Journal of Scientific and Engineering Research, 2020, 7(4):85-90

Research Article

ISSN: 2394-2630 CODEN(USA): JSERBR

Determination of Radon-222 Levels and Hazards in Air Samples, Quarriers Cement Factories in River Nile State, Sudan

Mohamed. A.H. Dahab¹, A.E. Elfaki², A.S. Alhag³, Mohammed. H. Albashir⁴

¹Planning Department, General Administration of Civil Defense, P.O. Box 5440, Khartoum, Sudan
²Department of Physics, College of Sciences, Sudan University of science & Technology, Khartoum, Sudan
³Nuclear Physics and Chemistry Institute, Atomic Energy Commission, P.O. Box 3001, Khartoum, Sudan
⁴Department of Physics, College of Education Nile Vally University, P.O. Box1843, Atbara, Sudan

Abstract The most portion of the contributed background radiation dose is due to natural radionuclides such as ²²⁶Ra and ²²²Rn. Radon (²²²Rn) a member of ²³⁸U decay chain, having no odorcolorless, weightier than air and is the daughter of radionuclide of ²²⁶Ra. It is a natural radioactive noble gas with a half-life of 3.82 days which can enter the human body through drinking water or by inhalation [1]. The alpha ray emitted from ²²²Rn and it's daughters (²¹⁸Po and ²¹⁴Po) in the long term can damage the DNA of lung cells and cause lung cancer [2]. During the day all humans are exposed to ²²²Rn in the air atmosphere [3], so The World Health Organization [4] has approved the direct relation between lung cancer increasing and the concentration of ²²²Rn in the indoor air [5].

EPA has announced deaths from indoor air of ²²²Rn approximately 21,000 people a year, which is 10 times as many deaths from air pollution [4,6]. WHO and EPA have been proposed guidelines and standard limits are equal to 148 Bq/m³ and 100 Bq/m³, for ²²²Rn in indoor air, respectively [6]. The global mean of ²²²Rn concentration in the air of both sites indoor and outdoor is 48 Bq/m³ and 15 Bq/m³, respectively [7]. UNSCEAR stated that the effective dose from natural radiation 2.5 mSv/y that 1 mSv/y is due to ²²²Rn in the air [8]. Committee on Radiation Protection (ICRP) expressed the maximum effective dose from inhalation of ²²²Rn for ordinary people 1 mSv/y [9]. More than 50 percent of the annual effective dose by individuals due to ²²²Rn is (1.3 mSv/y) [10].

Keywords Radon concentration, Indoor air, Effective dose, Lung cancer risk

Introduction

The most portion of the contributed background radiation dose is due to natural radionuclides such as ²²⁶Ra and ²²²Rn. Radon (²²²Rn) a member of ²³⁸U decay chain, having no odorcolorless, weightier than air and is the daughter of radionuclide of ²²⁶Ra. It is a natural radioactive noble gas with a half-life of 3.82 days which can enter the human body through drinking water or by inhalation [1]. The alpha ray emitted from ²²²Rn and it's daughters (²¹⁸Po and ²¹⁴Po) in the long term can damage the DNA of lung cells and cause lung cancer [2]. During the day all humans are exposed to ²²²Rn in the air atmosphere [3], so The World Health Organization [4] has approved the direct relation between lung cancer increasing and the concentration of ²²²Rn in the indoor air [5].

EPA has announced deaths from indoor air of ²²²Rn approximately 21,000 people a year, which is 10 times as many deaths from air pollution [4,6]. WHO and EPA have been proposed guidelines and standard limits are equal to 148 Bq/m³ and 100 Bq/m³, for ²²²Rn in indoor air, respectively [6]. The global mean of ²²²Rn concentration in the air of both sites indoor and outdoor is 48 Bq/m³ and 15 Bq/m³, respectively [7]. UNSCEAR stated that the effective dose from natural radiation 2.5 mSv/y that 1 mSv/y is due to ²²²Rn in the air [8].

Committee on Radiation Protection (ICRP) expressed the maximum effective dose from inhalation of 222 Rn for ordinary people 1 mSv/y [9]. More than 50 percent of the annual effective dose by individuals due to 222 Rn is (1.3 mSv/y) [10].

Materials and Methods

Area of study

River Nile State locate in Northern Sudan with a population of over 1.4 million. The study area of study located at a distance of 310 km from Khartoum city the capital of Sudan. River Nile State is rich in raw materials that can be used for cement industry, so many cement factories have been established there. The area locates at the geographic coordinates 33°77'88" E and 17° 70'6" N (Figure 1) [11].

²²²Rn concentration measurement

First, a reference measurement area was selected and the radon gas volume ²²²Rn was measured in a number of quarries equipped to take cement ore. ²²²Rn air concentration was measured using portable device Radon Scout Plus meters device GmbH which made by SARAD company in Germany (Figure 2).

The sensitivity of this device is 1.8 counts/ min× KBq/m³ (independent on the humidity) and response time 120 minutes to 95% of the final value [12]. High sensitivity with alpha spectrometry analysis, leads to a short response time even at low concentrations. According to the measuring instructions provided by SARAD company, for continuousmeasurement; more than 3hours; the device should be placed in slow mode to increase the accuracy[13], Measurement of ²²²Rn concentration was done in five quarries of cement.

Due to the measurement of ²²²Rn concentration in indoor air guidelines, measuring was designed for 24 consecutive hours of each quarry (recommended by the EPA). After completion of the measurement of ²²²Rn concentration in indoor air, and outdoor air sites, also the concentration of ²²²Rn was carried out for 3 hours (background) near the entrance of quarries. In sum, the 50 measurements of ²²²Rn were done in indoor air of quarries.

Calculation effective dose and risk of lung cancer

Estimation of annual effective dose by the indoor air 222 Rn (E_{Rn}) was conducted by UNSCEAR equation;

 $E_{Rn} (mSv / y) = C_{Rn} x \ 0.4 x \ 7000 x \ 9 x \ 10^{-6}$ (1) In this equation, geometric mean concentrations of indoor air ²²²Rn (Bq/m³), 0.4 is equilibrium factor of decay products of ²²²Rn, 7000 (h/y) is equal to 80% of the year (the settlement) and 9 is (nSv/Bq.m³.h) feed conversion ratio of ²²²Rn concentration to annual effective dose and 10-6 conversion ratio of nano Sv/mSv [14]. To calculate the probability of lung cancer cases per million people (CPPP) by effective dose from ²²²Rn, equation (2) was used [15].

 $CPPP = E_{Rn} \times 18 \times 10^{-6} \text{ mSv}^{-1}.\text{y}$

(2)

Results and Discussion

The mean and the annual range of ²²²Rn concentration in indoor air of all cement quarries are (25.64 ±4.4) Bq/m³. The range concentrations of background air of ²²²Rn are (12±2) Bq/m³. The highest and lowest concentrations of ²²²Rn in the indoor air of all cement quarries are No.35 (9± 1.5 Bq/m³) and No. 49 (188 ± 31) Bq/m³, respectively (Table 1).

The mean concentration of ²²²Rn indoor air relative to WHO and EPA standards are 25.6% and 38.5 %, respectively (Figure 1). Like the River Nile State area, the concentration of ²²²Rn indoor air of all cement quarries is less than the WHO guideline and EPA standard limits.

The annual mean effective dose of 222 Rn in all cement quarries River Nile State are (0.66 ±0.11) mS/y. Effective dose by residents of River Nile State is less than standard ICRP (1mSv/y) [16,17].

Nile State, Sudan											
No	²²² Rn	Effective dose	Lung	No	²²² Rn	Effective	Lung				
	concentration	(mSv/y)	cancer risk		concentration	dose	cancer risk				
	(Bq/m ³)				(Bq/m ³)	(mSv/y)					
1	28 ± 4.8	0.70 ± 0.12	12.6 ± 2.2	26	35 ±5.9	0.88 ± 0.15	15.8 ± 2.7				
2	20 ± 3.4	0.50 ± 0.08	9 ± 1.4	27	59 ± 1.0	1.49 ± 0.25	26.8 ± 4.5				
3	15 ±2.6	0.38 ± 0.06	6.8 ± 1.1	28	18 ±3.0	0.45 ± 0.07	8.1 ±1.3				
4	23 ±3.9	0.58 ± 0.10	10.4 ± 1.8	29	37 ±6.3	0.93 ± 0.16	16.7 ± 2.9				
5	18 ± 3.0	0.45 ± 0.07	8.1 ±1.3	30	21 ±3.6	0.53 ± 0.09	9.5 ±1.6				
6	21 ±3.6	0.53 ± 0.09	9.5 ± 1.6	31	26 ±4.4	0.66 ± 0.12	11.9 ± 2.2				
7	24 ± 4.0	0.60 ± 0.10	10.8 ± 1.8	32	21 ±3.6	0.53 ± 0.09	9.5 ±1.6				
8	15 ±2.6	0.38 ± 0.06	6.8 ± 1.1	33	26 ±4.4	0.66 ± 0.12	11.9 ± 2.2				
9	20 ± 3.4	0.50 ± 0.08	9 ± 1.4	34	23 ±3.9	0.58 ± 0.10	10.4 ± 1.8				
10	12 ± 2.0	0.30 ± 0.05	5.4 ±0.9	35	9 ±1.53	0.23 ± 0.04	4.14 ± 0.72				
11	12 ± 2.0	0.30 ± 0.05	5.4 ±0.9	36	20 ± 3.4	0.50 ± 0.08	9 ± 1.4				
12	21 ±3.6	0.53 ± 0.09	9.5 ±1.6	37	29 ±4.9	0.73 ± 0.11	13. ±2.0				
13	28 ± 4.7	0.70 ± 0.12	12.6 ± 2.2	38	20 ± 3.4	0.50 ± 0.08	9 ± 1.4				
14	36 ±6.1	0.91 ± 0.15	16.3 ± 2.7	39	23 ±3.9	0.58 ± 0.10	$10. \pm 1.8$				
15	29 ±4.9	0.73 ± 0.12	13.1 ± 2.2	40	15 ±2.6	0.38 ± 0.06	6.8 ± 1.1				
16	38 ±6.5	0.96 ± 0.16	17.3 ± 2.9	41	18 ±3.0	0.45 ± 0.07	8.1 ± 1.3				
17	18 ± 3.0	0.45 ± 0.07	8.1 ±1.3	42	26 ±4.4	0.66 ± 0.12	11.9 ± 2.2				
18	15 ± 2.6	0.38 ± 0.06	6.8 ± 1.1	43	38 ± 6.5	0.96 ± 0.16	17.3 ± 2.9				
19	32 ± 5.4	0.81 ± 0.14	14.6 ± 2.5	44	15 ±2.6	0.38 ± 0.06	6.8 ± 1.1				
20	32 ± 5.4	0.81 ± 0.14	14.6 ± 2.5	45	12 ± 2.0	0.30 ± 0.05	5.4 ±0.9				
21	20 ± 3.4	0.50 ± 0.08	9 ± 1.4	46	15 ±2.6	0.38 ± 0.06	6.8 ± 1.1				
22	12 ± 2.0	0.30 ± 0.05	5.4 ±0.9	47	15 ±2.6	0.38 ± 0.06	6.8 ± 1.1				
23	29 ± 4.9	0.73 ± 0.11	13.1 ± 2.0	48	26 ± 4.4	0.66 ± 0.11	11.9 ± 2.2				
24	26 ± 4.4	0.66 ± 0.12	11.9 ± 2.2	49	188 ± 31.9	4.74 ± 0.80	85.32 ± 14.4				
25	26 ± 4.4	0.66 ± 0.12	11.9 ± 2.2	50	12 ± 2.0	$0.30\pm\!\!0.05$	5.4 ±0.9				
				Min	9 ±1.53	0.23 ± 0.04	4.14 ± 0.72				
				Max	188 ±31.9	4.74 ± 0.80	85.32 ±14.4				
				Mean	25.64 ± 4.4	0.66 ±0.11	11.7 ± 1.98				

Table 1:	²²² Rn concentrations	(Mean±SD) Bq/m	³ of indoor air	r samples of	quarries ceme	nt factories R	River
----------	----------------------------------	----------------	----------------------------	--------------	---------------	----------------	-------

The mean and annual ranges concentration of ²²²Rn indoor air of quarries cement factories is 25.64 ± 4.4 Bq/m³. Also, the mean and range of annual background air of ²²²Rn is 12 ± 2 Bq/m³. The highest and lowest concentrations of ²²²Rn indoor air of the No.49 are (188 ±31.9Bq/m³) and 35 (9 ±1.53Bq/m³) (Table 1).

Figure 1: Map Quarries cement factories River Nile State, Sudan

Journal of Scientific and Engineering Research

Figure 2: A portable device Radon Scout Plus meters

Figure 3: Comparison of ²²²Rn indoor concentration in cement quarriers, background and mean concentration

Figure 4: Comparison between the mean concentration of ²²²Rn, WHO standard and EPA standards in cement quarriers

Conclusions

Since the statistical analysis didn't show any significant difference between the background concentrations of ²²²Rn of all cement quarriers.Based on the UNSCEAR guidelines for annual doses of ionizing radiation by source, the recommended upper threshold effective dose of total radon and their progenies is 1 mSv/y, with a typical range of observed doses up to 0.66 ± 0.11 mSv/y. The mean risk of lung cancer in the cement quarriers is 11.7 \pm 1.98 which is much lower than the standard ICRP (170-230 lung cancer).

Acknowledgment

The authors are appreciative to the Department of Physics, College of Education Nile Vally University and all cement factories in river nile state for providing facilities to conduct and complete this study.

Reference

- [1]. Fonollosa E, Penalver A, Borrull A, Aguilar CJ (2016) Radon in spring waters in the south of Catalonia. Environ. Radio, 151: 275-281.
- [2]. Kávási, N., Somlai, J., Szeiler, G., Szabó, B., Schafer, I., Kovács, T. 2010. Estimation of effective doses to cavers based on radon measurements carried out in seven caves of the Bakony Mountains in Hungary. Radiat. Measurements, 45: 1068–1071.
- [3]. Radiation, U.N.S.C.O.T.E.O.A., Assembly, U.N.G., 1982. Ionizing radiation: sources and biological effects: 1982 report to the General Assembly, with annexes, United Nations.
- [4]. WHO, 2009. WHO handbook on indoor radon: a public health perspective. World Health Organization, Geneva.
- [5]. Torres-Durán, M., Barros-Dios, J.M., Fernández-, A., Ruano-Ravina, V.A. 2014. Residential radon and lung cancer in never smokers. A systematic review. Cancer Lett. J. Environ. Radioactivity, 345: 21–26.
- [6]. Environmental Protection Agency, EPA Indoor Radon and Radon Decay Product Measurement Device Protocols. http://www.epa.gov/ radon/ pubs/devprot3.htm

- [7]. FARID, S.M. 2012. A study on the radon concentrations in tobacco in Jeddah (Saudi Arabia) and the associated health effects. Med. J. Islamic World Acad. Sci., 20: 84-93.
- [8]. United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), 2000. Sources and Effects of Ionizing Radiation; United Nations Scientific Committee on the Effects of Atomic Radiation, USA.
- [9]. Protection, I.C.O.R., 1994. Age-dependent doses to members of the public from intake of radionuclides: part 2 ingestion dose coefficients: a report of a task group of Committee 2 the International commission on radiological protection. Elsevier Health Sciences.
- [10]. Magill, J., Galy, J. 2005. Radioactivity Radionuclides Radiation, 1 ed. Springer, Berlin Heidelberg New YorK.
- [11]. "Sudan geography". Institute for Security Studies. 12 January 2005. Archived from the original on 13 May 2011.
- [12]. https://www.sarad.de/cms/media/docs/handbuch/Manual_Radon-Scout_EN_24-03-17.pdf.
- [13]. https://www.sarad.de/cms/media/docs/handbuch/Manual_RadonVision6_EN_16-10-2015.pdf.
- [14]. United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), 2000. Sources and Effects of Ionizing Radiation; United Nations Scientific Committee on the Effects of Atomic Radiation, USA.
- [15]. Ismail, A.H., Jaafar, M.S. 2010. Indoor radon concentration and its health risks in selected locations in Iraqi Kurdistan using CR-39 NTDs, Bioinformatics and Biomedical Engineering (iCBBE), 2010 4th International Conference on. IEEE, Pp. 1–8.
- [16]. Protection, I.C.O.R., 1994. Age-dependent doses to members of the public from intake of radionuclides: part 2 ingestion dose coefficients: a report of a task group of Committee 2 the International commission on radiological protection. Elsevier Health Sciences.
- [17]. ICRP, 1994. ICRP Publication 66: Human Respiratory Tract Model for Radiological Protection. Elsevier Health Sciences. Hassan, V., Arash, R., Mehdi, J., Ahmad, R., Ali, H.-B.A., Wali, Y.A., Ali, D., AbdulRasool, M., Abbas, P. 2011. Demonstration of malaria situation analysis, stratification, and planning in Minab District, southern Iran. Asian Pacific J. Trop. Med., 4: 67–71.