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Abstract We propose five-dimensional spacetime with usual four-dimensions and plus one-discrete dimension 

constructed by using the Planck length, where naLx Pl =5 . Here a  is dimensionless parameter or number 

of lattice and n  is a unit vector. It turns out that motion equations of free particles remain unchanged, while 

those causal-Green functions or propagators are modified and carried gravitational effects in particle physics.  
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1. Metric Tensor, Interval of Events in Five-Dimensional Spacetime 

In five-dimensional spacetime, co-ordinate points of events are denoted by  
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where a  is dimensionless parameter or number of lattice and n -is an arbitrary unit vector. Then the metric 

tensor is 
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 and an interval reads 
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Without generality, we assume in (1) 1=a , then such type of five-dimensional spacetime was considered by 

Markov [1]. D’Alembertian in five-dimensional spacetime takes the form  
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2. Klein-Gordon Type Equation in Five-Dimensional Spacetime  

We propose following type of motion equation for a scalar particle  
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 Then plane-wave solution of this equation is given by  
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 where  
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Then direct calculation for equation (5) gives  
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It means that motion of equation for free particles does not charge in five-dimensional spacetime case, where  
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is valid as for Klein-Gordon case.  

 

3. Effect of Gravity Affects on Causal-Green and Propagator of Interacting Particles 

Direct and easy way to introduce influence of gravity to the particle motion is construction of particle 

propagators in five-dimensional spacetime by using the Fourier transform of Newtonian, Coulomb and Yukawa 

interaction potentials. 

It is well known that in the static limit the Coulomb, the Newtonian and the Yukawa potentials are related with 

photon, graviton and scalar particle propagators by using the Fourier transforms: 
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and  
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Then, inverse Fourier transforms for photon, graviton and scalar particle propagators are given by following 

formulas in five-dimensional spacetime:  
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where c  is normalization constant and we have used the formula (7) with a=1, 1= cosn  is the directed 

cosine. Last integral reads 
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Here for a scalar particle case 
2

2 pmp  , )(1 xJ  is the Bessel function of the order 1 and we have used 

quantum potential form [2]  
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This potential form leads to the quantum forces 
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in five-dimensional spacetime for two bodies with masses 21, MM  and electric charges 21,qq . Here 
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are the Newtonian and the Coulomb constants. 

Finally, photon and graviton propagators in usual four-dimensional space take the forms 
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where .=
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It is obviously that in formula (12) we have used the following integrals:  
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For the Yukawa potential last integral takes the form 
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Where   arctg x = arcsin
x

 1+x2
, 

and therefore for scalar particle propagator one gets  
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For form factors )( 22

PlLpV   and )( 22

Plm LpV   the following Mellin representations are valid  
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Finally, notice that due to form factors (22) and (23) which are analytic functions on the left hand complex plane 

and there are no pales there, all Feynman diagrams [except vacuum polarization ones] for electromagnetic, 

electro-weak and gravitational interactions between elementary particles, and for self-interactions of scalar 

particles are finite (see [3] for construction of finite-nonlocal quantum electrodynamics). 

Spin one massive vector fields carrying electro-weak interactions are 
W  and Z -bosons and those causal- 

Green function or propagator have also nonlocal form.  
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Appendix 1 

For the Yukawa potential case 
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Thus, after normalization, we have  
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as it should be. 

It is important to notice that the form of the Yukawa propagator in the momentum space has universal character 

independing on dimensions of spacetime in the static limit:  
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where we have used the following integral 
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Free and interaction Lagrangians are constructed by means of fields )(),( 
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Matrix elements of this S-matrix are determined by causal-Green functions or propagators of these fields by 

using T-product, for example, for scalar field: 
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Regularization of S matrix is carried out by means of gravity with fundamental length or the Planck length 

3/= cGLPl  . In a such approach force carrying photon, graviton and scalar particles propagators in any D-

dimensions of spacetime are chosen as follows: 
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 for photon and graviton fields,  
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 for scalar particles. Here   

𝑉 −𝑝𝐷
2𝐿𝑃𝑙

2  =
𝐽𝜆(𝑃𝐷𝐿𝑃𝑙)

(𝑝𝐷𝐿𝑃𝑙)
𝜆

∙ 2𝜆 =
1

2𝑖
 𝑑𝜉

−𝛽−∞

−𝛽+𝑖∞

 
−𝑝𝐷

2𝐿𝑃𝑙
2

4
 
𝜉

𝑠𝑖𝑛 𝜋𝜉 ∙ 𝛤 1 + 𝜉 𝛤(𝜆 + 𝜉 + 1)
 

  𝑉𝑚  −𝑝𝐷
2𝐿𝑃𝑙

2  =
1

2𝑖
 𝑑𝜉

−𝛽−∞

−𝛽+𝑖∞

 
(𝑚 2−𝑝𝐷

2 )𝐿𝑃𝑙
2

4
 

𝜉

𝑠𝑖𝑛 𝜋𝜉 ∙𝛤 1+𝜉 𝛤(𝜆+𝜉+1)
 

 where  

 ,...= 2

1

2

2

2

0

2

 DD pppp  

 .,10,11,4,5,6=,
2

3
= D

D
  

This regularised quantum field theory is finite and free from ultraviolet divergences [4], except vacuum 

polarization diagrams which are reqularized by using D-dimensional procedure due to t’Hooft and Veltman [5]. 
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