
Available online www.jsaer.com

Journal of Scientific and Engineering Research

288

Journal of Scientific and Engineering Research, 2020, 7(3):288-294

Research Article

ISSN: 2394-2630

CODEN(USA): JSERBR

Lightweight Storage: Performance Divide between CoreData,

Realm and GRDB

Amit Gupta

San Jose, CA
Email ID: gupta25@gmail.com

Abstract In the realm of Apple’s application development, choosing the right database management system is

pivotal for achieving optimal performance and efficiency. This paper undertakes a thorough comparative

analysis of three prominent options: CoreData, Realm, and GRDB. The evaluation centers on crucial

performance metrics encompassing write, read, delete, and schema creation capabilities. Drawing from a blend

of existing research, empirical tests, and benchmark data, the analysis aims to furnish a comprehensive

understanding of each system's strengths and weaknesses. By shedding light on the nuanced performance

attributes of these databases, developers can make informed decisions tailored to their specific project

requirements and constraints.

Keywords Mobile Applications, Apple Applications, Database, CoreData, Realm, GRDB, Performance,

Performance Comparison, Benchmarking, Performance analysis, Performance evaluation, Storage performance

Introduction

Selecting the appropriate database management system holds paramount importance in shaping the performance

and responsiveness of applications within Apple's ecosystem. CoreData, Realm, and GRDB stand as pillars of

choice among developers, each boasting distinct features and performance attributes tailored to diverse

application needs. Recognizing the pivotal role these systems play, this paper endeavors to furnish an intricate

comparison, delving deep into the nuances of CoreData, Realm, and GRDB. By unraveling their respective

strengths and weaknesses, this analysis seeks to empower developers with the insights necessary to navigate the

complex landscape of database selection, enabling them to make well-informed decisions aligned with their

project requirements and objectives.

Methodology

The methodology employed in this study amalgamates insights garnered from an extensive literature review

alongside rigorous empirical benchmarking endeavors. The benchmarks were meticulously conducted utilizing

datasets of comparable nature and uniform hardware configurations meticulously selected to maintain a

steadfast adherence to consistency throughout the evaluation process. An array of key performance metrics

underwent meticulous assessment, encompassing a comprehensive analysis of schema creation, write, fetch,

update, and delete operations, thus ensuring a holistic and robust examination of the database management

systems under scrutiny.

Literature Review

Several studies and benchmark tests have been conducted to evaluate the performance of CoreData, Realm, and

GRDB. According to a study by Smith et al. (2019), Realm outperforms CoreData in terms of write and read

operations due to its optimized storage engine and efficient data structures. Similarly, a benchmark by Johnson

mailto:gupta25@gmail.com

Gupta A Journal of Scientific and Engineering Research, 2024, 11(5):1-6

Journal of Scientific and Engineering Research

289

(2020) indicates that GRDB provides superior performance in fetch operations due to its lightweight nature and

direct use of SQLite.

Performance Metrics

A. Model

struct {

 var id : UUID

 var firstName: String

 var lastName: String

 var age: Int

}

B. Hardware Configuration
[1]. Memory: 8 GB 1600 MHz DDR3

[2]. CPU: 2.6 GHz Dual-Core Intel Core i5

[3]. Mac Mini (2014 Model)

C. Experimental Setup

A controlled environment was established to evaluate the performance of CoreData, Realm, and GRDB across

various database operations. The number of objects was systematically varied for each iteration to capture the

corresponding execution time. The following procedures were strictly adhered to during the benchmarking:

[1]. Isolation of Variables:

The benchmarking tests were executed independently for each database system under identical

conditions to ensure the reliability and reproducibility of the results.

[2]. Controlled Environment:

To eliminate external influences on performance, all background applications and activities were

terminated. The benchmarking system was isolated from network activity by disconnecting the internet

connection.

[3]. Consistent Testing Platform:

The benchmarking tests were conducted exclusively within the Xcode development environment,

ensuring that no other applications interfered with the execution.

[4]. Data Generation:

A standardized model was employed to generate the specified number of objects for each iteration,

providing a consistent basis for performance measurement.

This meticulous approach ensured the integrity of the benchmarking process, allowing for an accurate

comparison of CoreData, Realm, and GRDB's performance across initialization, write, read, update, and

delete operations.

Schema Creation Performance

Figure 1: Schema Creation Performance

Gupta A Journal of Scientific and Engineering Research, 2024, 11(5):1-6

Journal of Scientific and Engineering Research

290

The graph illustrates the performance comparison of CoreData, Realm, and GRDB in terms of object

initialization time for various object counts. Here are the key points derived from the analysis:

[1]. Overall Performance

GRDB consistently shows the best performance across all object counts, with the lowest initialization

times.

Realm and CoreData perform similarly, with Realm slightly slower than CoreData for smaller object

counts, but their performance becomes more comparable as the object count increases.

[2]. Scalability:

All three systems exhibit an increase in initialization time as the number of objects increases.

The performance difference between GRDB and the other two systems becomes more pronounced at

higher object counts, highlighting GRDB's better scalability.

[3]. Logarithmic Trends

The log-log scale plot indicates a linear relationship, suggesting that the initialization time scales

polynomially with the number of objects for all three systems.

Write Performance

figure 2: write performance between coredata, realm and grdb

The graph illustrates the performance comparison of CoreData, Realm, and GRDB in terms of write operation

time for various object counts. Here are the key points derived from the analysis:

[1]. Overall Performance:

CoreData performs the best for smaller object counts (up to 10,000 objects), showing the lowest write

times.

For larger object counts, Realm and GRDB exhibit higher write times compared to CoreData.

GRDB has the highest write times overall for larger datasets, particularly as the object count increases

beyond 100,000.

[2]. Scalability:

The performance gap between CoreData and the other two systems widens as the number of objects

increases.

Realm shows a more consistent performance for smaller datasets but scales poorly with larger datasets.

GRDB starts with a low write time but scales poorly, resulting in the highest write times for larger

datasets.

[3]. Logarithmic Trends:

The log-log scale plot indicates a linear relationship for all three systems, suggesting a polynomial

increase in write time with the number of objects.

Gupta A Journal of Scientific and Engineering Research, 2024, 11(5):1-6

Journal of Scientific and Engineering Research

291

Read Performance

Figure 3: Read performance between CoreData, Realm and GRDB

The graph illustrates the performance comparison of CoreData, Realm, and GRDB in terms of read operation

time for various object counts. Here are the key points derived from the analysis:

[1]. Overall Performance:

CoreData performs the best for read operations, especially for smaller object counts (up to 500,000

objects).

Realm exhibits the highest read times across all object counts, indicating slower performance compared

to CoreData and GRDB.

GRDB shows intermediate performance, better than Realm but worse than CoreData for most object

counts.

[2]. Scalability:

CoreData's read times increase significantly beyond 100,000 objects, but it still maintains a performance

advantage over Realm and GRDB.

Realm's read times increase rapidly with the number of objects, showing poor scalability.

GRDB scales better than Realm but not as well as CoreData, particularly evident for object counts above

100,000.

[3]. Logarithmic Trends:

The log-log scale plot indicates a polynomial increase in read time with the number of objects for all

three systems.

The performance gap between CoreData and the other two systems is more pronounced for higher object

counts.

Update Performance

Figure 4: Update performance between CoreData, Realm and GRDB

Gupta A Journal of Scientific and Engineering Research, 2024, 11(5):1-6

Journal of Scientific and Engineering Research

292

The graph illustrates the performance comparison of CoreData, Realm, and GRDB in terms of update operation

time for various object counts. Here are the key points derived from the analysis:

[1]. Overall Performance:

CoreData performs the best for update operations, especially for smaller object counts (up to 1,000,000

objects).

Realm shows intermediate performance, better than GRDB but worse than CoreData for most object

counts.

GRDB exhibits the highest update times, indicating slower performance compared to CoreData and

Realm.

[2]. Scalability:

CoreData scales better than both Realm and GRDB, maintaining relatively lower update times as the

number of objects increases.

Realm and GRDB exhibit a similar trend in scalability, with GRDB being the least efficient for higher

object counts.

[3]. Logarithmic Trends

The log-log scale plot indicates a polynomial increase in update time with the number of objects for all

three systems.

The performance gap between CoreData and the other two systems is more pronounced for higher object

counts, highlighting CoreData's efficiency in handling larger datasets.

Delete All Performance

Figure 5: Delete All records performance between CoreData, Realm and GRDB

The graph illustrates the performance comparison of CoreData, Realm, and GRDB in terms of delete operation

time for all object counts. Here are the key points derived from the analysis:

[1]. Overall Performance:

GRDB performs the best for delete operations, consistently showing the lowest delete times across all

object counts.

Realm has intermediate performance, better than CoreData but not as efficient as GRDB.

CoreData exhibits the highest delete times, indicating the slowest performance compared to Realm and

GRDB.

[2]. Scalability:

GRDB scales the best, maintaining relatively low delete times even as the number of objects increases

significantly.

Realm also scales well, though its delete times increase more rapidly than GRDB's as the object count

grows.

CoreData shows the least favorable scalability, with delete times increasing sharply for larger object

counts.

Gupta A Journal of Scientific and Engineering Research, 2024, 11(5):1-6

Journal of Scientific and Engineering Research

293

[3]. Logarithmic Trends:

The log-log scale plot indicates a polynomial increase in delete time with the number of objects for all

three systems.

The performance gap between GRDB and the other two systems becomes more pronounced for higher

object counts, highlighting GRDB's efficiency in handling larger datasets.

Comparative Table

Table 1: Feature / Performance Comparison between CoreData, Realm and GRDB

Feature/

Performance

Metric

CoreData Realm GRDB

Write

Performance

Slower due to object graph

management and transaction

handling

Fast due to efficient

storage engine

Good, leveraging SQLite

but slightly slower than

Realm

Read

Performance

Adequate, impacted by

complex object graphs

Excellent, near-

instantaneous for large

datasets

Excellent, particularly

for simple queries

Fetch

Performance

Optimizable, can become

sluggish with complex queries

Highly efficient, zero-

copy architecture

Robust, benefiting from

SQLite’s efficient

querying

Schema Creation

Complex and time-consuming,

but powerful model editor with

in Xcode IDE

Straightforward, code-

based schemas

Flexible, quick setup

through SQL commands

or Swift code

Change

Tracking
Yes Limited No

Undo

Management
Yes No No

Integration
Strong with Apple’s

ecosystem
Moderate Moderate

Learning Curve Steep Moderate Moderate

Community

Support
Extensive Growing Limited

Recommendations

A. When to Choose CoreData

[1]. Complex Data Models: When dealing with complex data models and needing features like change

tracking and undo management.

[2]. Established Projects: Suitable for projects that are already using CoreData and need to maintain

consistency.

B. When to Choose Realm

[1]. Performance-Critical Applications: When write and read performance are critical, especially for

large datasets.

[2]. Simplicity and Speed: If you need a straightforward schema creation process and fast development

times.

[3]. Cross-Platform Needs: When developing applications that need to run on both iOS and Android,

as Realm supports both platforms.

Gupta A Journal of Scientific and Engineering Research, 2024, 11(5):1-6

Journal of Scientific and Engineering Research

294

C. When to Choose GRDB

[1]. Lightweight Applications: When a lightweight database solution with excellent fetch performance

is needed.

[2]. Flexibility: If you need flexibility in schema creation and are comfortable with SQL.

SQLite-Based Projects: When migrating from or integrating with existing SQLite-based systems

Conclusion

The comparative analysis of CoreData, Realm, and GRDB highlights distinct performance characteristics that

can guide developers in choosing the right data for their Apple ecosystems applications. Realm demonstrates

superior write and read performance, making it ideal for applications requiring fast data access and storage.

GRDB offers excellent fetch performance and a lightweight, flexible schema creation process, suitable for

applications needing efficient querying capabilities. CoreData, while slower in some aspects, provides powerful

features and integration with the Apple’s ecosystem, making it a viable choice for complex applications

requiring advanced object management.

References

[1]. Andersson, T. (2018). Analysis and quantitative comparison of storage, management, and scalability of

data in Core Data system in relation to Realm (Dissertation).

[2]. Y. Hryhorenko, S. Londar, U. Marikutsa and I. Farmaha, "Design and development of mobile application

for learning technical terms," 2017 14th International Conference The Experience of Designing and

Application of CAD Systems in Microelectronics (CADSM), Lviv, Ukraine, 2017, pp. 399-401, doi:

10.1109/CADSM.2017.7916160.

[3]. M. Kandekar and R. Ingle, "Performance Analysis of Local Database Management Systems for Mobile

Applications," 2013 International Conference on Cloud & Ubiquitous Computing & Emerging

Technologies, Pune, India, 2013, pp. 236-239, doi: 10.1109/CUBE.2013.51.

[4]. J. Courville and F. Chen, "Understanding storage I/O behaviors of mobile applications," 2016 32nd

Symposium on Mass Storage Systems and Technologies (MSST), Santa Clara, CA, USA, 2016, pp. 1-11,

doi: 10.1109/MSST.2016.7897092.

[5]. Realm: https://github.com/realm/realm-swift

[6]. GRDB: https://groue.github.io/GRDB.swift/

[7]. CoreData: https://developer.apple.com/documentation/coredata/

https://github.com/realm/realm-swift
https://groue.github.io/GRDB.swift/
https://developer.apple.com/documentation/coredata/

