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Abstract In this article, we propose a method for determining the optimal thickness of a rice husk panel with 

thermal insulation from the exchange coefficients on the rear face. Analytical expressions for temperature and 

heat flux density are established from the heat modulation equation in frequency modulation. The influence of 

the stress period on the optimal thickness has been shown. 

Keywords rice husk – thermal insulation - thermal exchange coefficient - minimum thickness - frequency 

dynamic regime 

1. Introduction 

Global climate change warming of the earth is mainly caused increase energy consumption, producing 

greenhouse gases. His reduction is a major issue. 

Work has proposed the development of green energies: solar energy [1, 2, 3], wind energy [4,5], hydraulic 

energy [6, 7], biomass [8, 9]. To better manage these energies produced, the researchers propose the use of 

materials allowing thermal insulation for energy saving in buildings. 

The materials are synthetic [10,11], or vegetable origin [12, 13, 14, 15] or animal [16,17]. They are generally 

designed in the form of panels. 

With the National program for rice self-sufficiency in Senegal, the ball of this crop which is almost not 

exploited. Thus it could be used in the manufacture of panels for thermal insulation. 

The objective of his work is to propose a method for determining the minimum thickness of the rice husk panel 

from the surface heat exchange coefficients. 

1.1. Theory 

The device is a material made of rice husk (figure 1), it’s in the form of a panel: 
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Figure 1: Study model composed of rice husk subjected to external climatic stresses 

(L= 0,05m, T01 = 35°C, T02 = 20°C et T0 = 25°C). 

Where : 

– T1 (°C) and T2 (°C): temperature in frequency dynamic mode of external and indoor environment respectively, 

– T01 and T02 (°C): maximum amplitude of T1 and T2 respectively, 

– T0 (°C): initial temperature of insulating material, 

- h1: heat exchange coefficient front face 

- h2: heat exchange coefficient rear face 

-ω is excitation pulse (rad/s) and t represents times (s) 

When the materialis excited by its external face, there is then a phenomenon of thermal diffusion through the 

material, governed by the following heat equation [18]: 

.
𝜕2𝑇(𝑥,ℎ1,ℎ2,𝜔 ,𝑡)

𝜕𝑥 2 + 𝑃𝑝 = 𝜌. 𝑐.
𝜕𝑇((𝑥,ℎ1,ℎ2,𝜔 ,𝑡)

𝜕𝑡
          (1) 

Where: 

- ρ (Kg.m
-3

): density of material, 

- c (J.Kg
-1

.K
-1

): mass thermal capacity, 

- λ (W.m
-1

.K
-1

): thermal conductivity of material, 

- Pp (W.m
-3

): internal heat supply (heat sink) of material. 

- x(m): depth position 

Simplified form of this equation, in absence of internal heat sinks and for constant thermal conductivity 

(assumed isotropic material) is given by: 

𝜕2𝑇(𝑥,ℎ1,ℎ2,𝜔,𝑡)

𝜕𝑥 2 =
1

𝛼
.
𝜕𝑇(𝑥,ℎ1,ℎ2,𝜔 ,𝑡)

𝜕𝑡
            (2)  

With 𝛼 =


𝜌.𝑐
             (3) 

α  is thermal diffusivity coefficient of the material (m
2
.s

-1
).  

𝑇(𝑥, ℎ1, ℎ2 , 𝜔, 𝑡)istemperature in material with rice husk panel 

The study system is subject to the following boundary conditions: 

i) At the front of the panel (x=0 m) : 

 −.
𝜕𝑇(𝑥,ℎ1,ℎ2,𝜔,𝑡)

𝜕𝑥
 
𝑥=0

= ℎ1 𝑇1 − 𝑇 0, ℎ1, ℎ2, 𝜔, 𝑡            (4) 

ii) at the back of the panel (x=L) 

 −.
𝜕𝑇(𝑥,ℎ1,ℎ2,𝜔,𝑡)

𝜕𝑥
 
𝑥=𝐿

= ℎ2 𝑇 𝐿, ℎ1, ℎ2, 𝜔, 𝑡 − 𝑇2        (5) 

iii) The initial temperature condition’s written :  

𝑇 𝑥, ℎ1, ℎ2, 𝜔, 0 = 𝑇𝑖              (6) 

To introduce the initial temperature, we set the variable change: 

    iTthhxTthhxT  ,,,,,,,,
~

2121 ww                  (7)  
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So the heat equation and the boundary conditions of the panel become: 

𝜕2𝑇 (𝑥,ℎ1,ℎ2,𝜔,𝑡)

𝜕𝑥 2 =
1

𝛼
.
𝜕𝑇 (𝑥,ℎ1,ℎ2,𝜔,𝑡)

𝜕𝑡
                            (8) 

iv) At the front (x= 0) : 

 .
𝜕𝑇 (𝑥,ℎ1,ℎ2,𝜔 ,𝑡)

𝜕𝑥
 
𝑥=0

= ℎ1 𝑇  0, ℎ1, ℎ2, 𝜔, 𝑡 + 𝑇𝑖 − 𝑇1          (9) 

v) On the back side(x=L) 

 −.
𝜕𝑇 (𝑥,ℎ1,ℎ2,𝜔 ,𝑡)

𝜕𝑥
 
𝑥=𝐿

= ℎ1 𝑇  𝐿, ℎ1, ℎ2, 𝜔, 𝑡 + 𝑇𝑖 − 𝑇2       (10) 

𝑇  𝑥, ℎ1, ℎ2, 𝜔, 0 = 𝑇𝑖is initial temperature condition        (11) 

The general solution of equation (8) is given by the expression below: 

𝑇  𝑥, ℎ1, ℎ2, 𝜔, 𝑡 =  𝐴 ℎ1, ℎ2, 𝜔, 𝑡 . sinh 𝛽 𝜔 . 𝑥 + 𝐵 ℎ1, ℎ2, 𝜔, 𝑡 . cosh 𝛽 𝜔 . 𝑥  . exp 𝑖𝜔𝑡    (12)   

ComponentsA(h1,h2,wt) and B(h1,h2,wt) are obtained from the boundary conditions (9) and (10). 

The density of heat flux characterizing the heat exchange between the interface of a solid and an ambient 

medium is given from FOURIER's law: 

𝜑   𝑥, ℎ1, ℎ2, 𝜔, 𝑡 = −λgrad         T  (13) 

2. Results and Discussion 

2.1. Modules of temperature, variation of the temperature and heat flux density as a function of decimal 

logarithm of the excitation pulse 

Figures 2, 3 and 4 show evolution of the temperature, its variation and the density of heat flux as a function of 

decimal logarithm excitation pulse under influence of material thickness. 

For pulses lower than 10
-4.7

rad/s, the temperature in the material is roughly the same as that external 

environment. In this zone, the material does not exchange a thermal wave with the external environment, thus 

resulting in a small variation in temperature (Figure 3) and the amount of heat per unit area. 

For pulses between 10
-4.7

rad/s and 10
-3

rad/s, we note a drastic decrease in temperature compared to that of the 

external environment corresponding to a thermal response of the material. However, the pulsations in the 

magnitude of 10
-3

rad/s lead to maximum thermal variation, resulting in an optimal heat flow. 

 
Figure 2:: Temperature as function of the decimal logarithm excitation pulse (h1=150W.m

-2
.K). 
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Figure 3: Variation temperature as function of the decimal logarithm excitation pulse (h1=150W.m

-2
.K) 

 
Figure 4: Density of heat flow as function of the  decimal logarithm excitation pulse (h1=150W.m

-2
.K). 

Figure 4, the optimum pulse is deducted from maximum temperature and presented in the table 1, corresponding 

to each thickness L of the panel. 

Table 1: Values optimal pulse the variation in temperature and heat flow for differents thicknesses of panel. 

Thickness (m) 0.048 0.045 0.042 0.039 0.037 0.035 0.033 

Excitation Pulse opt 

(rad/s) 

10
-2.82 

10
-2.89

 10
-2.99

 10
-3.01

 10
-3.07

 10
-3.12

 10
-3.14

 

max(°C) 16.418 16.25 15.921 15.381 14.901 43.414 49.932 

Density of heat 

flow(W/m²) 

73.444 57.118 44.171 33.586 21.022 11.356 3.857 

 

2.2. Modules of temperature, variation of the temperature and heat flux density as function the thermal 

exchange coefficientat the front face for different values excitation pulse 

The Figures 4, 6 and 7, we note an increase in temperature, its variation and the density of heat flow as a 

function of the heat exchange coefficient on the front face (h1) for different values excitation pulse .  

For a long period of stress, the temperature tends towards that of outside environment under its conditions. Thus 

the material stores a large amount of energy corresponding to thermal saturation. 
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We note an increase in temperature, its variation and the density of flux of as a function of the coefficient of 

heat exchange. This characterizes the heat exchange between the interface of the wall and the outside 

environment. 

 
Figure 5: Temperature rice husk as function of the heat exchange coefficient on the front face for different 

values excitation  pulse, x=0.033m 

 
Figure 6: Temperature variation rice husk as function of the heat exchange coefficient on the front face for 

different values excitation  pulse.  (L= 0.033m) 

 
Figure 7: heat density flow rice husk as function of the heat exchange coefficient on the front face for different 

excitation pulse values (L=0.033m) 
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2.3. Determination of the heat exchange coefficient on the back side h2 

Figure 7 shows a plateau for different stress periods, so the derivative of the expression of the heat flux density 

with respect to h1 is zero[19], [20] [21], by: 
𝜕𝜑 (𝑥,ℎ1,ℎ2,𝜔,𝑡)

𝜕ℎ1
= 0 (14) 

The resolution of this equation gives the following expressions h2 and h’2 of the heat exchange coefficient on 

the rear face: 

ℎ2 𝜔, 𝑙 =
𝜆

𝐿(𝜔)
.

𝑇01 (sinh  𝛽 𝜔 .𝑙 )

𝑇02−𝑇01 cosh ⁡(𝛽 𝜔 .𝑙)
 (15) 

ℎ2
′  𝜔, 𝑙 = −

𝜆

𝐿(𝜔)
.

(sinh  𝛽 𝜔 .(𝑙−𝑥 )

cosh ⁡(𝛽 𝜔 .(𝑙−𝑥))
 (16) 

FIG. 8 gives the profile of the two heat exchange coefficients on the rear face as a function of the thickness of 

the panel for different excitations pulses. 
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Figure 8: heat exchange coefficients as a function of the depth rice husk for different excitations pulses 

The abscissa of intercept point of the two curves h2 and h’2 as a function of the depth of the panel, makes it 

possible to obtain a minimum thickness leading to good thermal insulation. This thickness called the effective 

thermal insulation layer is established by other authors [22, 23, 24] while considering these coefficients as 

constant. Table 2 gives the variation of the minimum panel thickness for different pulses, as well as the heat 

exchange coefficients and the density corresponding heat flow. 

Table 2: Values of the minimumthickness and the heat exchange coefficients (h2 and h’2) for different 

excitation pulses 

Excitation Pulses (rad/s) 10
-4.5

 10
-4.2

 10
-4

 10
-3.8

 10
-3.6

 

Hmin(cm) 0.0231 0.0232 0.0233 0.0235 0.0242 

h2(W.m
-2

K
-1

) 0.9237 1.8413 2.8948 4.4661 6.7136 

h’2(W.m
-2

K
-1

) 0.6158 1.2275 1.9298 2.9774 4.4757 

Figure 9 shows the representation of the minimum thickness of the panel as a function of the excitation 

frequency. The best fitof Hmin curve as a function of excitation pulse is given by equation 17. 
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Figure 9: Minimum thickness as a function of the excitation pulse 

𝐻 𝑐𝑚 = 𝑎𝜔2 + 𝑏𝜔 + 𝑐 (17) 

𝑎 = 17539 𝑐𝑚𝑠2/𝑟𝑎𝑑2 

𝑏 = −0.1023𝑐𝑚. 𝑠/𝑟𝑎𝑑 

𝑐 = 0.0231𝑐𝑚 

The use of the equation makes it possible to determine the required thickness of material for the development of 

a panel, for good thermal insulation. This study thus allows a saving of material which certainly leads to a 

reduction in the costs of producing thermal insulation devices, while taking into account the external solicitation 

frequency. 

 

3. Conclusion 

In this work, a method for determining the minimum thickness of the panel as a function of excitation pulse of 

external stresses is proposed from the study of theoretical expressions of the heat exchange coefficients on the 

rear face. The minimum thickness of the panel for good thermal insulation is modeled by a mathematical 

relationship highlighting the impact of the excitation frequency. 
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