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Abstract A two-dimensional model of the fractional order theory of thermoelasticity to a problem of a half-

space under a line-focused laser irradiation is presented. The model is solved for the effects of thermal diffusion 

and optical penetration. Laplace and Fourier transforms techniques are applied to derive the solution. The 

inverse of Laplace transforms and Fourier transforms are obtained numerically by using the complex inversion 

formula of the transform together with Fourier expansion techniques. The predictions of the fractional order 

theory are discussed. Numerical results for the temperature, displacement and thermal stress, strain distributions 

are represented graphically. This research is useful in the way the laser affects live tissue. 
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1. Introduction 

Wave motion can be generated by the irradiation of a solid surface by laser light, these waves called ultrasonic 

waves. There are many applications for laser-generated ultrasound in the industry, for example in non-

destructive test areas (Independent Nondestructive Testing and Evaluation), grain size of materials and 

determine elastic constants. The characteristics of laser based ultrasonic waves depend on the thermal diffusion, 

the optical penetration, the elastic properties, and the geometry of materials, as well as the finite width and 

duration of the laser source. Many physical processes occur when a solid surface is illuminated by a laser beam, 

depending on the incident power. As a high powers produce damage to the material surface making them 

unsuitable for non-destructive tests. In the case of the low powers, the source of the laser generates heat waves 

through heat conduction, and elastic waves are generated in materials such as conductors. Some scientists have 

done some research. Irene Arias and Jan D. Achenbach [1] are solved a two-dimensional theoretical model for 

the field generated in the thermoelastic regime by line-focused laser illumination of a homogeneous. Jaegwon 

Yoo, C. H. Lim and S. H. Baik [2] are disused a numerical analysis formulation of thermoelastic surface waves 

in a homogeneous isotropic elastic half-space under a line-focused laser irradiation. I. A. Veres, T. Berer, P. 

Burgholzer [3] are solved numerical modeling of thermoelastic generation of ultrasound by laser irradiation in 

the coupled thermoelasticity. Yoo, Jae-Gwon; Baik, S.H. [4] are investigated a 2D finite-element numerical 

simulation of generation of ultrasonic waves in a homogeneous isotropic elastic slab under a line-focused laser 

irradiation. F. Reverdy and B. Audoin [5] are described A noncontact laser–ultrasonic technique that allows 

determination of material properties of anisotropic plate like samples. McDonald, F. A [6] is investigated the 

precursor in laser-generated ultrasound waveforms in metals. 

Some scientists have done some research on the generalized thermoelasticity. Lord and Shulman [7] introduced 
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the theory of generalized thermoelasticity with one relaxation time. Anwar and Sherief [8] studied A Problem in 

Generalized Thermoelasticity for an Infinitely Long Annular Cylinder Composed of Two Different Materials. 

Hany Sherief and Khader. S. E. [9] solved the problem Propagation of discontinuities in electromagneto 

generalized thermoelasticity in cylindrical regions. Some contribution works that use generalized 

thermoelasticity can be found in [10-18]. 

The fractional order theory of thermoelasticity was derived by Sherief. H, El-Sayed. A and Abd El-Latief. A.M. 

[19]. It is a generalization of both the coupled and the generalized theories of thermoelasticity. Sherief and Abd 

El Latief [20, 21] have solved a spherical cavity and 1D problems for a half space in this theory. Abd El-Latief. 

A. M. and Khader. S. E [22] they are applied the fractional order theory of thermoelasticity to a 1D problem for 

a half-space overlaid by a thick layer of a different material. S. Santra, N. C. Das, R. Kumar, and A. Lahiri [23] 

are solved Three-dimensional fractional order generalized thermoelastic problem under the effect of rotation in a 

half space. Z. Wang, D. Liu, Q. Wang, and J. Z. Zhou [24] are discussed the fractional order theory of 

thermoelasticity for elastic medium with variable material properties. . Some contribution works that use 

fractional calculus can be found in [25-30]. 

 

2. Formulation of the Problem 

Consider a homogeneous isotropic thermoelastic solid occupying the half-space. The z-axis is taken 

perpendicular to the bounding plane pointing inward. From time; the medium is irradiated by a laser pulse 

depositing heat on its front surface.  

The displacement vector u has the form 
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The cubical dilatation e is given by 
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The components of the thermoelastic stress tensor   are given by 
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where λ and μ are Lamé’s modulii, T is the absolute temperature of the medium, and γ is a material constant 

given by  γ = (3λ + 2μ)αt where αt is the coefficient of linear thermal expansion, T0 is a reference temperature 

assumed to be such that │( T-T0 ) / T0 │<<1. 

The equations of motion have the vector form 
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The equation of heat conduction has the form [16] 
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where k is the thermal conductivity of the medium, cE is the specific heat at constant and ρ is the density. And ρ 

are two parameters of the theory. Q is the heat source due to the laser irradiation. 
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A suitable expression for the heat deposition over the irradiation zone of the laser pulse is  
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Where E is the energy of the laser pulse per unit length, R is the surface reflectivity, RG is the Gaussian beam 

radius,  is the pulse duration time of the laser beam (full width at half maximum), and  is the extinction 

coefficient. 

 

3. Solution of the Problem in the Laplace Transform Domain 

Let us introduce the following non-dimension variables 
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The governing equations (2) - (6) in non-dimensional form become (dropping the asterisks for convenience) 
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Applying Laplace transform with respect to variable t for equations (7)-(11), we obtain: 
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Taking the divergence for both side of equation (13), we obtain 

 ese 222   . (17) 

Eliminating e  between equations (16) and (17), we get 
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In a similar manner we can show that e  satisfy the equations 
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In order to solve equations (18) and (19), we shall use the exponential Fourier transform with respect to the 

variable x (denoted by an asterisk), the solutions of equations (18) and (19) are in the form: 
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Appling the exponential Fourier transform to equation (15) to get the displacement components of u  as follows: 
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Substituting from equations (20) and (21) into equation (22), we obtain  
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The solution of equation (23) is given by 
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Taking the Laplace and exponential Fourier transforms of equation (1), and using equations (21), (24), we get 
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Substituting from equations (20), (21), (24) and (25) into equations (12), we obtain the stress components in the 

form 



Esmail S et al                                                Journal of Scientific and Engineering Research, 2020, 7(4):20-29 

 

Journal of Scientific and Engineering Research 

24 

 

 
  

*

2
2

22
1

2

222

1

22*
2 Q

mm

nq
eAqneCn

zm
i

i

nz
zz

i










 


  (28) 

  
   

*

222
2

22
1

2

22222222

1

22
* 2)(

2 Q
nmmiq

nqq
eAiqmeC

iq

qn zm
ii

i

nz
xz

i


















 






 



  (29) 

The constants A1, A2 and C will be obtained from the initial and boundary conditions. 

   

4. Initial and boundary conditions  

The initial conditions are that the half-space are rest and the boundary conditions include the mechanical and 

thermal conditions. We apply the initial and boundary conditions according to each case as follows: 

 

First case  

In this case, we assume the pulse energy is not completely absorbed at the surface and heat is flow into the half-

space, the boundary conditions are: 
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The solutions in this case are represented by equations (20), (28) and (29) 

Second case 

In this case, we assume the pulse energy is completely absorbed at the surface, no optical penetration 0 , 

we can set 1
0
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 , and heat is flow into the half-space, the boundary conditions are: 
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 The solutions of this case are in the form: 
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Where )()()1( **
sGqFREQ   

 

Third case 

In this case, we assume the pulse energy is completely absorbed at the surface. And the heat that is generated by 

the laser is deposited the half-space just under the surface, the boundary conditions are: 



Esmail S et al                                                Journal of Scientific and Engineering Research, 2020, 7(4):20-29 

 

Journal of Scientific and Engineering Research 

25 

 

0

0

0

**

*













zatdz

d

xzzz 


 

The solutions of this case are given by equations (30-34) 

The formula of inversion of the double transforms, who’s presented in [13] 

 

5. Numerical Results 

For fixed values of z, t and α, the linear system are solved numerically for the unknowns A1, A2 and C, and the 

results are substituted to obtain the values of functions θ, uz and σzz. And we shall apply our results to the 

aluminum alloy. The material properties are  
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The problem was solved for three values of fractional parameter α = 0.99, α = 0.9 and α = 0.01 with fixed time t 

= 0.1. The graphs for the temperature, displacement and stress, for case 1 are shown in figure (1) – figure (3), 

for case 2 are shown in figure (4) – figure (6) and for case 3 are shown in figure (7) – figure (9). Black lines 

represent the solution for α = 0.01, red lines represent the solution for α = 0.9 and blue lines represent the 

solution when α = 1. 

 
Figure 1: Temperature Distribution  

 

 
Figure 2: Displacement Distribution 
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Figure 3: Stresses Distribution 

 
Figure 4: Temperature Distribution 

 
Figure 5: Displacement Distribution 

 
Figure 6: Stresses Distribution 

Fig. 3 Stresses Distribution
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Figure 7: Temperature Distribution 

 
Figure 8: Displacement Distribution 

 
Figure 9: Stresses Distribution 

In the first case, the pulse energy is not completely absorbed at the surface and heat is flow into the half-space 

From figures (1-3), we draw the figures with different values of fractional parameter, when, the equation of heat 

conduction becomes parabolic, it is predicted an infinite heat propagation speed, representing the dotted line. 

When, the equation of heat conduction becomes hyperbolic, it is predicted a finite heat propagation speed, 

representing the solid line. 

In the second case, the pulse energy is completely absorbed at the surface and heat is flow into the half-space. 

From all the graphs we find that the behavior of all functions are the same the functions in the first case, we find 

that the function has a little effects, and the surface is completely absorbed the pulse energy. 

In the third case, the pulse energy is completely absorbed at the surface. And the heat that is generated by the 

laser is deposited the half-space just under the surface. From all the graphs and compeer with [6], there is 

agreement in the results for all functions, where the solution has non-zero value only in the interval, i.e. the heat 

which is generated by the laser is deposited the half-space just under the surface. 
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6. Conclusions 

A two-dimensional fractional order generalized thermoelastic problem for a half-space by a Line-Focused Laser 

Irradiation has been solved. The problem has been solved by using Laplace and Fourier transform techniques. 

The inversion process is carried out using a numerical method based on Fourier series expansions. The problem 

takes the effect of fractional parameter, the thermal diffusion and optical penetration.  

The effect of fractional parameter has appeared when fractional parameter tends to zero, the curve has 

elongated, but when fractional parameter tends to one, the curve has shrunk. The effect of optical penetration is 

very small which Leeds to the pulse energy is completely absorbed at the surface.  The effect of thermal 

diffusion has been studied on the surface of an aluminum half-space. This effect is noticeable near the hot area 

but in the remote area does not appeared as expected physically. The thermal diffusion is neglected in the case 

three. 

This research is useful in laser surgery and laser teeth whitening. Surgical laser systems differ not only because 

of the wavelength, but also because of the light conduction system: the elastic fibers or the articulated arm, as 

well as other factors. It varies depending on how the laser affects live tissue and we recognize thermal, 

chemical, and electromechanical effects. 
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