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Abstract The object of the present paper is to give sharp estimates for the some initial coefficients of the inverse 
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1. Introduction 

Let A  represented the class of analytic functions f  on the open unit disk  1<:= zzU C  in the 

complex plane in the form 

   .,=......=)(
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n
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We denote by S  the subclass of A  consisting of the functions which are also univalent. 

The coefficient problem of certain subclasses of analytic functions and of the inverse of certain analytic 

functions are one of the important problems in the theory of analytic functions. The sharp estimates for the 

coefficients of the functions belonging certain subclass of analytic functions and inverses are still an open 

problem (see, for example [14, 17]). 

As well known that, one of the important tools in theory of analytic functions is the functional 

  2

232 =1 aaH  , which is known as the Fekete-Szegö functional and one usually considers the further 

generalized functional 
2

23 aa  , where   is some real or complex number (see [7]). Estimating the upper 

bound of 
2

23 aa   is known as the Fekete-Szegö problem. 

In 1969, Keogh and Merkes [13] solved the Fekete-Szegö problem for the classes starlike and convex functions. 

Someone can see the Fekete-Szegö problem for the classes of starlike and convex functions of order   at 

special cases in the paper of Orhan et al.[19]. On the other hand, recently, Ça g


lar and Aslan (see[3]) have 

obtained Fekete-Szegö inequality for a subclass of bi-univalent functions. Also, Zaprawa (see [23, 24]) have 

studied on Fekete-Szegö problem for some subclasses of bi-univalent functions. In special cases, they solve the 

Fekete-Szegö problem for the subclasses bi-starlike and bi-convex functions of order  . 
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It is well-known that, the upper bound of the expression   2

3422 =2 aaaH   is one important problem in 

theory of analytic functions. Recently, the upper bound of   2

3422 =2 aaaH   for the bi-starlike and bi-

convex functions classes  

S  and  C  were obtained by Deniz et al.[5]. Very soon, Orhan et al. [20] 

reviwed the study on the bound of the second Hankel determinant for the subclass  
M  of bi-univalent 

functions. 

It is well known that (see, for example, [8]) every function Sf   has an inverse function 
1f  defined in the 

disk     
4

1
,<:= 00 frfrwwD  as follows 

   ,...,= 4
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1 DwwAwAwAwwf 
 (2) 
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For Nm , we define the m th Hankel determinant of the inverse 
1f  of the function Sf    as follows: 
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The functional   2

232 =1 AAH  , we will call Fekete-Szegö functional and one usually considers the further 

generalized functional   2

232 =1 AAH   of inverse 
1f  of the function Sf  , where   is some real or 

complex number. Estimating the upper bound of 
2

23 AA  , we will say the Fekete-Szegö problem for the 

inverse function. 

Also, we define by   2

3422 =2 AAAH   second Hankel determinant of inverse 
1f  of the function Sf  . 

Incomplete bound estimates for the coefficients 32 , AA  and 4A  were given in [4] for   logarithmically 

convex function class. Very soon by D. K. Thomas [22] were given the complete solution of this problem for a 

subclass of analytic functions. 

Also, in [22] Thomas gives the sharp estimates for the some initial coefficients of the inverse of certain analytic 

functions. 

In this study, we will examine coefficient bound estimates, Fekete-Szegö problem and upper bound estimate for 

  2

3422 =2 AAAH   of the inverse for a new subclass of analytic functions. 

Now, let us give some preliminary information that we need throughout the study. 

In the fundamental paper [12] by Jackson introduced  q derivative operator of a function f  as follows 

 














0=if(0),

0,if,
)(1

)()(

=)(

zf

z
zq

qzfzf

zfD
'

q  (3) 

for  .0,1q  

The q  derivative operator used to investigate several subclasses of analytic functions in different ways by 

many researchers. In [2] by using the properties of the q derivative shown that q Szász Mirakyan operators 

are convex if the function involved is convex, generalizing well known results for 1=q . Moreover, in [2] 

shown that q derivatives of these operators converge to q derivatives of approximated functions. The effect 
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of the q derivative functions operator on the generalized hypergeometric series  zqbbaasr sr ,;,...;,... 11  

with respect to parameters sr bbaa ,...;,... 11  are discussed in [11]. 

For the function Af    given by (1), we can easily show that  

   ,1=)( 1

2=




 n

nq

n

q zanzfD  (4) 

where   kn

k

n

q q
q

q
n 1

1==
1

1
= 




  for  0,1q . It is clear that   0,=0 q    1=1 q  and   nn q

q

=lim
1

. 

It follows from (4) that  zfzfD '

q
q

=)(lim
1

. 

Let 


sS  be the subclass of S  consisting of the functions f  given by (1) satisfying the condition 

 .0,>
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)(2
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zfzf

zzf
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Similarly identifiable,  

sS  the subclass of S  consisting of the functions given by (1) satisfying the 

condition 

 Uz
zfzf

zzf
Re

'
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for  .0,1  

It is clear that     ss SS   for  0,1 . 

In [9] by Goel and Mehrok introduced a subclass of 


sS  as follows 
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Inspired by the studies mentioned above, we introduce the following function class. 

Definition 1  A  function Sf   given by (1) is said to be in the class    0,1,,  qS sq  ,  0,1 , if the 

following condition is satisfied 

 .,>
)()(

)(2
Uz

zfzf

zfzD
Re

q











  

Remark 1  Choose 0=  in the Definition 1, we have the function class    .0,1,0= ,,  qSS sqsq   

It is clear that     sqsq SS ,,    for  0,1 . 

Remark 2  Choose 
1q  in the Definition 1, we have function class      .0,1,lim= ,

1





  sq
q

s SS   

Remark 3  Choose 
1q   and 0=  in the Definition 1, we have function class  0= 

ss SS   

In this paper, given sharp estimates for the some initial coefficients of the inverse for the function belonging in 

the subclass  

sqS , . The Fekete-Szegö problem for the inverse of this function class is also examined. In 

addition, in the study given upper bound estimate for the second Hankel determinant for the inverse of this 

function class. 

To prove our main results, we shall need the following lemmas concerning functions with real part (see e. g. [1, 

6, 10, 15, 21]). 
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Denote by P  the set of functions p  analytic in U  with expansion   n

nn zpzp  1=1=  and satisfying 

  0>zRep  for Uz . 

Lemma 1  Let ,Pp  then 2np  is sharp for each 1,2,3,...=n and  

 ,)(4=2 2

1

2

12 xppp   

 wxpxppxpppp ))(12(4)(4)2(4=4
22
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2

1

2

11

2

1

3

13   

for some complex valued x  and w with 1x  and 1w . 

Lemma 2  Let ,Pp  then 2np  is sharp for each 1,2,3,...=n  and 
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If 0<v  or 2>v , equality holds if and only if        1.=,1/1=  zzzp   

If 0  < 2<v  then equality holds if and only if         ,1/1= 22 zzzp    1.=  

For 0=v  equality holds if and only if 
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For  2,=  equality holds if and only if p  is the reciprocal of  2p .  

Lemma 3  Let ,Pp  then 

    
 










,elsewhere,122

,0,12,
=122,2max1 3

1213 




if
pppp

 
 

2. The Coefficient Inequalities for the Inverse Function 

In this section, we give the following theorem on the sharp estimates for the some initial coefficients of the 

inverse 
1f  of function f   belonging in the class  

sqS , . 

Theorem 1   Let   sqSf ,  and 
1f  be the inverse of the function f  . Then, 
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where                  132/1322451=  qqqqqq , 
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 . The inequalities obtained for 2A  and 3A  are sharp. 

Proof. Assume that      0,1,0,1,,   qSf sq   and 
1f  be the inverse of the function f  . Then, 
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that is, 
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where .Pp  

By simple computation from (5), we have 

        .11= 1=122=2=

n

nn

n

nn

n

nqn zpzazzanz 



    (6) 

As a result of simple simplification from (6) comparing the coefficients of the like power of z  in the both sides, 

we get 

             ;1=4,1=3,1=2 133423312 papapaapa qqq    

that is, 

 
     

 
 

.
13

1

4

1
=,

13

1
=,

2

1
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pppapapa

qqqq


 (7) 

Also, from (2) for the initial three coefficients of the inverse function 
1f , we have  

 432

3

243

2

2322 55=,2=,= aaaaAaaAaA   (8) 

In this case, the inequality for 2A  is obvious on using the first equality of (7) and applying the inequality for 

2a  obtained in [[16], Theorem 1]. 

By replace 2a  and 3a  with expressions in (7) in the second equality (8), for 3A  we write the following 

expression  
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From this for 3A , we write 
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2

qqv   

Since       22/1134
2
 qq   for each  0,1q  and  ,0,1  applying Lemma 2 easily gives desired 

inequality for 3A . 

Using (7) and third equality of (8), we can write the expression for 4A  as 

 
 

      
   

   

 
;

2

415

213

2451

4

1
= 3

13

2

2134











 








 ppppA

q

q

qq

qq

q


 

that is,  
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with                  132/1322451=  qqqqqq  

Since  0,1  for  21,aa  and  0,1  for    21,/0,1 aa  for every  0,1q , using firstly 

triangle inequality, then applying Lemma 3 gives the following inequality 
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Thus, the required inequalities for 2A , 3A  and 4A  are proved. 

Note that equality is attained in the inequality for 2A  and 3A , respectively, when 2=1p  and 

2=0= 21 pp . 

Thus, the proof of Theorem 1 is completed.  

From the Theorem 1, we arrive at the following results. 

Corollary 1   Let 
 sqSf ,  and 

1f  be the inverse of the function f . Then, 
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where            132/3245=  qqqqq . All the inequalities obtained here are sharp.  

Corollary 2   Let   sSf  and 
1f  be the inverse of the function f . Then, 

 and2,3=,1 nAn   
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A  

 The inequalities obtained for 2A  and 3A  here are sharp. 

Corollary 3   Let 
 sSf  and 

1f  be the inverse of the function f . Then,  

 5.and2,3=1, 4  AnAn  

The inequalities obtained for 2A  and 3A  here are sharp. 
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3. The Fekete-Szegö Problem for the function class  

sqS ,  

In this section, we will prove the following theorem on the Fekete-Szegö problem of the inverse of the function 

  sqSf , . 

Theorem 2   Let the function f  given by (1) be in the class   

sqS , , 
1f  be the inverse of the function f  

and C . Then, 
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Proof. Let     ,0,1,,   qSf sq    0,1  
1f  be the inverse of the function f  and .C  

Using firstly the equality (8), then the expression for the coefficients 2a  and 3a  from the first and second 

equality of (7), we find 
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Substituting the expression   xppp 2

1

2

12 4
2

1
=   from Lemma 1, in (9) and using triangle inequality, 

putting 1= pt , =x , we can easily obtain that 
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It is clear that the maximum of the function    occurs at 1= . Therefore, 
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1
=1=0,1:max 21 tdtd

q








  (11) 

Let us define the function   R0,2:H  as follows 

      .= 21 tdtdtH   (12) 

Substituting the value  td1  and  td2  in (12), we obtain  

     4,,,= 2 tqCtH   (13) 

where 
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It is clear that the function  tH  is an increasing function if   0,,  qC  and decreasing function if  

  0,,  qC . 

Therefore, 
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From (10)-(14), we obtain the following inequality for 
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This completes the proof of Theorem 2.  

From the Theorem 2, we obtain the following results. 

Corollary 4  Let the function f  given by (1) be in the class 


sqS ,  , 
1f  be the inverse of the function f  and 

C . Then,  
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Corollary 5  Let the function f  given by (1) be in the class  

sS  , 
1f  be the inverse of the function f  

and C . Then,  
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Corollary 6  Let the function f  given by (1) be in the class 


sS  , 
1f  be the inverse of the function f  and 

C . Then,    
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In the case R , Theorem 2 can be given as follows. 

Theorem 3  Let the function f  given by (1) be in the class  

sqS ,  , 
1f  be the inverse of the function f  

and R . Then,  
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Proof. Let       ,0,1,0,1,,    qSf sq   
1f  be the inverse of the function f  and R . Then, .  

From (2.4) and (2.3), we find that 
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Using Lemma 2 to equality (16), we obtain the following inequality for 
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This completes the proof of the inequality (15). 

Now, let’s see that obtained result is sharp. 

Really, as seen from Lemma 2 the result is sharp for the function , which satisfies following condition 
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 , equality holds if and only if p  is the reciprocal of 2p . 

Thus, the proof of Theorem 3 is completed.  
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Notation 1 It should be noted that Theorem 3 could also be given as a direct result of Theorem 2. But, here we 

give shorter proof in the case R .  

Choose 0=  in Theorem 3, we obtain the following inequality for 3A , which confirm the inequality 

obtained in Theorem1 and Corollaries 1,2 and 3, respectively. 

Corollary 7  The following inequalities are provided:  

If   sqSf ,  then, 
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4. The Second Hankel Determinant of the function class  

sqS ,  

In this section, we prove the following theorem on upper bound of the second Hankel determinant for the 

inverse of the function   sqSf , . 

Theorem 4 Let the function f  given by (1) be in the class  

sqS ,  , 
1f  be the inverse of the function f  . 

Then, 

 
 
   

     

  
.

13

11222

4

1

2

14
2

2

2

342





















q

qq

qq

AAA


 

Proof. Assume that      0,1,0,1,,    qSf sq  and 
1f  be the inverse of the function f . Then, from 

the equality (8) and (7) we have 
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Using triangle inequality, then applying inequality obtained for 2a  in the Theorem 1, inequality obtained for 

2

23 aa   in the Theorem 3 (when 1=  ) and inequality obtained for 
2

342 aaa   in the Theorem 4 in the 

paper [16] to the last equality, we obtain 
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that is,  
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Thus, the proof of Theorem 4 is completed.  
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From the Theorem 4, we obtain the following results. 

Corollary 8 Let the function f  given by (1) be in the class 


sqS ,  and 
1f  be the inverse of the function f  . 

Then, 
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Corollary 9 Let the function f  given by (1) be in the class  

sS  and 
1f  be the inverse of the function f  . 

Then, 
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Corollary 10 Let the function f  given by (1) be in the class  

sS  and 1f  be the inverse of the function f  . 

Then, 
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