
Available online www.jsaer.com

Journal of Scientific and Engineering Research

383

Journal of Scientific and Engineering Research, 2020, 7(5):383-386

Research Article

ISSN: 2394-2630

CODEN(USA): JSERBR

Converting Non-English Languages to System Readable Format

using Python

Maheswara Reddy Basireddy

Email id: maheswarreddy.basireddy@gmail.com

Abstract In today's globalised society, the capacity to process and comprehend text in several languages is

essential for many applications and systems. There is a rising demand for efficient ways to translate non-English

text into a format that computer systems can handle due to the volume of data being created in several

languages. For natural language processing (NLP), machine translation, and language identification, Python

provides a robust ecosystem of libraries and tools. This study investigates the usage of NLP libraries like spaCy

and NLTK (Natural Language Toolkit) for text processing and conversion to system-readable forms, as well as

Python modules like langdetect and translate for language detection and machine translation, respectively.

Keywords natural language processing, spaCy, NLTK

Introduction

There is an enormous quantity of data being created in many languages as a result of the globalisation of

information and the growing usage of the internet. For computer systems and applications that need to analyse

and comprehend text in many languages, this linguistic variety presents difficulties. The development of

techniques and instruments that translate non-English material into a computer system-readable format is

required to overcome this difficulty.

Python is a well-liked and flexible programming language that provides a robust ecosystem of modules and

tools for natural language processing (NLP), machine translation, and language recognition. The creation of

multilingual systems and applications is made possible by these libraries, which may be used to translate non-

English text into a format that is readable by the system.

This study investigates the usage of NLP libraries like spaCy and NLTK (Natural Language Toolkit) for text

processing and conversion to system-readable forms, as well as Python modules like lang detect and translate

for language detection and machine translation, respectively. An overview of these libraries' features and

applications—including how to transform non-English text into forms that are readable by systems—is given in

this article. The article also provides code snippets and real-world use cases to demonstrate how these libraries

might be implemented.

Language Detection

Finding out the language in which the content is written is crucial before attempting to translate or analyze it.

Langdetect is one of the language detection packages available in Python.

A. Langdetect

Based on the efforts of Nakatani Shuyo [1], the langdetect library is a Python adaptation of the Node.js language

detection module. It determines the language of a given text using a naïve Bayesian filter. The following

demonstrates the use of Langdetect:

Basireddy MR Journal of Scientific and Engineering Research, 2020, 7(5):383-386

Journal of Scientific and Engineering Research

384

from langdetect import detect

text = "이것은 한국어 텍스트입니다."

lang = detect(text)

print(lang) # Output: ko

The language of the provided text is ascertained in the example above by utilising the detect function. The

function yields the ISO 639-1 code corresponding to the identified language, 'ko' in this instance denoting

Korean.

The langdetect package is based on Nakatani Shuyo's work, which determines a text's language using a naïve

Bayesian filter. The frequency of n-grams, or sequences of n characters, is used by the library, which has been

trained on a sizable corpus of text in many languages, to identify the language [1]. The library is a well-liked

option for Python language identification jobs due to its accuracy and efficiency.

B. Limitations and Challenges

The langdetect library has some drawbacks and difficulties, despite its effectiveness in identifying the language

of a given text. The library's potential inability to reliably identify languages that are underrepresented in the

training corpus is one of its limitations. Additionally, writings that move between codes or are multilingual may

be difficult for the library to access.

The inability of the library to discriminate between languages that are closely related, like Spanish and

Portuguese or Danish and Norwegian, presents another difficulty. In some situations, further language-specific

processing might be needed in order to recognize the language correctly.

Machine Translation

The next stage is to translate the text into a language that the system can comprehend, usually English, after the

language of the text has been recognized. Translate is one of the machine translation libraries available for

Python.

A. Translate

A free and open-source Python module called translate gives users access to a number of translation services,

such as Yandex, Microsoft Translator, and Google Translate. Interpret [2]. Here's an illustration of how to utilise

Google Translate's translate feature:

from translate import Translator

Translator = Translator(to_lang="en")

text = "이것은 한국어 텍스트입니다."

translation = translator.translate(text)

print(translation)

Output: This is a Korean text.

In the above example, we create a Translator object with the target language set to English ('en'). We then use

the translate method to translate the given Korean text to English.

The translate library provides a convenient interface for accessing various machine translation services. It

supports multiple translation services, allowing users to choose the service that best suits their needs.

Additionally, the library provides options for customizing the translation process, such as specifying the source

and target languages, and handling additional parameters specific to the translation service.

Basireddy MR Journal of Scientific and Engineering Research, 2020, 7(5):383-386

Journal of Scientific and Engineering Research

385

B. Limitations and Challenges

Although machine translation libraries such as translate provide a practical means of translating text, they are

not without restrictions and difficulties. The precision and calibre of the translations, which differ based on the

translation provider and the intricacy of the source material, is one drawback. Idiomatic phrases, cultural

allusions, and context-specific subtleties can be difficult for machine translation systems to interpret, which

might result in erroneous or lacking translations.

Managing language-specific aspects like word order, writing systems, and grammatical norms is another

difficulty. Text that adheres to multiple language traditions may not always be correctly translated by machine

translation systems, producing translations that are grammatically wrong or lack semantic coherence.

Furthermore, the languages that machine translation libraries support and the longest text that can be translated

may be restricted. Certain language pairings might not be supported by translation services, and they could have

limits on the amount of text that they can handle.

Natural Language Processing (NLP)

The next stage is to analyse and transform the text into a format appropriate for additional analysis or processing

after translating it into a language that the system can comprehend. For this, Python offers a number of NLP

libraries, like spaCy and NLTK (Natural Language Toolkit).

A. NLTK (Natural Language Toolkit)

One of the best platforms for writing Python programmes that interact with data in human language is NLTK

[3]. It offers user-friendly interfaces for handling a range of natural language processing (NLP) operations,

including parsing, tokenization, stemming, tagging, and semantic reasoning. Here's an illustration of how to tag

parts of speech and tokenize data using NLTK:

import nltk

text = "This is a Korean text."

tokens = nltk.word_tokenize(text)

tagged = nltk.pos_tag(tokens)

print(tagged)

 # Output: [('This', 'DT'), ('is', 'VBZ'), ('a', 'DT'), ('Korean', 'JJ'), ('text', 'NN'), ('.', '.')]

Using the word tokenize function, we first tokenize the text in the example above into individual words. The

pos_tag function is then used to execute part-of-speech tagging on the tokens, giving each token a part-of-

speech tag.

Numerous NLP resources and tools, including as corpora, tokenizers, stemmers, taggers, parsers, and tools for

semantic reasoning, are available through NLTK. It is extensively employed in a variety of industrial

applications, as well as in academic and research contexts. For text processing applications including named

entity identification, sentence segmentation, tokenization, and part-of-speech tagging, NLTK is very helpful.

B. Spacy

A free, open-source toolkit for sophisticated NLP in Python is called spaCy [4]. With its production-ready

design, it offers precise syntactic analysis and excellent performance. Here's an illustration of how to utilise

named entity recognition, tokenization, and part-of-speech tagging using spaCy:

import spacy

nlp = spacy.load("en_core_web_sm")

text = "This is a Korean text."

doc = nlp(text)

for token in doc:

print(token.text, token.pos_, token.ent_type_, token.ent_iob_)

Using the spacy.load method, we first load the en_core_web_sm language model in the example above. After

that, we feed the text to the nlp object to generate a Doc object. Lastly, we loop through the tokens in the Doc

object, printing for each token the named entity type, partof-speech tag, token text, and named entity IOB

(Inside, Outside, Beginning) tag.

Basireddy MR Journal of Scientific and Engineering Research, 2020, 7(5):383-386

Journal of Scientific and Engineering Research

386

In a variety of natural language processing (NLP) tasks, including as text categorization, dependency parsing,

named entity identification, tokenization, and part-of-speech tagging, spaCy is renowned for its exceptional

performance and accuracy.

Conclusion

This study investigated how to translate non-English material into a format that is readable by a computer using

Python tools for language recognition, machine translation, and natural language processing (NLP). The

langdetect library was introduced for language identification, which determines the language of a supplied text

using a naïve Bayesian filter. For machine translation, the translate library was added, giving users access to a

number of translation providers, including Yandex. Translate, Microsoft Translator, and Google Translate.

Additionally, the article covered two well-known Python NLP libraries: spaCy and NLTK (Natural Language

Toolkit). For a wide range of NLP activities, such as tokenization, stemming, tagging, parsing, and semantic

reasoning, NLTK provides an extensive collection of tools and resources. However, spaCy is well-known for its

great performance and is intended for more complex NLP jobs.

The implementation of these libraries for converting nonEnglish text to formats that are readable by the system

was demonstrated in the paper through the use of real-world use cases and code samples. Language

identification, machine translation, tokenization, part-of-speech tagging, and named entity recognition were all

addressed in the examples.

Although these libraries provide strong tools for translating non-English literature, the study also outlined

several drawbacks and difficulties with each strategy. Idiomatic phrases, cultural allusions, and context-specific

subtleties can cause machine translation systems to generate erroneous or partial translations, whereas language

recognition libraries may have trouble translating texts in many languages or those that are closely related.

For academics, developers, and practitioners dealing with multilingual data and applications, this article

provides an extensive guidance. With the help of the libraries and methods covered in this paper, systems may

be constructed.

Reference

[1]. Shuyo, Nakatani. "Language Detection Library for Java." GitHub, https://github.com/shuyo/language-

detection.

[2]. Artur Karapetyan. "Py-Translate." GitHub, https://github.com/teraly/py-translate.

[3]. Steven Bird, Ewan Klein, and Edward Loper. "Natural Language Processing with Python." O'Reilly

Media, Inc., 2009.

[4]. Honnibal, Matthew, and Ines Montani. "spaCy 2: Natural language understanding with Bloom

embeddings, convolutional neural networks and incremental parsing." (2017)

https://github.com/teraly/py-translate.%20%5b3

