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Abstract In this paper, we introduce and investigate a subclass of analytic and bi-univalent functions of 

complex order in the open unit disk in complex plane. We obtain upper bound estimates for the initial 

coefficients 2a , 3a  and 4a  of the functions belonging to this class. 
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1. Introduction 

Let A  be the class of analytic functions  in the form 
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which are analytic in the open unit disk  1<:= zzU C . 

We denote by S  the subclass of A  consisting of functions which are also univalent in. Some of the important 

subclass of S  is the class   ,  defined by 

           0.,0,1,,>:=,   UzzzfzfReSf
'''

 

Gao and Zhou [9] investigated and showed some mapping properties of this class   , . 

In the special case, we have subclass    defined by 

         0,0,>:=   UzzzfzfReSf
'''

 

for 0= . 

Early, by Alinta s  et al. [1] were investigated a subclass   ,,  of analytic and bi-univalent functions 

consisting of function f  T  which satisfied the condition 

            .,0=,0,1,0,1,1
1

Uzzzfzf
'''

  CC


 

Here T  is the subclass of A  consisting of the functions f  in the form 
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Altinta s  et al. [1] found necessary and sufficient conditions for the functions belonging to this class. 

It is well-known that (see, for example, [6]) every function Sf    has an inverse 
1f , which is defined by 

       ...,552= 4

432

3

2

3

3

2

2

2

2

1  waaaawaawawwf  

      .
4

1
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A function Af   is said to be bi-univalent in U  if both f  and 
1f  are univalent. We denote by   the 

subclass of bi-univalent functions in U  given by (1). 

In 1967, Lewin[14] showed that for every function of the form (1) the second coefficient satisfies the estimate 

1.51<2a . In 1967, Brannan and Clunie [2] conjectured that 2<2a  for f . In 1984, Tan [21] 

obtained the bound for 2a , namely, taht 1.485,<2a  which is the best known estimate for functions in the 

class  . In 1985, Kedzierawski [12] proved the Brannan-Clunie conjecture for bi-starlike functions. Brannan 

and Taha [3] obtained estimates on the initial two coefficients 2a  and 3a for the functions in the classes of 

bi-starlike and bi-convex functions of order ,   0,1 . 

The study of bi-univalent functions was revived, in recently years by Srivastava et al. [19] and a considerably 

large number of sequels to the work of Srivastava et al. [18] have appeared in the literature. In particular, several 

results on coefficient estimates for the initial three coefficients 32 , aa  and 4a  were proved for various 

subclasses of   (see, for example, [4, 7, 11, 16, 19, 20, 22, 23]). 

Recently, Deniz [5] and Kumar et al. [13] both extended and improved the results of Brannan and Taha [3] by 

generalizing their classes by means of the principle of subordination between analytic functions. 

Despite the numerous studies mentioned above, the problem of estimating the coefficients  2,3,...=nan  for 

the general class functions   is still open (see also [20] in this connection). 

Motivated by the aforementioned works, we define a new subclass of bi-univalent functions   as follows. 

Definition 1  A function f   given by (1) is said to be in the class   ,,  if the following conditions 

are satisfied 

          UzzzfzfRe
'''










  0,,0,1,0=,>1
1

1 


CC  

and 

          DwwwgwgRe
'''










  0,,0,1,0=,>1
1

1 


CC  

where the function .= 1fg   

Remark 1 Choose 1=  in the Definition 1, we have function class 

      0,0,1,,=,1,    H  ; that is,  

        UzzzfzfReHf
'''

  ,>,   

and  

      DwwwgwgRe
'''

 ,>  

where 
1= fg .  
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Remark 2 Choose 0=  in the Definition 1, we have function class     

  C ,0,1,,0,  ; that is,  

      UzzfRef
'










  ,>1
1

1,0, 


  

and  

    DwwgRe
'










 ,>1
1
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where 
1= fg .  

 

Remark 3 Choose 1=0,=   in the Definition 1, we have function class 

     0,1,,0=,0,1     ; that is,  

      UzzfRef
'

  ,>,0   

and  

    DwwgRe
'

,>  

where 
1= fg .  

 

Remark 4 Choose 1=  in the Definition 1, we have function class     

  C ,0,1,,1,  ; that is 

        UzzzfzfRef
'''










  ,>1
1

1,1, 


  

and 

      ,,>1
1

1 DwwwgwgRe
'''










 


 

where 
1= fg .  

 

Remark 5 Choose 1=1,=   in the Definition 1, we have function class      0,1,,1=,1,1     

; that is,  

        UzzzfzfRef
'''

  ,>,1   

and  

      DwwwgwgRe
'''

 ,>  

where 
1= fg .  

Recently, the class   ,,  were investigated by Mustafa et al. [15]. They give the sufficient, and sufficient 

and necessary conditions for the functions belong to this class. Also, they find the upper bound estimates for the 

some initial coefficients of the functions belonging to this class and its special cases. 

The class         N=,0=,0,1  were investigated by Srivastava et al. [19]. 

Recently, by Frasin [8] investigated subclass      ,0,1,,=,1,    H  0>  with condition 
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 . He found estimates on two first coefficients for the functions in this class. 
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The object of the present paper is to find the upper bound estimates for three initial coefficients 32 , aa  and 

4a  of the functions belonging to the class   ,,  and its special cases. 

To prove our main results, we need require the following lemmas. 

 

Lemma 1 (See, for example, [17]) If  Pp , then the estimates 1,2,3,...=2,npn   are sharp, where P  

is the family of all functions p , analytic in U  for which   1=0p  and    UzzpRe 0,>  and 

   ....,1= 2

21 Uzzpzpzp   (2) 

 

Lemma 2 (See, for example,[10]) If  the function  Pp  is given by the series (2), then  

 ,)(4=2 2

1

2

12 xppp   

 wxpxppxpppp ))(12(4)(4)2(4=4
22

1

2

1

2

11

2

1

3

13   

for some x  and z  with 1x  and 1z . 

 

2.  Coefficient bound estimates for the function class   ,,  

In this section, we prove the following theorem on upper bound estimates for the initial three coefficients of the 

function belonging to the class   ,, . 

Theorem 1 Let the function f  given by (1) be in the class   ,, . Then, 
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Proof. Let     

  C 0,,0,1,,,f  and 
1= fg . 

Then, 

         zpzzfzf
'''




 1=1
1

1  (3) 

and 

         wqwwgwg
'''




 1=1
1

1  (4) 
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where functions   ...1= 2

21  zpzpzp  and   ...1= 2

21  wqwqwq  are in the class P . 

Comparing the coefficients in (3) and (4), we have 
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From the first equality of (5) and (6), we find that 
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 (7) 

Also, from the second equality of (5) and (6), considering (7), we get 
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 (8) 

Subtracting the third equality of (6) from the third equality of (5) and considering (7), we can easily obtain that 
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In view of Lemma 2, since (see (7)) 11 = qp  , we can write 
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for some yx,  and wz,  with 11,1,  zyx  and 1w . 

Since 21 p , we may assume without any restriction that  0,2t , where 1= pt . 

From (7), we easily see that 
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that is, 
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Substituting the expression (10) in (8) and using triangle inequality, taking  =,= yx , we can easily see 

that 

       ,,=213  FtCtCa   (13) 

where 
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It is clear that the maximum of the function   ,F  occurs at    1,1=, . Therefore, 

             .2=1,1=0,1,:,max, 21 tCtCFFF    (14) 

Define the function   R0,2:G  as follows 

      tCtCtG 212=   (15) 

for fixed value of  .C  

Substituting the value  tC1  and  tC2  in (15), we obtain 

      ,,,,,= 2  BtAtG   

where 
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Now, we must investigate the maximum of the function  tG  in the interval  0,2 . 

By simple computation, we can easily show that  

     .,,= tAtG
'

  

It is clear that   0<tG
'

  if    0<,, A ; that is, the function  tG  is a decreasing function if  

 00,  , where 
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Also,   0tG
'

 if  0  ; that is, the function  tG  is an increasing function for 0  . 

Therefore, 
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Substituting the expressions (10) and (11) in (9) and using triangle inequality, putting  =,= yx , we can 

easily see that 
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Now, we need to maximize the function   ,  on the closed square     0,1,:,=   . 
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Since the coefficients  tc1 ,  tc2  and  tc3  of the function   ,  is dependent to variable t , we must 

investigate the maximum of   ,  respect to t  taking into account these cases 2=0,= tt  and  0,2t . 

Let us 0=t . Then, we write  
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In this case, we will examine the maximum of the function   ,  taking into account the sing of  

        2,,,=,    . 

By simple computation, we can easily see that 
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that is,  00 ,  is a maximum point for the function   , , where    0,0=, 00  . Therefore, in the case 

0=t  
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For 2=t , the function   ,  is a constant function as follows 
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In the case  0,2t , we will examine the maximum of the function   ,  taking into account the sign of  

        2,,,=,    . 

By simple computation, we can easily see that 

            tctctctc
''
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and 
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 , is likely a critical point of the function   , . We can easily 

show that   00 , ; that is, 
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 for  0tt  , where 
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t . 

It can easily be see that 10 t . Therefore, the function   ,  cannot have a critical point for  ,20tt . 

Hence, we must investigate the maximum of the function   ,  for  00, tt  not for  0,2t . Since 
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 00 ,  is a maximum point for the function   , . Therefore, 
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Let the function   R00,: tH  defined as follows 
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Substituting the value  tc1 ,  tc2  and  tc3  and in (21), we write 

        ,,,,,2,,= 3

2

2

3

1  hththtH   

where 

    
 

 
,

318

1
,,=,, 21









hh  

  
 

  
 

 

 
.

312

1
=,,,

21124

15
=,, 3

0

22

2

















h

t
h  

By simple computation, we have 
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Since   0>,,1 h   and   0>,,2 h  for each   0,>0,,0,1    then   0>tH
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. So, the 

function  tH  is an increasing function on  00, t . 

Therefore,  
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Thus, in the case  0,2t , we have 
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It is clear that 
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Consequently, inequality (23) is satisfied for all  0,2t . 

Thus, from (12), (16), (17) and (23) the proof of Theorem 1 is completed.  

In the special cases from Theorem 1, we arrive at the following results. 

Corollary 1 Let the function f  given by (1) be in the class     ,=,1,  H . Then, 
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Also, 
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Corollary 2 Let the function f  given by (1 be in the class   ,0, . Then, 
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Corollary 3 Let the function f  given by (1) be in the class         N=,0=,0,1 .  

Then, 
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Corollary 4 Let the function f  given by (1) be in the class   ,1, . Then, 
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Corollary 5 Let the function f  given by (1) be in the class    ,1=,1,1    .  

Then, 
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3. Results and Discussion 

In this paper, was introduced a new subclass   ,,  of the analytic functions on the open unit disk in the 

complex plane. The various geometric properties of the functions belonging to these classes have examined. 

Also, sharp inequalities for the coefficient bound estimates for the functions belonging to these classes are 

given. 
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