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Abstract Combinatorial properties of groups were studied via the graphs of groups.  This led to substantial 

development regarding the properties of groups by providing easier proofs.  Contributions of many researchers, 

such as Cohen [1], Chiswell [2,3], Khanfar [4] and many others enhanced this methodology and encouraged the 

other researchers to apply the concept of graphs of groups, trees and other details in order to develop further 

applications of groups, free groups, free product of groups, amalgamated free products, H N N groups, etc. 

This paper is based on groups acting on graphs using the above terminologies and standard procedures to 

explain the nature of some specific elements of groups. 

On the other hand Length Functions, which was basically established and developed by Lynden [5], has proved 

its major role in this area. 

 

Keywords Automorphism of a graph, Bipartite Graph, Conjugate Elements, Group actions, Length Functions, 

Normal Forms 

1. Introduction 

In this paper we start with some basic definitions and some essential properties of groups, which enable us to 

deal with groups acting on connected graphs.  This will lead us to construct a graph of groups associated with 

the action of a group G on a graph X.  Then the maximal tree T in the graph X is chosen to construct a group 

which acts on this tree.  The latter will be isometric to a subgroup generated by an element associated with a 

reduced path in the graph. 

Axioms of Length Functions, which were introduced by Lyndon [6] and developed by many others, are listed in 

the basic part of this paper.  This is used to study the nature of many groups and analyse their properties. 

Applications of Length Functions require the normal form theorem, which is related to closed and reduced path 

in the graphs. 

 

Basics 

Definition 1.1     A Graph X is a pair (V(X), E(X)) of two disjoined sets of elements ; a non-empty set V(X), 

called vertices and a set E(X) called the edges, with a function t: E(X) →V(X) and a function E(X) →E(X) 

denoted by:  e → e
-1

 such that e = ( e
-1

)
-1

 for all e in E(X), e
-1

 is called the inverse of e. 

Definition 1.2 We define O (e) = t (e
-1

) so that t (e) = O (e
-1

).  O (e) and t (e) are called the end points of the 

edge e.  O(e) is called the origin of e, and t (e) is called the terminal of e. 

Definition 1.3 An edge e with O (e) = t (e) is called a loop.  A pair of edges { e, e
-1

 } is called an unoriented 

edge. 

Definition 1.4 An orientation of a graph X is a set consisting of exactly one member of each unoriented { e, 

e
-1

 } for which e ≠ e
-1

, together with every edge e = e
-1

.   
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Definition 1.5 A graph Y is a subgraph of a graph X if  V(Y) ⊆ V(X) and E(Y) ⊆ E(X); and if e ∈ E (Y) then 

O (e), t ( e ) and e
-1 

have the same meaning in Y as they have in X. We write Y⊆ X.   

Definition 1.6 A path P of length n in a graph X is a finite sequence of edges:  P = e1 …. en , n ≥ 1, such that t 

(ei ) = O ( ei+1) for i = 1, …, n – 1.  We define O ( P ) = O ( e1) and t ( P ) = t (en) and say that, P is a path from O 

( e1 ) to t ( en ).  The path Pis closed if  O ( e1) = t ( en ), and reduced if ei+1≠ ei
-1

 for i = 1, … , n-1.  At each 

vertex c of X, we define an empty path 1v of length zero ( a path without edges) from v to v. 

Definition 1.7 If   P1 = e1 … en and P2 = e1
’
 …  em

’
 are paths in X and if t (P1) = O (P2), then we define their 

product: P1 P2 = e1 … ene1
’
 …  em

’
.  P1P2  when defined, is a path from O (P1) to     t (P2).  The inverse P

-1
 of the 

path P is the path P
-1

 = en
-1

 … e1
-1

. 

Definition 1.8 A non- empty reduced closed path is a circuit. 

Definition 1.9 A graph X is connected if for every pair of vertices u, v in X, there is a path in X from u to v. 

Definition 1.10    A tree in X is a connected subgraph T of X which contains no circuits. 

A maximal Tree T in a connected graph X is a subgraph in X which is maximal with respect to inclusion. 

Definition 10.11 A graph X = ((v ( X ), E ( X )) is bipartite if V (X) = V1(X) ∪ V2 (X) with V1(X),  V2 (X) both 

edge free. 

Proposition 1.1 If X and Y are graphs, then a morphism f : X → Yis a mapping which takes vertices to 

vertices, edges to edges and such that f (O(x)) = O(f(x)) and f(x
-1

) = (f(x))
-1 

for all edges x in X. 

f is called an isomorphism if it is one-to-one and onto.  An isomorphism f : X → Xis called automorphism of X.  

The automorphism of X form a group, denoted by Aut X. 

Definition 1.12 A group G acts on X if G can be represented in Aut X, that is, if there is a group 

homomorphism ∅ ; G → Aut X. 

If X is a vertex or an edge in X, g ∈ G, we write gx for ∅ (g) (x).  If x is an edge, then g O(x) = O (gx),  g x
-1

 = 

(gx)
-1

. 

A group G acts without inversions on a graph X, if gx≠ x
-1

 for any g ∈G and any x ∈ E (X). G acts with 

inversion on X, if gx = x
-1

 for some g ∈G and some x ∈ E(X). 

Let V(X)/G denote the set of G-orbits in V(X) and E(X)/G denote the set of G-orbits in E(X), then we can form 

the graph: X/G = (V(X))/G, E(X)/G). 

X/G is the graph whose vertices and edges are the G-orbits in V(X) and E(X), X/G is called “Quotient graph”, 

with induced inverses and orbits. 

The morphism 𝜌 : X → X/G is called the projection. 

Lemma 1.1 Let a group G act ona connected graph X with quotient Y = X/G.  Let 𝜌 : X → Y be a 

projection, and T a maximal tree of Y. Then there exists a morphism q: T→ X such that 𝜌 q is the identity on T. 

Proof See [4]. 

 

2. Bass-Serre Theory 

Take a graph with vertices A, Gi, I ∈ I and edges ∅i: A → Gi, construct a graph: 

𝓕= < A, Gi, ti, ;rel Gi, t
-1

 a t =∅i (a),  all a ∈ A > 

If we put ti= 1 for all i, then we get G *AGi . 

Now construct a subgroup ℱo of ℱ which consists of all elements of the form:𝑎𝑜  𝑡𝑖1 𝑔𝑖1𝑡𝑖1
−1𝑎1 𝑡𝑖2 𝑔𝑖2𝑡𝑖2

−1 … . 𝑡𝑖𝑛
−1 , 

Then define 𝜍: G → 𝓕oby:  gi → ti ai ti
-1

 and  a  → a 

Recall that  G = < Gi; relGi,,∅I (a) = ∅j (a), a ∈ A > 

𝜍:  ∅i (a) → ti∅i (a) ti
-1

 = tj∅j (a) tj
-1

 = 𝜍 (∅j (a) ) 

Hence 𝜍 defines a homomorphism from G to 𝓕 

Define 𝜋 ( 𝑎𝑜  𝑡𝑖1 𝑔𝑖1𝑡𝑖1
−1𝑎1 𝑡𝑖2 𝑔𝑖2𝑡𝑖2

−1 …. ) = 𝑎𝑜  𝑡𝑖1 𝑔𝑖1𝑡𝑖1
−1𝑎1 𝑡𝑖2 𝑔𝑖2𝑡𝑖2

−1 …. 

Hence 𝜍𝜋 =on 𝓕o , also 𝜋 𝜍 on G.  So G ≈ 𝓕o 
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Example 1 Let Gi be the vertices and Aij be the amalgamated subgroups between the groups Gi and Gj for 

some i and some j.  Take the H N N Extension with generator ti for each additional edge and pair of isomorphic 

subgroups, then the following diagram is a connected Graph of groups each vertex is a group , each edge is a 

group isomorphic to a subgroup of its vertex group. 

 
Then H N N extension can be constructed by: 

G = < G1, G2, t,  ; rel G1, rel G2, ϕ1(a) = ϕ2(a),  𝑡 𝜓1 𝑏 𝑡
−1 =  𝜓2  𝑏 , 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵> 

G
’
 = < G1, G2, t,  ; rel G1, rel G2,  𝜓1 𝑏 =  𝜓2  𝑏 , t ϕ1(a)𝑡−1 =  ϕ

2
(a), 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵> 

Definition 1.13 A graph of groups is a connected bipartite graph with vertices E and V and edges joining E to 

V.  Each vertex is a group and each edge is an isomorphism ϕ of a group Ge in E into a group Gvin V. 

Let 𝓕= < E, V, tifor each edge in the graph; relE, rel V, t
-1

 a t =∅i (a),  all a ∈ A > 

Definition 1.14 The tree product of groups is given by: 

G= < E, V ; rel E, rel V, ϕ
𝑖𝑗
 𝑔𝑒𝑖

 =  𝑔𝑒𝑖
, 𝑤𝑒𝑒𝑟𝑒  𝑔𝑒𝑖

∈ 𝐺𝑒𝑖
𝑖𝑛 𝐸 𝑎𝑛𝑑 ϕ

𝑖𝑗
𝑖𝑠 𝑜𝑛 𝑡𝑒 𝑡𝑟𝑒𝑒 > 

Choose a maximal tree T in the graph, then  GT = ℱ/ ti =1 all ti in T and  

GT = < E, V, ti,  ; rel E, rel V, 𝑡𝑖
−1𝑔 𝑡𝑖 =  ϕ

𝑖
(g), g ∈ 𝐺𝑒 , 𝑡𝑗 = 1 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡𝑗 𝑖𝑛 𝑎 𝑚𝑎𝑥. 𝑡𝑟𝑒𝑒 𝑇 > is called Treed H N 

N group. 

𝓕𝑒𝑜  is a subgroup of 𝓕 of all elements which can be expressed in the form 

𝑔𝑒𝑜 𝑡𝑜  𝑔𝑣1
𝑡1
−1𝑔𝑒2 

𝑡2 𝑔𝑣3  
𝑡3
−1 𝑔𝑒4 

𝑡4 … . 𝑡𝑛
−1 𝑔𝑒𝑜  

′  corresponding to a path from eo to eo in the graph if:     

𝑡𝑜  𝑡1
−1 𝑡2 𝑡3

−1 … . 𝑡𝑛
−1 

 

𝑡1 , 𝑡2 both edges starting at e2….etc. 

𝑡2 , 𝑡3 both edges ending at e2 …. 

Theorem 1.1  GT≈ ℱ𝑒𝑜  

Proof  See [1]. 

Corollary 1.1   GT is independent of maximal tree T. 

Definition 1.15 An element 𝑥 =  𝑔𝑒𝑜  
𝑡1 𝑔𝑣1 

𝑡2
−1 𝑔𝑒3 

𝑡3 …  𝑡𝑛
−1 𝑔𝑒𝑜  

′ ,𝑛 ≥ 0 𝑜𝑓 ℱ𝑒𝑜  is said to be in a reduced form 

if it does not contain  𝑡𝑖
−1 𝑔𝑒𝑖 

𝑡𝑖  ,  with 𝑔𝑒𝑖   
∈  𝐺𝑒   or  𝑡𝑖 𝑔𝑣𝑖 

𝑡𝑖
−1 with 𝑔𝑣𝑖 

∈  𝜙𝑖   𝐺𝑒𝑖  
 . 

Reduced forms are not unique. 

Definition 1.16 Given a collection of coset representatives of 𝜙𝑖   𝐺𝑒   𝑖𝑛 𝐺𝑣 with 𝜙𝑖  : 𝐺𝑒 →  𝐺𝑣  , a ward 

𝑤 =  𝑔𝑒𝑜  
𝑡1 𝑔𝑣1 

𝑡2
−1 𝑔𝑒3 

𝑡3 …  𝑡𝑛
−1 𝑔𝑒𝑜  

′ ,𝑛 ≥ 0,  representing an element of 𝓕𝑒𝑜
is in normal form if: 

(i) 𝑔𝑒𝑜  
 is an arbitrary element in a group 𝐺𝑒  ∈ 𝐸 

(ii) all 𝑔𝑣𝑖  
are in the collection of coset representatives of 𝜙𝑖    𝐺𝑒𝑖−1

  𝑖𝑛 𝐺𝑣  

(iii) 𝑔𝑒𝑖  
 = 1, i = 1,2, ……n 

(iv) There is no subward𝑡𝑖
−1 𝑔𝑒𝑖  

𝑡𝑖  where 𝑔𝑒𝑖  
∈ 𝐺𝑒 ,𝑛𝑜𝑟 𝑡𝑖 𝑔𝑣𝑖 

𝑡𝑖
−1 ,  𝑔𝑣𝑖 

∈ 𝜙𝑖   𝐺𝑒𝑖
 ,  i = 1, …, n. 
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Theorem 1.2 (Normal Form Theorem)Every element ofℱ𝑒𝑜  has a unique normal form. 

Proof  See [1]. 

 

3. Length Functions 

Definition 3.1: A length function |   | on a group G, is a function giving each element x of G a real number  𝑥 , 

such that for all 𝑥 , 𝑦 , 𝑧 ∈ 𝐺, the following axioms are satisfied.   

𝐴1′ 𝑒 = 0 , 𝑒 is the identity elements of G . 

𝐴2        𝑥−1 =  𝑥  

𝐴4       𝑑 𝑥, 𝑦 <  𝑑 𝑦, 𝑧 ⟹ 𝑑 𝑥, 𝑦 = 𝑑 𝑥, 𝑧 , where 𝑑 𝑥, 𝑦 =  
1

2
 (  𝑥 +  𝑦 −  𝑥𝑦−1  

 

Lyndon in [ 6 ] showed that 𝐴4 is equivalent to 𝑑 𝑥, 𝑦 ≥ min  𝑑 𝑦, 𝑧 ,𝑑 𝑥, 𝑧   and to 

𝑑 𝑦, 𝑧 ,𝑑 𝑥, 𝑧 ≥ 𝑚 ⟹ 𝑑(𝑥, 𝑧) ≥ 𝑚 . 

𝐴1′, 𝐴2 and  𝐴4 imply that:   𝑥 ≥ 𝑑 𝑥, 𝑦 = 𝑑(𝑦, 𝑥) ≥ 0.   

Assuming, A2 and A4 only, it is easy to show that:  

i.  𝑑 𝑥, 𝑦 ≥  𝑒  

ii.  𝑥  ≥  𝑒  

iii.   𝑑 𝑥, 𝑦 ≤  𝑥 −
1

2
 𝑒  , see [ 7] 

The axiom A3 states that:   𝑑 𝑥, 𝑦 ≥ 0 is deducible from 𝐴1′, 𝐴2 .   Also, 𝐴1′ is a weaker versionof the 

following axiom:    𝐴1:   𝑥 = 0 if and only if 𝑥 = 1 in G. 

Lyndon [6 ] showed that if G is any group with length function and x, y and z are elements in G, then the 

following properties will hold. 

 

Proposition 3.2  𝑑 𝑥𝑦, 𝑦 + 𝑑 𝑥, 𝑦−1 =  𝑦  

 

Proposition 3.3 𝑑 𝑥, 𝑦−1 + 𝑑(𝑦, 𝑧−1) ≤  𝑦 implies that  𝑥 𝑦 𝑧 ≤  𝑥 −  𝑦 +  𝑧  

 

Proposition 3.4 𝑑 𝑥, 𝑦−1 + 𝑑(𝑦, 𝑧−1) ≤  𝑦 implies that𝑑 𝑥𝑦, 𝑧−1 = 𝑑(𝑦, 𝑧−1) 

 

Proposition 3.5 𝑑 𝑥, 𝑦 + 𝑑 𝑥−1, 𝑦−1 ≥  𝑥 =  𝑦 implies that   𝑥𝑦−1 2 ≤  𝑥𝑦−1 ) 

 

It follows from proposition 3.2 that for any 𝑥, 𝑦 ∈ 𝐺 ,𝑑  𝑥, 𝑦 =  𝑦 − 𝑑  𝑥 𝑦−1, 𝑦−1 ≤   𝑦  by A3. 

Since 𝑑 𝑥, 𝑦 = 𝑑  𝑦 , 𝑥 ,  we get:  𝑑  𝑥 , 𝑦 ≤ min  𝑥  ,  𝑦  . 

A5 states that:𝑑  𝑥 , 𝑦 +  𝑑  𝑥−1  , 𝑦−1 >  𝑥 = 𝑦 ⇒ 𝑥 = 𝑦 

Definition 3.1: A non-trivial element g of a group G is called Non-Archimedean if   𝑔2 ≤   𝑔  

Definition 3.2: Let G be a group with length function.   An element 𝑥 ≠ 1 in G is called Archimedean if 

 𝑥  ≤   𝑥2 . 

The following Axioms and results are added by Lyndon and others 

𝐴0    𝑥 ≠ 1   ⟹   𝑥 <  𝑥2  

𝐶0  𝑑 𝑥 , 𝑦  is always an integer 

𝐶1   𝑥 ≠ 1  ,  𝑥2  ≤   𝑥  𝑖𝑚𝑝𝑙𝑖𝑒𝑠   𝑥  is odd. 

𝐶2   𝐹𝑜𝑟  𝑛𝑜  𝑥 𝑖𝑠  𝑥2 =  𝑥 + 1 

𝐶3   𝑖𝑓  𝑥  𝑖𝑠 𝑜𝑑𝑑 𝑡𝑒𝑛  𝑥2 ≥   𝑥  

𝐶1′  𝑖𝑓  𝑥  𝑖𝑠 𝑒𝑣𝑒𝑛 𝑎𝑛𝑑  𝑥 ≠ 0 , 𝑡𝑒𝑛  𝑥2 >  𝑥  

𝑁0   𝑥2 ≤  𝑥  𝑖𝑚𝑝𝑙𝑖𝑒𝑠 𝑥2 = 1  𝑖𝑠 𝑥 = 𝑥−1 

𝑁1∗ 𝐺 𝑖𝑠 𝑔𝑒𝑛𝑒𝑟𝑎𝑙 𝑏𝑦  𝑥 ∈ 𝐺 ∶   𝑥 ≤ 1  

Definition 3.3: The set of all Non-Archimedean elements of G will be denoted by N and is given by:     𝑁 =

 𝑥 ∈ 𝐺 ∶   𝑥2 ≤  𝑥   

Lyndon also introduced the following set in [1]:   𝑀 =  𝑥𝑦 ∈ 𝐺 ∶  𝑥𝑦 +   𝑦𝑥 < 2 𝑥 = 2  𝑦  , and showed 

that 𝑀 ⊆ 𝑁. The nature of the elements of M and N is investigated in the next section. 
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4. Applications of Length Functions 

The normal form theorem 1.2 for treed H N N groups allow us to assign a well-defined length to each element 

of the group. 

Definition 4.1. Let GT be a treed H N N group, GT = < E, V, ti,  ; rel E, rel V, 𝑡𝑖
−1𝑔𝑒𝑖

𝑡𝑖 =  ϕ
𝑖
(𝑔𝑒𝑖

),𝑔𝑒𝑖
 ∈

𝐺𝑒  𝑖𝑛 𝐸, 𝑡𝑗 = 1 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡𝑗 𝑖𝑛 𝑎 𝑚𝑎𝑥. 𝑡𝑟𝑒𝑒 𝑇 >.   

Define a length function on the elements of GT by: 

 𝑥 = 𝑛, 𝑖𝑓 𝑥 =  𝑔𝑒𝑜  
𝑡1 𝑔𝑣1 

𝑡2
−1 𝑔𝑒3 

𝑡3 …  𝑡𝑛
−1 𝑔𝑒𝑜  

′  is in a reduced form and  𝑛 ≥ 0. 

𝑥 →  𝑥  satisfies the following axioms: 

𝐴1′ 𝑒 = 0 , 𝑒 is the identity elements of GT . 

𝐴2        𝑥−1 =  𝑥  

𝐴4       𝑑 𝑥, 𝑦 <  𝑑 𝑦, 𝑧 ⟹ 𝑑 𝑥, 𝑦 = 𝑑 𝑥, 𝑧 , where 𝑑 𝑥, 𝑦 =  
1

2
 (  𝑥 +  𝑦 −  𝑥𝑦−1  

Corollary 4.1. If GT is a treed H N N group, then the set 𝑁 consists of conjugates of elements of a group GV in 

V or Ge in E. 

Proof Suppose 𝑥 ∈ 𝑁, i e,   𝑥2 ≤  𝑥  and let  

𝑥2= 𝑔𝑒𝑜  
𝑡1 𝑔𝑣1 

𝑡2
−1 𝑔𝑒3 

𝑡3 …  𝑡𝑛
−1 𝑔𝑒𝑜  

′ 𝑔𝑒𝑜  
𝑡1 𝑔𝑣1 

𝑡2
−1 𝑔𝑒3 

𝑡3 …  𝑡𝑛
−1 𝑔𝑒𝑜  

′  

𝑔𝑒𝑜  
′  𝑎𝑛𝑑  𝑔𝑒𝑜  

 are in Ge and  𝑥2 ≤  𝑥 ,  so a subward of length 2r in the middle will be consolidated. 

𝑥2= 𝑔𝑒𝑜  
𝑡1 𝑔𝑣1 

𝑡2
−1 …  𝑡𝑛−𝑟  

휀  ( 𝑔𝑠𝑛−𝑟  
𝑡𝑛−𝑟+1 
−휀 𝑔𝑠𝑛−𝑟+1 

…𝑡𝑛
−1  𝑔𝑒𝑜  

 𝑔𝑒𝑜  
𝑡1
−1 … 𝑡𝑟

휀  𝑔𝑠𝑟  
) 𝑡𝑟+1

−휀 𝑔𝑠𝑟+1
… 

𝑡𝑛
−1 𝑔𝑒𝑜  

′  

= 𝑔𝑒𝑜  
𝑡1 𝑔𝑣1 

𝑡2
−1 …  𝑡𝑛−𝑟  

휀   𝑘𝑟 𝑡𝑟+1
−휀 𝑔𝑠𝑟+1

…  𝑡𝑛
−1 𝑔𝑒𝑜  

′ ,  in a reduced form. 

If  휀 =  +1, then 𝑘𝑟 ∈ 𝐺𝑣  𝑎𝑛𝑑 𝑖𝑓 휀 =  −1, 𝑡𝑒𝑛 𝑘𝑟 ∈ 𝐺𝑒   

Suppose 휀 =  +1, then 𝑔𝑠𝑛−𝑟−1  
=  𝑔𝑒𝑛−𝑟    

∈ 𝐺𝑒  

 𝑥  =𝑛,          So, 2𝑛 − 2𝑟 ≤ 𝑛,  and 𝑟 >
𝑛

2
,  So 𝑟 ≥ 𝑛 − 𝑟. 

Take  𝑥 = 𝑔𝑒𝑜  
𝑡1 𝑔𝑣1 

𝑡2
−1 …  𝑡𝑟  

휀  𝑔𝑠𝑟 𝑡𝑟+1
−휀 …  𝑡𝑛

−1 𝑔𝑒𝑜  
′  

Suppose 휀 = 1, then 𝑔𝑠𝑟 = 𝑔𝑣𝑟  ∈ 𝐺𝑣 , and 𝑥 = (𝑔𝑒𝑜  
𝑡1 𝑔𝑣1 

𝑡2
−1 …  𝑡𝑟  )𝑔𝑣𝑟 (𝑡𝑟+1

−1 …  𝑡𝑛
−1 𝑔𝑒𝑜  

′ ) 

𝑥 = (𝑔𝑒𝑜  
𝑡1 𝑔𝑣1 

𝑡2
−1 …  𝑡𝑟  )(𝑔𝑒𝑜  

𝑡1 𝑔𝑣1 
𝑡2
−1 …𝑡𝑟)−1 

𝑥 = (𝑔𝑒𝑜  
𝑡1 𝑔𝑣1 

𝑡2
−1 …  𝑡𝑟  )𝑔𝑣𝑟  

𝑡𝑟+1 
−1 𝑘𝑛−𝑟  𝑡𝑟(𝑔𝑒𝑜  

𝑡1 𝑔𝑣1 
𝑡2
−1 … 𝑡𝑟)−1 

𝑟 ≥ 𝑛 − 𝑟, 𝑠𝑜 𝑘𝑛−𝑟   is a part of 𝑘𝑟  which has consolidated. 

𝑘𝑛−𝑟  ∈ 𝐺𝑒  ,so 𝑡𝑟+1 
−1 𝑘𝑛−𝑟  𝑡𝑟   = 𝑔𝑣𝑛−𝑟  

∈ 𝐺𝑣 , 

Suppose 𝑔𝑒𝑜  
𝑡1 𝑔𝑣1 

𝑡2
−1 …  𝑡𝑟  = 𝑔 ∈ 𝐺, then 

𝑥 = 𝑔 𝑔𝑣𝑟
𝑔𝑣𝑛−𝑟   

𝑔−1 = 𝑔𝑔𝑣 𝑔
−1, 𝑤𝑒𝑟𝑒 𝑔𝑣 ∈ 𝑥 = (𝑔𝑒𝑜  

𝑡1 𝑔𝑣1 
𝑡2
−1 …  𝑡𝑟   

Hence x is a conjugate of an element of a group 𝐺𝑣  in V. 

If we suppose that 휀 = −1, then x will be a conjugate of an element of a group 𝐺𝑒  in E. 

Corollary  4.2  If𝐺𝑇is a treed H N N group then the equivalent elements of N lie in the same 

conjugate of the group 𝐺𝑒  in E or a group 𝐺𝑣  in V. 

i.e   𝑥 ~𝑦 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝑥 = 𝑔𝑔𝑣 𝑔
−1, 𝑦 = 𝑔𝑔𝑣  

′ 𝑔−1,𝑤𝑒𝑟𝑒 𝑔 ∈ 𝐺 𝑎𝑛𝑑 𝑔𝑣,𝑔𝑣
′ ∈ 𝐺𝑣  in V. 

or 𝑥 = 𝑔𝑔𝑒   𝑔
−1  𝑎𝑛𝑑 𝑦 = 𝑔𝑔𝑒   

′ 𝑔−1,𝑤𝑒𝑟𝑒 𝑔𝑒  ∈ 𝐶.  

Proof Similar to Corollary 4.1. 

Theorem 4.1  If 𝐺𝑇  is a treed H N N group, then M consists of conjugates of elements of a group 

𝐺𝑒  ∈ 𝐸.i.e𝑥 ∈ 𝑀 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝑥 = 𝑔𝑔𝑒  𝑔
−1 ,𝑤𝑒𝑟𝑒 𝑔𝑒  ∈ 𝐺𝑒  𝑖𝑛 𝐸,𝑎𝑛𝑑 𝑔 ∈ 𝐺 

Proof Let xy be an element of M and suppose 

𝑥 =  𝑔𝑒𝑜  
𝑡1 𝑔𝑣1 

𝑡2
−1 𝑔𝑒3 

𝑡3 …  𝑡𝑛
−1 𝑔𝑒𝑜  

′ and 𝑦 = 𝑒𝑜
𝑐1𝑢1

𝑐2
−1 𝑒3 

𝑐3 …  𝑐𝑛
−1 𝑒𝑜  

′  and >0. 
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𝑥𝑦 = 𝑔𝑒𝑜  
𝑡1 𝑔𝑣1 

𝑡1
−1 𝑔𝑒3 

𝑡3 …  𝑡𝑛
−1 𝑔𝑒𝑜  

′ 𝑒𝑜
𝑐1𝑢1

𝑐2
−1 𝑒3 

𝑐3 …  𝑐𝑛
−1 𝑒𝑜  

′  

 𝑥 =  𝑦 = 𝑛,       𝑥𝑦 +  𝑦𝑥 < 2𝑛,        𝑥𝑦 < 2𝑛 

So the least form of xy is not reduced, and suppose 2r terms consolidate in the middle, then 

𝑥𝑦 = 𝑔𝑒𝑜  
𝑡1 𝑔𝑣1 

𝑡1
−1 𝑔𝑒3 

𝑡3 …  𝑡𝑛−𝑟
휀 𝑘𝑟  𝑐𝑟+1

−휀 …  𝑐𝑛
−1 𝑒𝑜  

′ and  

𝑦𝑥 = 𝑒𝑜 𝑐1𝑢1
𝑐2
−1 𝑒3 

𝑐3 …  𝑐𝑛−1
−𝛿  𝑐𝑠 𝑡𝑠+1 

−𝛿 …𝑡𝑛  
−1𝑔𝑒𝑜

′  are in reduced forms, for r, s >0, 𝑘𝑠 , 𝑐𝑠 are elements of 

𝐺𝑒  𝑜𝑟 𝐺𝑣 , and 휀, 𝛿 = ±1. 

 𝑥𝑦 +   𝑦𝑥 < 2 𝑥 = 2  𝑦  

2n – 2r + 2n – 2s < 2n 

r + s > n implies r > n – s 

s > n – r 

Take 𝑥𝑦 = 𝑔𝑒𝑜  
𝑡1 𝑔𝑣1 

𝑡1
−1 𝑔𝑒3 

𝑡3 …  𝑡𝑠 
휀  𝑘𝑛−𝑠 𝑐𝑛−𝑠+1 

−휀 …  𝑐𝑛
−1 𝑒𝑜  

′  , where 𝑘𝑛−𝑠  is a part of 𝑘𝑟 ,  for r > n – s. 

If  휀 = +1, 𝑡𝑒𝑛 𝑘𝑛−𝑠 ∈ 𝐺𝑣 𝑖𝑛 𝑉, 𝑡𝑠 𝑘𝑛−𝑠 𝑐𝑛−𝑠+1
−휀 ∈ 𝐺𝑒  𝑖𝑛 𝐸 

𝑥𝑦 = 𝑔𝑒𝑜  
𝑡1 𝑔𝑣1 

𝑡1
−1 …𝑔𝑒𝑠   

𝑡𝑠 𝑘𝑛−𝑠 𝑐𝑛−𝑠+1  
−1 (𝑒𝑛−𝑠+1 

′ …  𝑐𝑛
−1 𝑒𝑜  

′ ) 

𝑥𝑦 =  𝑒𝑛−𝑠+1 
′ …𝑐𝑛  

−1𝑒𝑜  
′ )−1( 𝑒𝑛−𝑠+1 

′ …𝑐𝑛  
−1𝑒𝑜  

′ 𝑔𝑒𝑜  
𝑡1 𝑔𝑣1 

𝑡2 
−1 …𝑔𝑒𝑠 

 𝑡𝑠𝑘𝑛−𝑠 𝑐𝑛−𝑠+1 
−1 (𝑒𝑛−𝑠+1 

′ …𝑐𝑛
−1 𝑒𝑜  

′ ) 

Let  𝑔𝑒  = 𝑡𝑠 𝑘𝑛−𝑠 𝑐𝑛−𝑠+1 
−1 ∈ 𝐺𝑒  ,   𝑒𝑛−𝑠+1 

′ …𝑐𝑛  
−1𝑒𝑜  

′ 𝑔𝑒𝑜  
𝑡1 𝑔𝑣1 

𝑡2 
−1 …𝑔𝑒𝑠 

= 𝑔𝑒  
′ ∈ 𝐺𝑒  ,  

and let  𝑔𝑒  
′ 𝑔𝑒  = 𝑔𝑒  

′′ ∈ 𝐺𝑒 . 

Hence   𝑥𝑦 =  𝑒𝑛−𝑠+1 
′ …𝑐𝑛  

−1𝑒𝑜  
′ )−1   𝑔𝑒(𝑒𝑛−𝑠+1 

′ …𝑐𝑛
−1 𝑒𝑜  

′ ) 

Therefore,  xy is a conjugate of an element𝑔𝑒  𝑖𝑛 𝐺𝑒  ∈ 𝐸. 

If 휀 = −1, 𝑡𝑒𝑛 𝑘𝑛−𝑠 ∈ 𝐺𝑒  𝑖𝑛 𝐸. 

Take 𝑥𝑦 =  𝑔𝑒𝑜  
𝑡1 𝑔𝑣1 

𝑡1
−1 𝑔𝑒3 

𝑡3 …  𝑡𝑠 
−1  𝑔𝑒𝑠 

 𝑡𝑠+1 𝑘𝑛−𝑠−1 𝑐𝑛−𝑠 
−1 (𝑒𝑛−𝑠 

′ …  𝑐𝑛
−1 𝑒𝑜  

′  

Let 𝑔𝑒  =  𝑡𝑠+1 𝑘𝑛−𝑠−1 𝑐𝑛−𝑠  
−1 ∈ 𝐺𝑒  𝑖𝑛 𝐸, then 

𝑥𝑦 =  𝑒𝑛−𝑠 
′ …𝑐𝑛  

−1𝑒𝑜  
′ ) ( 𝑒𝑛−𝑠 

′ …𝑐𝑛  
−1𝑒𝑜  

′ ) (𝑔𝑒𝑜  
𝑡1 𝑔𝑣1 

𝑡2 
−1 … 𝑡𝑠

−1𝑔𝑒𝑠 
 𝑔𝑒  (𝑒𝑛−𝑠 

′ …𝑐𝑛  
−1𝑒𝑜  

′ ) 

Let ( 𝑒𝑛−𝑠 
′ …𝑐𝑛  

−1𝑒𝑜  
′ ) (𝑔𝑒𝑜  

𝑡1 𝑔𝑣1 
𝑡2 
−1 … 𝑡𝑠

−1𝑔𝑒𝑠 
) = 𝑔𝑒

′  which is part of 𝑘𝑠 which consolidated, then 

𝑥𝑦 =  𝑒𝑛−𝑠 
′ …𝑐𝑛  

−1𝑒𝑜  
′ )−1(𝑔𝑜𝑔𝑒   (𝑒𝑛−𝑠 

′ …𝑐𝑛  
−1𝑒𝑜  

′ ) 

𝑔𝑜  ,𝑔𝑒   ∈ 𝐺𝑒  , then put 𝑔 𝑒  = 𝑔𝑒  
′ 𝑔𝑒  

Hence   𝑥𝑦 =  𝑒𝑛−𝑠 
′ …𝑐𝑛  

−1𝑒𝑜  
′ )−1(𝑔 𝑒   (𝑒𝑛−𝑠 

′ …𝑐𝑛  
−1𝑒𝑜  

′ ) 

i.e. 𝑥𝑦 is a conjugate of an element of 𝐺𝑒  in E. 

The same procedure applies to yx 

Corollaries 4.2, 4.3 and Theorem 4.1 show that 𝑀 ⊆ 𝑁. 
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