted by 
1xx , 

d) A subset D of PP , 

e) A map PD , denoted by xyyx ),( , 

  (we shall say that xy is defined instead of )),( Dyx  , 

 such that the following axioms are true: 

:1P for all ,Px  xxx 11 , 
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:2P for all ,Px  ,111   xxxx  

:4P for all yx, and z in P, if xy and yz are defined, then )(yzx  is defined if and only   

if zxy)(  is defined in which case they are equal. 

P5: For any  w, x, y and z in P, wx, xy and yz are defined in P, then wxy  or xyz is  

defined in P. 

Hoare [10] showed that we could prove axiom P3 above by using the following proposition, P1, P2 and P4. 

 

Proposition 5.2: If xy is defined, then 
1)( yxy  is defined and equal to x. ■ 

 

Definition 5.3 [10]: For any Px  , put axPaxL :{)(   is defined }. We write yx   if 

yxxLyL  ),()(  if )()( xLyL   and )()( yLxL  , and x ~ y if )()( yLxL  . It is clear that ~ is an 

equivalence relation compatible with  .  

The following results are taken from Stallings [7] and Rimlinger [11]. ( See [10] for shorter proofs).  

 

Proposition 5.4: 

(i) If yx   or xy  , then yx 1
 and xy 1

 are defined. 

(ii) If xa and ya 1
 are defined , then ))(( 1 yaxa 

 is defined if and only if xy is defined in which case they are 

equal. ■  

By using axiom P5 above (will be denoted by P5(i)) Rimlinger [11] proved conditions  

P5(ii) and P5(iii) of Lemma5.5 below. 

 

Lemma 5.5: [10] . The following conditions on elements of P are equivalent :  

P(i). If wx,xy and yz are defined , then either  wxy  or  xyz  is defined . 

P(ii). If ax 1
 and ya 1

 are defined but yx 1
 is not , then  a < x and  a < y. 

P(iii). If  yx 1
 is defined , then  yx   or xy  .■ 

Therefore we will say P is a pregroup, if it satisfies axioms P1, P2. P4 and the conditions of Lemma 5.5. The 

universal group of pregroup P has the following  presentation xyyxP  .;  whenever xy is  

defined, for Pyx ,, . 

Definition 5.6: For any two elements ),(, 1rULvu 



  , such that 
1 

ii cici xuxuu ,

1 
jj cjcj yvyvv , then we say that

vu  is definend if and only if  
ici xu  is a subword of 

jcj yv  or 
jcj yv  

is a subwoed of 
ici xu .  

Lemma 5.7: Axioms P1, P2 and P4 hold in  ),( 1rUL 




. 

Proof: Since exuxuu
ii cici 
 1

  if and only if 
ii cici xuxu   by lemma  3.25(i), so ),( 1rULe 



 . 

Hence P1 holds. 

Since e is the empty word, so e subword of any subword  
ici xu or 

ici xu , so euueu  

),( 1rULx 



 .Hence P2 holds. 

Since ),( 1rUL 




 is a subset of )),(( 1rUL 



  and )),(( 1rUL 



 is a group, so  

P4 holds. Therefor P1, P2 and P4 hold in ),( 1rUL 




■ 

We now prove P5 in the following lemma. 
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Lemma 5.8. for any 
 wvu ,,  in ),( 1rUL 




, such that if,

 wu
1

, 
 vw

1
 are defined and 

 vu
1

 is not 

defined in ),( 1rUL 




, then 

  uw  and  
  vw . 

Proof: Let 
1 

ii cici xuxuu ,
1 

jj cjcj yvyvv  and 
1 

tt cc wzwzw  .  

Since 
 wu

1
 is defined, so either cwz  is a subword of cux (1) or 

cux is a subword of cwz    (2) 

Since 
 vw 1

 is defined, so either cwz  is a sub word of cvy    (3) or  

cvy    is a subword of  cwz     (4).  

Since 
 vu

1
 is not defined, so neither cux is a subword of   cvy   nor cvy   is a subword  

of    cux .Therefore we have four cases. 

Case 1: If  relation (1) and (3) hold,  

then 
  uw  and 

  vw . Therefore )()(   wLuL and )()(   wLvL . 

Since  neither cux is a subword of   cvy   nor cvy   is a subword  

of    cux , so )()(   vLuL  and )()(   uLvL . Therefore there exist ),(, 



 rULba  , such that 

)(  uLa and )(  vLa . Also )(  vLb and )(  uLb . 

Hence )(  wLa and )(  vLa , and then )()(   wLvL . Also )(  wLb and  

)(  uLb , then )()(   wLvL . Hence 
  uw  and  

  vw . 

Other cases give us contradictions. Hence P5 holds■ 

 

Theorem 5.9: ),( 1rUL 




is an up-down pregroup. 

Proof: By Lemmas 5.7 and 5.8 the result follows.■  

 

6. Conclusion 

This work and the previous works that we have done in [1-4] appear the flexibility of the model of incidence 

matrix of X- labeled graph. This model provides a powerful tool to write computer program for any X- labeled 

graph which appears that any X-labeled graph has an up-down pregroup and length function. Moreover this 

model compatible with group action on trees. 
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