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Abstract Combinatorial properties of groups were studied via the graphs of groups. This led to substantial
development regarding the properties of groups by providing easier proofs. Contributions of many researchers,
such as Cohen [1], Chiswell [2,3], Khanfar [4] and many others enhanced this methodology and encouraged the
other researchers to apply the concept of graphs of groups, trees and other details in order to develop further
applications of groups, free groups, free product of groups, amalgamated free products, H N N groups, etc.

This paper is based on groups acting on graphs using the above terminologies and standard procedures to
explain the nature of some specific elements of groups.

On the other hand Length Functions, which was basically established and developed by Lynden [5], has proved
its major role in this area.

Keywords Automorphism of a graph, Bipartite Graph, Conjugate Elements, Group actions, Length Functions,
Normal Forms

1. Introduction

In this paper we start with some basic definitions and some essential properties of groups, which enable us to
deal with groups acting on connected graphs. This will lead us to construct a graph of groups associated with
the action of a group G on a graph X. Then the maximal tree T in the graph X is chosen to construct a group
which acts on this tree. The latter will be isometric to a subgroup generated by an element associated with a
reduced path in the graph.

Axioms of Length Functions, which were introduced by Lyndon [6] and developed by many others, are listed in
the basic part of this paper. This is used to study the nature of many groups and analyse their properties.
Applications of Length Functions require the normal form theorem, which is related to closed and reduced path
in the graphs.

Basics

Definition 1.1 A Graph X is a pair (V(X), E(X)) of two disjoined sets of elements ; a non-empty set V(X),
called vertices and a set E(X) called the edges, with a function t: E(X) —V(X) and a function E(X) —E(X)
denoted by: ¢ — e such that e = (e™) for all e in E(X), e is called the inverse of .

Definition 1.2 We define O (e) =t (e™) so that t (¢) = O (™). O (e) and t (e) are called the end points of the
edge e. O(e) is called the origin of e, and t (e) is called the terminal of e.

Definition 1.3  An edge e with O (e) = t (¢) is called a loop. A pair of edges { e, e™ } is called an unoriented
edge.

Definition 1.4  An orientation of a graph X is a set consisting of exactly one member of each unoriented { e,
e } for which e # e, together with every edge e = e™.
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Definition 1.5 A graph Y is a subgraph of a graph X if V(Y) <€ V(X) and E(Y) € E(X); and if e € E (Y) then
O (e), t (e ) and e™ have the same meaning in Y as they have in X. We write YZS X.

Definition 1.6 A path P of length n in a graph X is a finite sequence of edges: P=¢€; .... e,,n> 1, such that t
(6)=0(ejsy) fori=1,...,n—1. WedefineO(P)=0(e)andt(P)=t(e,) and say that, P is a path from O
(e ) tot(e,). The path Pis closed if O (e;)=t(e,),and reduced if e,;# ¢;* fori=1, ..., n-1. Ateach
vertex ¢ of X, we define an empty path 1, of length zero ( a path without edges) from v to v.

Definition 1.7 If Py=e;...e,andP,=e; ... ey are pathsin X and if t (Py) = O (P,), then we define their
product: P;P, =€y ... ese1 ... em. P:P, when defined, is a path from O (P,) to  t (P,). The inverse P™ of the
path P is the path P = ¢, ... e, ™.

Definition 1.8 A non- empty reduced closed path is a circuit.

Definition 1.9 A graph X is connected if for every pair of vertices u, v in X, there is a path in X from u to v.
Definition 1.10 A tree in X is a connected subgraph T of X which contains no circuits.

A maximal Tree T in a connected graph X is a subgraph in X which is maximal with respect to inclusion.
Definition 10.11 A graph X = ((v ( X)), E ( X)) is bipartite if V (X) = V1(X) U V, (X) with V(X), V, (X) both
edge free.

Proposition 1.1 If X and Y are graphs, then a morphism f : X — Yis a mapping which takes vertices to
vertices, edges to edges and such that f (O(x)) = O(f(x)) and f(x™") = (f(x))™ for all edges x in X.

f is called an isomorphism if it is one-to-one and onto. An isomorphism f : X — Xis called automorphism of X.
The automorphism of X form a group, denoted by Aut X.

Definition 1.12 A group G acts on X if G can be represented in Aut X, that is, if there is a group
homomorphism @ ; G - Aut X.

If X is a vertex or an edge in X, g € G, we write gx for @ (g) (x). If x is an edge, then g O(x) = O (gx), g x* =
(@)™,

A group G acts without inversions on a graph X, if gx# x™ for any g €G and any x € E (X). G acts with
inversion on X, if gx = x™ for some g €G and some x € E(X).

Let V(X)/G denote the set of G-orbits in V(X) and E(X)/G denote the set of G-orbits in E(X), then we can form
the graph: XIG = (V(X))/G, E(X)/G).

X/G is the graph whose vertices and edges are the G-orbits in V(X) and E(X), X/G is called “Quotient graph”,
with induced inverses and orbits.

The morphism p : X — X/G is called the projection.

Lemmal.l Let a group G act ona connected graph X with quotient Y = X/G. Letp: X - Y bea
projection, and T a maximal tree of Y. Then there exists a morphism q: T— X such that p q is the identity on T.
Proof See [4].

2. Bass-Serre Theory

Take a graph with vertices A, G;, | € | and edges @;: A — G;, construct a graph:

F=<A, Gt relG, t*at=¢;(a), allac A>

If we put t;= 1 for all i, then we get G *,G; .

Now construct a subgroup F, of F which consists of all elements of the form:a, ¢;, giltri‘lla1 ti gizti;1 .
Then define o: G — Foby: gi — tiaiti and a —a

Recall that G=<G;relG; 9 (a) = 9;(a),ac A>

-1

in 1

o: Bi(a) — 60 ()t =t0;(a) ;" = o (9;(a) )
Hence o defines a homomorphism from G to F
Define 7w (a, t;, gi,ti, a1 ti, Giytiy' o) = Qg by, iy i Q) by iy by oo

Hence omr=on F,,alsoroon G. So G = F,
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Example 1 Let G; be the vertices and Aj; be the amalgamated subgroups between the groups G; and G; for
some i and some j. Take the H N N Extension with generator t; for each additional edge and pair of isomorphic
subgroups, then the following diagram is a connected Graph of groups each vertex is a group , each edge is a
group isomorphic to a subgroup of its vertex group.

(G4
T
/TN
™,
El 12 -&-1 1 -\ E 13
.,
/ :
P \x
/ i ) Siag ™ RN
Ga ) |

Then H N N extension can be constructed by:
G =<Gy, Gy, t, ;rel Gy, rel Gy, ¢1(a) = d2(a), t 1, (b)t™t = 3, (b),a € A, b € B>
G =<Gy, Gy t, ;rel Gy, rel Gy, 1 (b) = ¥, (b), tds(a)t™! = ¢,(@),a €A, b € B>
Definition 1.13 A graph of groups is a connected bipartite graph with vertices E and V and edges joining E to
V. Each vertex is a group and each edge is an isomorphism ¢ of a group G, in E into a group G,in V.
Let F= < E, V, tifor each edge in the graph; relE, rel V, t* at =@, (a), allac A >
Definition 1.14 The tree product of groups is given by:
G=<E,V;relE,relV, ¢i, (gei) = g., wehere g, € G, inE and ci)ij is on the tree >
Choose a maximal tree T in the graph, then Gy =F/t;=1all t;in T and
Gr=<EV,t, ;relErelV,t71gt; = ¢,(8),9€ G, t; =1 forall tjin amax.tree T > is called Treed H N
N group.
F,, is asubgroup of F of all elements which can be expressed in the form
Geyto Goyti "oy ta Gug t3" e, ta - tn ' go, cOrresponding to a path from e, to e, in the graph if:
toti ity 3t .ty
t1,t; both edges starting at e,....etc.
t,,t; both edges ending ate, ....

Theorem 1.1 G F,
Proof See [1].
Corollary 1.1 Gr is independent of maximal tree T.

Definition 1.15 Anelement x = g, t; gy, t3" ges t3 - tr ' go, . = 0 0f F, issaid to be in a reduced form
if it does not contain ;! g t; , with g,, € G, or t; g, t; with g,, € ¢; (G,, ).
Reduced forms are not unique.
Definition 1.16 Given a collection of coset representatives of ¢, (Ge ) in G,with ¢, : G, - G, ,award
W= ge ti gy, ty! Jes t3 o it ge'a ,n = 0, representing an element of ¥, is in normal form if:

Q) Je, is an arbitrary element in a group G, € E

(i) all g,,, are in the collection of coset representatives of ¢; (Gei_1 ) inG,

(iii) Ge, =1, i=12,...... n

(iv) There is no subwardt; ' g, t; where g, € G, ,nort; g, t;", gy, € ¢; (Gei ), i=1,...,n
A
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Theorem 1.2 (Normal Form Theorem)Every element of %, has a unique normal form.
Proof See [1].

3. Length Functions

Definition 3.1: A length function | |ona group G, is a function giving each element x of G a real number |x|,
such that for all x,y,z € G, the following axioms are satisfied.

Al'le| = 0, eis the identity elements of G .

A2 |x7 = x|

A4 d(x,y) < d(y,z) = d(x,y) = d(x,z), where d(x, y) = % Clx| + |yl = |xy 7Y

Lyndon in [ 6 ] showed that A4 is equivalent to d(x,y) = min{ d(y, z),d(x,z)} and to
d(y,z),d(x,z) 2m = d(x,z) =m.
A1, A2 and A4 imply that: |x| = d(x,y) = d(y,x) = 0.
Assuming, A2 and A4 only, it is easy to show that:
i d(x,y) = |e|

ii. |x| = el

iii. d(x,y) < |x| —lel, see [7]
The axiom A3 states that: d(x,y) > 0 is deducible from A1, A2. Also, A1'is a weaker versionof the
following axiom: A1l: |x| =0 ifandonlyifx =1inG.
Lyndon [6 ] showed that if G is any group with length function and x, y and z are elements in G, then the
following properties will hold.

Proposition 3.2 d(xy,y) +d(x,y™1) = |y|

Proposition 3.3 d(x,y™) +d(y,z™!) < |ylimpliesthat  |xyz| < |x| — |y| + |z|
Proposition 3.4 d(x,y™1) + d(y,z™1) < |y|implies thatd (xy, z™') = d(y,z™")
Proposition 3.5 d(x,y) + d(x~,y~1) > |x| = |y|implies that [y D2 < |xy™1))

It follows from proposition 3.2 that forany x,y € G ,d (x,y) = |yl —d (x y~1,y™) < |y| by A3.
Since d(x,y) =d (y,x), we get: d (x,y) < min{|x|,|y|}.
A5 states that:d (x,y) + d(x 1,y D> |x|=y 2x=y
Definition 3.1: A non-trivial element g of a group G is called Non-Archimedean if |g?| < |g]|
Definition 3.2:  Let G be a group with length function. An element x # 1 in G is called Archimedean if
lx| < |x2].
The following Axioms and results are added by Lyndon and others
A0 x#=1 = |x| < |x?]
CO0 d(x,y)is always an integer
Cl x#1,|x% < |x|implies |x| isodd.
C2 For no xis|x?| =|x|+1
C3 if |x| is odd then |x?| > |x|
C1' if |x|is even and |x| # 0, then |x?| > |x|
NO |x?| < |x| impliesx®> =1 isx = x~ !
N1* G is general by {x € G : |x]| < 1}
Definition 3.3:  The set of all Non-Archimedean elements of G will be denoted by N and is givenby: N =
{x €G: |x*| < x|}
Lyndon also introduced the following setin[1]: M = {xy € G : |xy| + |yx| < 2|x| = 2 |y|}, and showed
that M < N. The nature of the elements of M and N is investigated in the next section.
wE

P
P
) N

ﬁé@* Journal of Scientific and Engineering Research

198



Nesayef FH & Jassim AM Journal of Scientific and Engineering Research, 2020, 7(6):195-200

4. Applications of Length Functions
The normal form theorem 1.2 for treed H N N groups allow us to assign a well-defined length to each element
of the group.

Definition 4.1. Let Gy be atreed H N N group, Gy =<E, V, t;, ;rel E, rel V, ti‘lgeiti = ¢,(9e,) ge; €
G.inE,t; =1 forall tiinamax.tree T >.

Define a length function on the elements of Gt by:
x| =1, if x = go, t1 Gv, t2" Ges t3 -ty ge, iSinareduced formand n > 0.

x — |x| satisfies the following axioms:

Al'le| = 0, e is the identity elements of Gy .

A2 |x7Y = ||

A dxy) < dy,2) = d(@y) = d(x,2), where d(x,y) = 5 (Ixl + Iyl = by~

Corollary 4.1. If Gy isatreed H N N group, then the set N consists of conjugates of elements of a group Gy, in
VorG,inE.

Proof Suppose x € N, ie, |x?| < |x|and let

X2 Goo t1 oy 87 Gey t3 o tn Goy Gy t1 Gvy 82 Ges t3 o tr ' G,

g;O and g, arein G, and |x2] < |x|, so asubward of length 2r in the middle will be consolidated.

X2: geo tl 9171 1:2_1 tri—r (gSn—r t;£r+1 gSn—r+1 trrl gen geo tl_1 trs gs, ) t"'_jlgsr+1
t' ge,
= e, t1 Guy t2 ' o iy (Rt E1 s,y - ta' ge, » inareduced form.
If e= +1,thenk, € G, and if e = —1,thenk, € G,
Suppose ¢ = +1,theng, = g. . €G
|x] =n, So,2n—2r <mn, andr>%, Sor=zn-—r.
Take x = go, t1 Go, t3 " oo tF gs trir o b Ge,
Suppose € = 1,then g5 = g, € G, and x = (g, t1 G, t3 " - tr )Gy, (tris o tn ' Ge,)
X = (geu tl gv1 tZ_1 tr )(geo tl giq tZ_1 tr)_l

X = (geu ty Gv, tZ_1 o by )gvr tr_-él kn—r ty (geo t 9v, t2_1 tr)_l
r=n—r,sok,_,. isapart of k. which has consolidated.
kn—r € Ge ,SO tr_-l}l kn—r L, = gvn_r € Gv'
Suppose ge, t1 gy, tz ' .. t, = g € G, then

X=90y,9v,_, 9 =99,9"', whereg, €x= (g, t1 95 t7" - t;

Hence x is a conjugate of an element of a group G, in V.
If we suppose that ¢ = —1, then x will be a conjugate of an element of a group G, in E.
Corollary 4.2 IfGris a treed H N N group then the equivalent elements of N lie in the same
conjugate of the group G, in E or a group G, in V.
ie x~yifandonlyifx=gg,9™',vy=9g, g ', where g € Gand g, g, € G, in V.
orx=gg., g ' andy = gg, g~ ', whereg, €C.
Proof  Similar to Corollary 4.1.
Theorem 4.1 If G isatreed H N N group, then M consists of conjugates of elements of a group
G, EEiex € Mif andonlyif x = gg, g ', where g, € G,inE,and g € G
Proof Let xy be an element of M and suppose
X= Go t1 Gy, t7 Gy tz oty go, andy = h, cihy, c; 1 hey 3 . it By and >0.
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’

XY = G, t1 Gu; 81 Ges t3 o tn Go, Re, CLhy €3 hey €3 o it g,
x| =1yl =n, |xyl+ lyx| <2n, |xy|<2n
So the least form of xy is not reduced, and suppose 2r terms consolidate in the middle, then
XY = e, t1 Gvy t1 " Ges t3 o thr Ky € fq oo ¢t B, and
yx = h,, C1hu1€z_1 he, c3 .. cliestd .. t;lggo are in reduced forms, for r, s >0, k., ¢, are elements of
G,orG,,and ¢,6 = +1.
eyl + lyx| < 2]x| =2 [yl
2n—-2r+2n-2s<2n
r+s>nimpliesr>n-s
s>n—r
Take Xy = o, t1 Gv, 61" ey t3 oo tEknos Cnisyq o € hy, ,Where k,_g isapartof k., forr>n-s.
If e=+1,thenk,_; €G,inV, tyk,_sc; 41 €EG,IiNE
Xy = geo 4 gv1 tl_1 "'ges ts kn—s C;Es+1 (hén,ﬁl 6771 héo )
xy = (R, ooy Gty ) (e oy Gt Rey Ge, b1 Gy B2 o Geg Vbskn—s Catesa (Re, oy Cn L he)
Let g. =toky_sCilsit €Goy R o Cithy Goy ti Gy ts ' o Ge, = ge € G,
and let g, g, = g. € G,.

'

Hence xy = (h;, .., «Cnthe,)™) ge(hy ooy G he,)

Therefore, xy is a conjugate of an elementg, in G, € E.

Ife=—1,thenk,_ €G,IinE.

Take Xy = (geo ty gvl tl_1 ge3 t3 .. ts_l ges )ts+1 kn—s—l Cn_ls (h;n_s Cr?l hz;o

Let g, = topq kn_s_1Cnls € G, inE,then

xy = (he_, wcithe,) Che,, wocithe,) (Ge, 61 9oy 620 6100, )ge (hey, G he,)

i Cn the, ) (e, t1 Gy b2 ot ge, ) = go Which is part of k, which consolidated, then
xy = (he,_, - Cithe,) ™ (9oge ) (hey_, e the,)

90 9e € G, thenputg, = ge ge

Hence xy = (hy, , ..cithe, )7 (ge )(he, , - Ca'hs,)

i.e. xy is a conjugate of an element of G, in E.

The same procedure applies to yx

Corollaries 4.2, 4.3 and Theorem 4.1 show that M € N.

'

Let (h
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References
[1]. Cohen, D. E. (1978). Combinatorial group Theory, A Topological Approach, London Queen Mary
University,

[2]. Chiswell, 1.M.(1976). Abstract Length Function groups: Maths. Proc. Camb. Phil. Soc. 451-463.

[3]. Chiswell, I.M.(1971). On groups acting on Trees: Ph D Thesis, University of Michigan.

[4]. Khanfar, M.1. (1978). Combinatorial Properties of Groups with Length Function ; Ph D. Thesis, and
University of Birmingham .

[5]. Lyndon and Schupp. (1977). Combinatorial Group Theory, Springer-Verlag, Berlin, Heidelberg, New
York.

[6]. Lyndon, R.C.(1963). Length Functions in Groups: Math. Scand., 12, 209-234.

[7]. Wilkens, D.L.(1976). On Non-Archimedian Lengths in Groups: Mathematika, 23, 57-61.

:‘:1; N
’@# Journal of Scientific and Engineering Research

200



