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Abstract: In the current the environment, each and every one of us is dependent on web applications. Every 

single day, the number of people who utilise online applications continues to increase. Databases are utilised by 

the majority of organisations in order to save information regarding their users or any details regarding the 

services that they offer. Database communication is a common application of Structured Query Language 

(SQL). In a SQL Injection attack, the hacker obtains access to the database by inserting malicious SQL 

statements into the database. Database security is at risk from SQL injection attacks because they can alter 

database values, erase the database entirely, or steal database content. SQL injection is a method by which 

malicious actors can get unauthorised access to database information. Web applications leave themselves open 

to SQL injection attacks if they don't validate or filter user input. We use machine learning techniques including 

Convolution Neural Network, Decision Tree, naive Bayes, Gradient Boosting, and Support Vector Machine to 

look for problems with SQL injection. 
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Introduction 

With the advent of new Internet technologies, the quantity of data pertaining to networks has increased 

exponentially. While online applications do improve our quality of life, they also pose serious risks to the safety 

of our Internet infrastructure. By the year's end, Qihoo 360 had checked the safety of 1,979,060,000 Chinese 

websites. These testing found that 46.3% of web apps had security issues. At the highest proportion, SQL 

injection attack (SQLIA) and cross-site scripting attack (XSS) were the vulnerabilities.  

Unfortunately, SQL injection attacks are all too widespread, making them an important security concern for any 

network. Attacks against Sony's Play Station Network in April 2011 utilised SQL injection. Pranksters gained 

unauthorised access to twelve million credit cards and seventy-seven million accounts. The exposure of personal 

information such Sony customers' usernames, passwords, addresses, and credit card transaction details cost the 

company up to $170 million USD in indirect damages. In February of 2017, a hacker from Russia going by the 

name of "Rasputin" managed to breach the system and get extensive access to the database server by taking 

advantage of SQL injection flaws. A substantial amount of sensitive information was stolen from over twenty 

organisations and government entities in the US and UK [1].  

For all intents and purposes, SQL injection attacks are possible on any system that relies on a database to power 

a web application. In spite of this, it is challenging for the present Web application firewall (WAF) to cover all 

SQL injection attack variations due to its reliance on feature matching algorithms (rule base). This occurs 

because SQL injection attacks are quite similar to regular user access to the system. Submitting Web forms, 

query strings, or page requests is all that is needed to achieve this. Even more so, it's less obvious. Hence, no 

one solution can stop or detect every kind of SQL injection attack. Experts in the field have recently begun 

exploring ways to apply AI techniques to provide more intricate answers.  
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Web attacks like SQL Injection have been around for a long time, but they're still a major problem and a major 

drain on government and corporate budgets [2]. This is particularly the case when considering that not only have 

some attacks changed and progressed through time, but new attack pathways are constantly being found.  

The mitigation of web assaults is a topic that receives a significant amount of attention and resources from both 

industry and security firms. However, many of the currently available mitigation solutions have limits that are 

being continuously worked to overcome by current research.  

Static analysis of incoming online traffic, or signature detection, has been the mainstay of previous web assault 

protection methods. Assembling a signature indicative of the online assault is necessary for this method. When 

this signature is identified, firewalls or other security appliances can block the malicious traffic. This approach 

has the potential to protect network resources in real time and is fast, which is a major plus. However, this 

approach has the drawback of just being able to identify known threats.  

Another way to protect against web attacks that target SQL injection is to pay attention to the format of 

incoming SQL queries. The discovery of an incorrect query is known as a SQL injection attack. Protecting 

against web attacks is another use of this strategy. The method's reliance on familiarity with the programme and 

the form of "normal" queries is one of its major limitations. But it finds new attacks, such as malformed queries, 

and has good detection results overall. Using machine learning techniques is a newly investigated SQL injection 

detection solution. Investigations into this tactic are ongoing. The most common methods used in this area 

include neural networks, decision trees, rule-based learning, and support vector machines (SVM).  

It is possible to identify new assaults using these methods, which is one of the most significant advantages of 

using them. However, depending on the algorithm that is utilised, there is a possibility that the processing time 

will be lengthened, which is a potential disadvantage of these strategies.  

In order to conduct research into SQL detection techniques, including those stated, it is necessary to have access 

to high-quality data. The web application's or server's logs of online traffic is used in most modern studies [3]. 

Our proposed method aggregates data from two sources: the web application's incoming traffic and the data sent 

between the web app and the database server housed on the same network node as a Datiphy device. We are 

starting by utilising the traffic data obtained at these two locations to build our databases. Afterwards, we create 

a third dataset by comparing and contrasting the occurrences in the datasets derived from the two data points.  

 

Literature Review 

Machine Learning  

The term "machine learning" refers to a method that is used to automatically identify patterns in data. The web 

application's or server's logs of online traffic is used in most modern studies [3]. Our proposed method 

aggregates data from two sources: the web application's incoming traffic and the data sent between the web app 

and the database server housed on the same network node as a Datiphy device. We are starting by utilising the 

traffic data obtained at these two locations to build our databases. Afterwards, we create a third dataset by 

comparing and contrasting the occurrences in the datasets derived from the two data points.  Researchers are 

currently employing a wide variety of machine learning algorithms in their work. Naive Bayes and Bayes Net 

are two strategies that are being utilised by the authors in [4] in order to create probability models for the 

purpose of traffic classification. utilising a decision tree technique, the authors of [5] are analysing their results 

in terms of performance characteristics. Additionally, they are utilising a decision tree technique. The usage of 

neural networks, which will be addressed further below, is another prevalent technique in the world of current 

IDS research. Decision Tree Algorithms. An example of a classification algorithm is a decision tree algorithm, 

which uses the dataset's feature values to build a predictive model. At each step, the algorithm chooses a feature 

that partitions the dataset in a way that maximises information gain [6]. Data record class homogeneity or purity, 

as measured by information gain, is the degree to which each feature can predict the class of the data record. By 

iteratively exploring the dataset's properties and selecting the one with the greatest information gain and 

coverage, decision tree algorithms essentially reward prediction conclusions with more records. Here, the 

authors are using a novel decision tree technique and evaluating the results using performance measures. Their 

precision when dealing with SQL injection data is between 86% and 87%. 
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Rules-based Algorithms. Similar to decision tree algorithms, rule-based algorithms iteratively select dataset 

attributes that best predict the class label. A set of classification rules of the form Condition → Class is the result 

of rule-based algorithms, as shown in [7]: 

 
Coverage and accuracy are the two main metrics used to assess these rules. In a dataset, coverage refers to the 

proportion of examples that fall under the rules' purview, while accuracy measures the proportion of instances 

that are part of the projected class relative to the total number of instances covered by the rule. In terms of 

performance, rule-based classifiers are usually on par with decision tree algorithms, but they are also known for 

being exceptionally easy to understand [8]. Support Vector Machine Algorithms. A statistical method for 

classification, Support Vector Machine (SVM) algorithms perform admirably on datasets with a large number of 

dimensions. Support vector machines (SVMs) use examples from training data called support vectors to try to 

draw a line across classes. Discovering the maximum hyper-plane spacing between instances of each class 

accomplishes this. When it comes to discovering globally optimal solutions, support vector machines (SVMs) 

are seen to be superior to rule-based and neural network approaches. Using a support vector machine (SVM) 

classifier, the authors of [10] try out several centrality metrics. In contrast to the text-based SVM classifier we're 

employing in this study, the authors in [11] use an n-gram based analysis. The authors find that support vector 

machine (SVM) outperforms a kNN (K-nearest neighbour) approach. The authors conclude that SVM produces 

the greatest results when compared to kNN and Naïve-Bayes algorithms. Neural Network Algorithms. The 

original idea behind Neural Network algorithms was to create a model of the human brain's structure out of a 

web of linked nodes, with each node standing in for a neuron. Nodes at the lowest level of a network design 

receive dataset attributes as inputs and nodes at the highest level receive classification results as outputs. The 

output nodes reflect a weighted combination of the input, and the learning process modifies the weights 

according to the learning rate and classification error. A Multi-Layer Perceptron is a type of Neural Network 

that uses hidden layers of nodes between its input and output nodes. One potential drawback of Neural 

Networks is how slowly they train. "Training an ANN is a time-consuming process, especially when the number 

of hidden nodes is large." . The difficulty in interpreting results from Neural Networks is another problem that 

has recently come up in the research. This difficulty can make applications susceptible to attacks. Combining 

MultiLayer Perceptron and Support Vector Machine (SVM) approaches, the authors of [12] demonstrate an 

improvement in accuracy by comparing their results to those of other algorithms, such as J48 decision tree and 

JRip rule-based, which are mentioned below. Ensemble Techniques. "Improving classification accuracy by 

aggregating the predictions of multiple classifiers" is the goal of ensemble approach. These methods start with 

base classifiers like the ones we just discussed, and then they use a voting process based on the predictions those 

classifiers made to carry out classification. In this project, random forests were utilised, which are based on 

decision trees and serve as a classifier. Feature Selection. In order to improve performance, feature selection is 

employed to lower the data dimensionality. Here we have a method to get rid of features that aren't significant to 

categorization and features that are redundant, meaning they give information that is already available. The 

authors of Kar et al. [13] employ Weka and an information gain technique to pick features. Below, we'll go over 

both genetic search algorithms and correlated feature sets (CFS), which we're utilising in our project. 

Attack Generation 

There are mainly two approaches to collect data for SQL injection research: either by creating realistic 

simulated traffic or by capturing genuine web traffic entering an organisation or honeypot. There are benefits 

and drawbacks to both methods. Even though real-world online traffic is ideal, it's not always easy to tell which 

packets are malicious. Obtaining this kind of traffic can be challenging in and of itself because most 

organisations are wary of sharing web traffic owing to security and privacy issues. The fact that typical attack 

tools often use automated scans that would be easier to catch in a controlled lab environment is another problem 

with using a basic research honeypot. Advantages of simulated attacks include the ability to incorporate a wide 

variety of attacks based on current tactics, and the fact that they are controlled enough to distinguish between 

legitimate and malicious communications for labelling purposes. cited as [14].  
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Many resources are available to academics who want to test their suggested detection and mitigation systems by 

simulating actual attack traffic. Using the assault simulation tool Paros is recommended, as stated in [15]. 

According to Google Scholar searches, SQLMap is the most often utilised attack tool.  

It has been found that SQLMap can be used to generate malicious traffic [16]. Also covered are SQLMap and 

manually written assaults, as well as other examples. In order to produce attack traffic, many researchers use 

manually coded SQL injection assaults, like in [17], our earlier work [18], and the present study. The most 

common cause of SQL injection vulnerabilities is the practice of developers passing database SQL queries 

constructed by concatenating strings. An attacker can modify the SQL statement by introducing SQL keywords 

or special symbols.  

The execution leads to an assault on the system. The main cause is that we put too much faith in user-submitted 

data, neglect to filter it, and do not conduct reasonable server-side verification. The attackers are able to achieve 

their objectives, such as obtaining sensitive system data and taking control of the server, because of this. These 

are the broad strokes of a SQL injection attack [19], as seen in Figure 1. 

 
Fig. 1: Methodology for SQL Injection Attacks 

 

From the beginning of SQL injection until now, numerous researchers have studied the detection of SQL 

injection from various perspectives and used various methodologies. There are now primarily two types of 

approaches to SQL injection prevention. Two things can be done to ensure operational security: first, developing 

with security in mind; and second, taking extra precautions during programme operation to identify SQL 

injection threats. Pattern matching, static and dynamic analysis, sequence comparison, abstract syntax trees, and 

black box and white box testing are all part of the second method. Some researchers have found success by 

bringing in research methodologies from related areas, such as data mining, machine learning, research text 

analysis, and SQL injection detection [20]. 

 

System Design and Implementation 

This study introduces a machine learning-based methodology to identifying potentially harmful or benign 

incoming communications. The system's confidential business chat web app runs on a distant MySQL server. 

When a server generates traffic, it sends requests to the webapp server, which stores the data in one location. 

When the webapp server sends queries to the remote database, it stores the data in another area. After analysing 

and correlating the two datasets, a new dataset is created that incorporates features from both datasets. Using 5-

fold crossvalidation, we evaluate the algorithms used for machine learning within the Weka Machine Learning 

Framework for their classification accuracy and efficiency in terms of model building time and training data 

classification time.  

The whole operation of our system is depicted in Figure 2. 

 
Figure 2: System Process 
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Architecture  

Our current architecture is based on an HP server with 64 GB of RAM, two quad-core processors, and four 

KVM virtual machines.  

This network consists of four nodes: one for web applications, one for traffic generation, one for databases, and 

one for Datiphy MySQL data capture. Fig. 3 and the following text provide brief descriptions of them. 

 
Figure 3: Network Architecture 

 

Web Application Server. The webapp server is running Ubuntu/Apache, and the webspace hosts the custom 

web application. The database server is home to the MySQL backend, which is responsible for powering this 

webapp. This server is running Snort for both of our data acquisition points. 

Traffic Generation Server. It is possible to generate both legitimate and malicious traffic on this server, which 

is running the Kali Linux system. Python and shell scripts utilising the Beautiful Soup Python libraries are used 

to produce both legitimate and malicious traffic. 

Database Server. Linux Mint with MySQL is the operating system on this server. Every MySQL request for 

the webapp goes via this server because it is configured to receive database access requests from the webapp 

server's chat application. 

Datiphy MySQL Data Capture Server. Datiphy Inc. has made available for research purposes a Datiphy 

appliance virtual machine (VM) on this server. This tool is being utilised by the project since it allows for the 

visibility of SQL traffic as well as other types of database activity. The Datiphy web interface allows full 

visibility into all traffic between the webapp and the MySQL database server by routing all traffic via this 

appliance. 

Data Preprocessing  

These three steps make up our data generating process: traffic generation, capture, and preparation. Following is 

a quick discussion of them. 

Traffic Generation. As stated before, the scripts kept on the traffic generation server are what actually cause our 

project's simulated normal and malicious traffic. First, this server initiates a connection between the webapp 

server and the database server by sending HTTP POST requests to the chat webapp. This causes MySQL traffic 

to flow between the two servers. The chat web app's typical traffic consists of simulated user interactions.  
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As we'll see later on, malicious traffic fluctuates and sometimes includes SQL injection attempts that are hand-

coded. To create an environment that is statistically close to real-life online conversation, the text is created at 

random but yet has a rather realistic level of word and sentence repetition. 

Traffic Capture. The data is stored in two places: the webapp server and the Datiphy appliance. The traffic is 

being captured on the webapp server using the Snort intrusion detection system (IDS) tool. Files called PCAP 

contain the saved data. All data sent and received by the web app while interacting with the remote MySQL 

server is stored on the Datiphy appliance node. After that, a report is generated from this traffic and saved in 

CSV format using the Datiphy online interface. 

Data Pre-processing. Most data pre-processing methods are conducted on the webapp server, which is also 

where the PCAP files generated by Snort data capture are stored. We use TShark, which is a command line 

interface to Wireshark [20], to process the PCAP data. With TShark, we can get useful information out of 

webapp communication packets by analysing PCAP files.  

The output is a CSV file, which is subsequently prepared for additional processing by use of shell scripts. Shell 

scripts are used in a similar fashion to process data collected at the Datiphy appliance. The last step is to use 

shell scripts to combine the two datasets into a single file, resulting in the correlated dataset. Tokens, which take 

the shape of distinct text strings, are introduced into the dataset in order to facilitate correlation. Once events are 

shown to be associated, these tokens are removed. 

Web Application  

An enterprise chat application simulation built from scratch is the web app we're utilising in our system. It uses 

the PHP programming language and is hosted on the Apache web server. An HTML form is utilised by the 

programme, which is set up to store the simulated chat messages in a remote MySQL database backend. One 

particular place in our webapp where we intentionally left room for SQL injection is in the INSERT statement. 

 

Experiment And Results 

As shown in Table 1, we conducted trials using a variety of machine learning techniques. Model Time refers to 

the amount of time spent building the machine learning models, Testing Time to the amount of time spent 

classifying the testing dataset using 5-fold cross-validation, and Accuracy to the amount of accuracy each 

method achieves in classification. Figure 2 displays the classification accuracy, while Table 2 provides the F-

scores. 

Table 1: Results With 20000 Records 
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Table 2: F-score for 20000 Record Data 

 

 
Figure 4: Classification Accuracy 

 
Figure 5: Modeling Time 
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Figure 6: Testing Time 

Analysis  

The correlated dataset combines two datasets, thus there is more data accessible. Therefore, the results gained 

should be higher in terms of classification accuracy. This is based on my intuitive knowledge of the process. As 

previously stated, this has been the outcome of our studies thus far, with JRip utilising features from both 

datasets to generate rules. For example, the best-performing rules of the JRip algorithm take advantage of both 

the http.content_length and SQL Length datasets from the webapp and Datiphy, respectively. Results from trials 

utilising JRip and J48 algorithms on datasets containing 2000 records formed the basis of our earlier 

conclusions. Our findings which are shown in figure 4,5,6 are in line with the trend of consistently higher results 

when using the associated datasets compared to each dataset alone. Consistently better results across all 

parameters have also been achieved with larger datasets. Machine learning algorithms seem to be able to 

construct a model from the data that falls into certain categories, and their capacity to do so increases as they are 

exposed to more data, despite the fact that our attack creation is random. The SVM, Random Forest, and ANN 

algorithms have been implemented into this project and performance measurements have been reported.  

Notable among the performance metrics is the decision tree algorithm's commendable relative performance 

throughout our trials. Although decision tree algorithms are known to be resource heavy, we hypothesised that 

they would outperform other classification algorithms when the data is typically easy to categorise using a small 

number of carefully chosen features. This is how we arrived at the results of the current project. From our trials, 

we can deduce that the quicker algorithms produce results on the correlated dataset that are almost identical to 

our MultiLayer Perceptron results, but take substantially less time to execute. These trials suggest that using 

data from several sources can enhance classification results just as much, if not more so, as using techniques that 

are known to be more accurate. 

 

Conclusion and Future Work 

In the face of SQL injection attacks and other web-based attacks, the security of sensitive information, such as 

financial and health documents, remains a primary concern. As the internet becomes increasingly prevalent in 

societal activities, this issue is becoming increasingly urgent. We have proposed a system for analysing data 

from multiple sources in order to enhance the precision of SQL injection attack detection in this project. We 

have also demonstrated that a variety of algorithms, such as decision tree and rule-based algorithms, can classify 

testing data with a level of performance that is comparable to that of Neural Networks, while necessitating 

noticeably less time to construct models. Future projects include the modification of this system to identify 

additional web-based attacks. Additional items on the list include the collection of additional data, such as 

traffic that exits the web application and enters the browser, the analysis of larger datasets to determine whether 

they enhance performance, and the evaluation of additional machine learning techniques for accuracy and 

performance. 
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